Reference Dump
All References (sorted by lab below)
Download the list as a RIS or BibTeX text file, which can be imported into most reference managers, or as an Endnote X library (right click the link to download). Your reference management software should be able to find pdf versions of nearly all of these journal articles.
- Abbott LF, Regehr WG (2004). Synaptic computation. Nature 431:796-803. [doi]
- Adams DJ, Smith SJ, Thompson SH (1980). Ionic currents in molluscan soma. Annu Rev Neurosci 3:141-167. [doi]
- Adams ME, Olivera BM (1994). Neurotoxins: Overview of an emerging research technology. Trends Neurosci 17:151-155. [doi]
- Adams ME, Swanson GJ (1996). Neurotoxins. Trends Neurosci 19 Supplement:S1-S36.
- Aidley DJ (1998). The Physiology of Excitable Cells (Cambridge University Press, Cambridge), pp. 46-49.
- Aidley DJ (1998). The Physiology of Excitable Cells (Cambridge University Press, Cambridge), pp. 46-49, 52-53.
- Aidley DJ (1998). The Physiology of Excitable Cells (Cambridge University Press, Cambridge), p. 21.
- Ashcroft FM (2006). From molecule to malady. Nature 440:440-447. [doi]. [pdf]
- Atwood HL (1976). Organization and synaptic physiology of crustacean neuromuscular systems. Prog Neurobiol 7:291-391. [doi]
- Atwood HL (1982). Synapses and neurotransmitters. In: Atwood HL, Sandeman DC (eds.), The Biology of Crustacea, Vol 3, Neurobiology: Structure and Function (Academic Press, New York), ch. 3.
- Atwood HL (2008). Parallel ‘phasic’ and ‘tonic’ motor systems of the crayfish abdomen. J Exp Biol 211:2193-2195. [doi]
- Bailey CH, Chen M (1991). Morphological aspects of synaptic plasticity in Aplysia an anatomical substrate for long-term memory. Ann NY Acad Sci 627:181-196. [doi]
- Baker PF, Hodgkin AL, Shaw TI (1962). The effects of changes in internal ionic concentrations on the electrical properties of perfused giant axons. J Physiol 164:355-374. [pdf]
- Bao J-X, Kandel ER, Hawkins RD (1997). Involvement of pre- and postsynaptic mechanisms in posttetanic potentiation at Aplysia synapses. Science 275:969-973. [doi]
- Barthe J-Y, Bevengut M, Clarac F (1993). In vitro protolin and serotonin induced modulations of the abdominal motor system activities in crayfish. Brain Res 623:101-109. [doi]
- Baxter DA, Bittner GD, Brown TH (1985). Quantal mechanism of long-term synaptic potentiation. Proc Natl Acad Sci U S A 82:5978-5982. [pdf]
- Bean BP (2007). The action potential in mammalian central neurons. Nature Rev Neurosci 8:451-465. [doi]. [pdf]
- Beilby MJ (2007). Action potential in charophytes. Int Rev Cytol 257:43-82. [doi]
- Benjamin PR (2008). Lymnaea. Scholarpedia 3:4124. [doi]
- Benson JA, Adams WB (1989). Ionic mechanisms of endogenous activity in molluscan burster neurons. In: Jacklet JW (ed.) Neuronal and cellular oscillators (Marcel Dekker, New York), pp. 87-120.
- Bishop CA, Krouse ME, Wine JJ (1991). Peptide cotransmitter potentiates calcium channel activity in crayfish skeletal muscle. J Neurosci 11:269-276. [pdf]
- Bishop CA, Wine JJ, Nagy F, O’Shea MR (1987). Physiological consequences of a peptide cotransmitter in a crayfish nerve-muscle preparation. J Neurosci 7:1769-1779. [pdf]
- Bittner GD (1989). Synaptic plasticity at the crayfish opener neuromuscular preparation. J Neurobiol 20:386-408. [doi]
- Bokisch AJ, Walker RJ (1986). The ionic mechanism associated with the action of putative transmitters on identified neurons of the snail, Helix aspersa. Comp Biochem Physiol C 84:231-241. [doi]
- Breen CA, Atwood HL (1983). Octopamine—a neurohormone with presynaptic activity-dependent effects at crayfish neuromuscular junctions. Nature 303:716-718. [doi]
- Brickley SG, Mody I (2012). Extrasynaptic GABA(A) receptors: Their function in the CNS and implications for disease. Neuron 73:23-34. [doi]
- Brown RH, Cannon SC, Rowland LP (2013). Diseases of the nerve and motor unit. In: Kandel ER, Schwartz JH, Jessell TM, Siegelbaum SA, Hudspeth AJ (eds.), Principles of Neural Science (McGraw Hill, Newark), ch. 14.
- Byrne JH (2009). Postsynaptic potentials and synaptic integration. In: Byrne JH, Roberts JL (eds.), From Molecules to Networks: An Introduction to Cellular and Molecular Neuroscience (Academic Press, San Diego), ch. 16.
