We wanted to see how liquid drains through foams. The picture at left is
a simple soap foam, generated by producing bubbles in the liquid
at the bottom. The liquid has some fluorescent dye in it, that's why
it's yellow. You can see how all the bubbles are similar sizes, and thus
pack in geometrically pleasing ways.
We trickled in some additional soapy water at the top of the experiment, and watch this water flow through the soap film by looking at an individual channel (where three bubbles meet) within the soap film with a confocal microscope. In fact, we put particles in the added water, so we can see them moving through the channel. From this we can extract velocity profiles within the channel, thus teaching us how water flows through the foam. The blue spot in the picture at left shows light from the confocal microscope laser.
|
To do this experiment, we flipped the microscope on its back side, as shown in the picture below. Bud Puckett, the physics department machinist, built a nice platform for the microscope, and some Plexiglas holders to help hold the foam tube to the microscope stage. The yellow liquid is the soap solution, the foam is in the tube above the solution, with a hose running off the top to allow the excess foam to drain away (since we continually produce foam from below). You can see a small hose coming into the side of the foam tube, near the microscope, where we inject the liquid.
|
Click here to see an animated GIF movie of particles flowing through a foam in our experiment.You can see that the flow is much faster near the centers of the channels, indicating that the bubble walls are behaving rigidly in this experiment.This foam was made using BSA, a common protein, rather than some other surfactant (soap) molecule. (BSA is "bovine serum albumin".) Gravity points downwards (that is, the flow you'll see is caused by gravity), and the width of the picture is 0.5 mm. The movie represents 3 seconds of data. The particles are 1 micron in diameter. |
This is a movie showing the structure of an emulsion sample,
rotated in 3D (data from Doug Wise, see below for details).
Note that from
certain angles the structure looks darker/thinner; this is due
to the distortion of the microscope, which tends to blur things
more in the Z direction than it does in the X and Y
directions.
If are lucky enough to have
red/blue glasses
available, the movie below is even more spectacular. You want your
left eye looking through the red lens and your right eye looking
through blue. Thanks to
John Crocker for teaching me a long time ago the basics of
anaglyphics (this 3D technique).
You can buy 50 pairs of red/blue glasses for $30 (which includes shipping) from 3D Fireworks. | |
3D snapshotsThese two pictures are from the same sample, just different rotations of the 3D image. The color is false color. See above for animated movies showing this sample rotated in 3D. |