- Byrne JH, LaBar KS, LeDoux JE, Lindquist DH, Thompson RH, Teyler TJ (2009). Learning and memory: Basic mechanisms. In: Byrne JH, Roberts JL (eds.), From Molecules to Networks: An Introduction to Cellular and Molecular Neuroscience (Academic Press, San Diego), pp. 539-608.
- Byrne JH, Shepherd GM (2009). Electrotonic properties of axons and dendrites. In: Byrne JH, Roberts JL (eds.), From Molecules to Networks: An Introduction to Cellular and Molecular Neuroscience (Academic Press, San Diego), ch. 4.
- Carrasquillo Y, Nerbonne JM (2014). IA channels: Diverse regulatory mechanisms. Neuroscientist 20:104-111. [doi]. [pdf]
- Cattaert D, Le Ray D (2001). Adaptive motor control in crayfish. Prog Neurobiol 63:199-240. [pdf]
- Catterall WA, Dib-Hajj S, Meisler MH, Pietrobon D (2008). Inherited neuronal ion channelopathies: New windows on complex neurological diseases. J Neurosci 28:11768-11777. [doi]. [pdf]
- Clarac F, Pearlstein E (2007). Invertebrate preparations and their contribution to neurobiology in the second half of the 20th century. Brain Res Rev 54:113-161. [pdf]
- Clement JF, Taylor AK, Velez SJ (1983). Effect of a limited target area on regeneration of specific neuromuscular connections in the crayfish. J Neurophysiol 49:216-226. [pdf]
- Delcomyn F (1998). Foundations of Neurobiology (W.H. Freeman, New York), ch. 9.
- Dey D, Eckle VS, Vitko I, Sullivan KA, Lasiecka ZM, Winckler B, Stornetta RL, Williamson JM, Kapur J, Perez-Reyes E (2014). A potassium leak channel silences hyperactive neurons and ameliorates status epilepticus. Epilepsia 55:203-213. [doi]
- Dib-Hajj SD, Cummins TR, Black JA, Waxman SG (2010). Sodium channels in normal and pathological pain. Annu Rev Neurosci 33:325-347. [doi]. [pdf]
- DiFrancesco D (2010). The role of the funny current in pacemaker activity. Circ Res 106:434-446. [doi]. [pdf]
- Dittman JS, Kreitzer AC, Regehr WG (2000). Interplay between facilitation, depression, and residual calcium at three presynaptic terminals. J Neurosci 20:1374-1385. [pdf]
- Djokaj S, Cooper RL, Rathmayer W (2001). Presynaptic effects of octopamine, serotonin, and cocktails of the two modulators on neuromuscular transmission in crustaceans. J Comp Physiol A 187:145-154. [doi]
- Drummond JM, Macmillan DL (1998). The abdominal motor system of the crayfish, Cherax destructor. II. Morphology and physiology of the deep extensor motor neurons. J Comp Physiol A 183:603-619. [doi]
- Drummond JM, Macmillan DL (1998). The abdominal motor system of the crayfish, Cherax destructor. I. Morphology and physiology of the superficial extensor motor neurons. J Comp Physiol A 183:583-601. [doi]
- Duncan G (1990). Physics in the Life Sciences (Blackwell Scientific Publications, Oxford), ch. 10-11.
- Eckert R, Randall D, Augustine GJ (1988). Animal Physiology: Mechanisms and Adaptations (W.H. Freeman, New York), ch. 7.
- Elliott CJ, Susswein AJ (2002). Comparative neuroethology of feeding control in molluscs. J Exp Biol 205:877-896. [pdf]
- Emes RD, Grant SG (2012). Evolution of synapse complexity and diversity. Annu Rev Neurosci 35:111-131. [doi]
- Evoy WH, Beranek R (1972). Pharmacological localization of excitatory and inhibitory synaptic regions in crayfish slow abdominal flexor muscle-fibres. Comp Gen Pharmacol 3:178-186. [doi]
- Evoy WH, Kennedy D, Wilson DM (1967). Discharge patterns of neurones supplying tonic abdominal flexor muscles in the crayfish. J Exp Biol 46:393-411. [pdf]
- Faulkes Z, Macmillan DL (2002). Effects of removal of muscle receptor organ input on the temporal structure of non-giant swimming cycles in the crayfish, Cherax destructor. Mar Freshw Behav Phy 35:149-155. [doi]
- Fields HL (1976). Crustacean abdominal and thoracic muscle receptor organs. In: Mill PJ (ed.) Structure and Function of Proprioceptors in the Invertebrates (John Wiley and Sons, New York), pp. 65-114.
- Fioravante D, Regehr WG (2011). Short-term forms of presynaptic plasticity. Curr Opin Neurobiol 21:269-274. [doi]
- Fisher SA, Fischer TM, Carew TJ (1997). Multiple overlapping processes underlying short-term synaptic enhancement. Trends Neurosci 20:170-177. [doi]
- Fortune ES, Rose GJ (2001). Short-term synaptic plasticity as a temporal filter. Trends Neurosci 24:381-385. [doi]
- Fromm J, Lautner S (2007). Electrical signals and their physiological significance in plants. Plant Cell Environ 30:249-257. [doi]
- Glaizner B (1968). Pharmacological mapping of cells in the suboesophageal ganglia of Helix aspersa. In: Salánki J (ed.) Neurobiology of Invertebrates (Plenum Press, New York), pp. 267-284. [Reprinted 2012 by Springer, ISBN 1461586208]
- Glusman S, Kravitz EA (1982). The action of serotonin on excitatory nerve terminals in lobster nerve-muscle preparations. J Physiol 325:223-241. [pdf]
- Gonzalez C, Baez-Nieto D, Valencia I, Oyarzun I, Rojas P, Naranjo D, Latorre R (2012). K+ channels: Function-structural overview. Compr Physiol 2:2087-2149. [doi]. [pdf]
- Grass Instrument Company (1990). The Crayfish Stretch Receptor. Pamphlet accompanying live demonstration at the 20th Annual Meeting of the Society for Neuroscience, St. Louis. [pdf]
- Greenspan RJ (2007). An Introduction to Nervous Systems (Cold Spring Harbor Laboratory Press, Cold Spring Harbor NY), ch. Chapter 1.
- Harris-Warrick RM (2000). Ion channels and receptors: molecular targets for behavioral evolution. J Comp Physiol A 186:605-616. [pdf]
- Hartline DK, Colman DR (2007). Rapid conduction and the evolution of giant axons and myelinated fibers. Curr Biol 17:R29-35. [doi]
- Hill RW, Wyse GA, Anderson M (2012). Animal Physiology (Sinauer Associates, Sunderland MA), ch. 14.
- Hille B (2001). Ion Channels of Excitable Membranes (Sinauer Associates, Sunderland MA), ch. 1.
- Hille B (2001). Ion Channels of Excitable Membranes (Sinauer Associates, Sunderland MA), ch. 1, especially pp. 72-74.
- Hille B (2001). Ion Channels of Excitable Membranes (Sinauer Associates, Sunderland MA), ch. 22.
- Hinkle M, Heller P, Van der Kloot W (1971). The influence of potassium and chloride ions on the membrane potential of single muscle fibers of the crayfish. Comp Biochem Physiol A 40:181-201. [doi]
- Hodgkin AL, Horowicz P (1959). The influence of potassium and chloride ions on the membrane potential of single muscle fibres. J Physiol 148:127-160. [pdf]
- Hong SJ, Lnenicka GA (1995). Activity-dependent reduction in voltage-dependent calcium current in a crayfish motoneuron. J Neurosci 15:3539-3547. [pdf]
- Honoré E (2007). The neuronal background K2P channels: Focus on TREK1. Nature Rev Neurosci 8:251-261. [doi]
- Hoyle G (1983). Muscles and their Neural Control (John Wiley and Sons, New York), pp. 483-525.
- Hultborn H, Kiehn O (1992). Neuromodulation of vertebrate motor neuron membrane properties. Curr Opin Neurobiol 2:770-775. [doi]
- Jan LY, Jan YN (2012). Voltage-gated potassium channels and the diversity of electrical signalling. J Physiol 590:2591-2599. [doi]. [pdf]
- Johnson BR, Hauptman SA, Bonow RH (2007). Construction of a simple suction electrode for extracellular recording and stimulation. J Undergrad Neurosci Educ 6:A21-26. [pdf]
- Johnson BR, Peck JH, Harris-Warrick RM (1995). Distributed amine modulation of graded chemical transmission in the pyloric network of the lobster stomatogastric ganglion. J Neurophysiol 74:437-452. [pdf]
- Johnson BR, Wyttenbach RA, Wayne R, Hoy RR (2002). Action potentials in a giant algal cell: A comparative approach to mechanisms and evolution of excitability. J Undergrad Neurosci Educ 1:A23-27. [pdf]
- Jones SW (1989). On the resting potential of isolated frog sympathetic neurons. Neuron 3:153-161. [doi]
- Junge D (1981). Nerve and Muscle Excitation (Sinauer Associates, Sunderland MA), pp. 2-7.
- Kandel ER, Schwartz JH, Jessell TM, Siegelbaum SA, Hudspeth AJ (2013). Principles of Neural Science (McGraw Hill), ch. 21-22, 35-36.
- Kaneko T, Saito C, Shimmen T, Kikuyama M (2005). Possible involvement of mechanosensitive Ca2+ channels of plasma membrane in mechanoperception in Chara. Plant Cell Physiol 46:130-135. [doi]
- Katz B (1966). Nerve, Muscle, and Synapse (McGraw-Hill, New York), pp. 17-19.
- Kennedy D, Evoy WH, Fields HL (1966). The unit basis of some crustacean reflexes. Symp Soc Exp Biol 20:75-109. [pdf]
- Kennedy D, Takeda K (1965a). Reflex control of abdominal flexor muscles in the crayfish I. The twitch system. J Exp Biol 43:221-227. [pdf]
- Kennedy D, Takeda K (1965b). Reflex control of abdominal flexor muscles in the crayfish II. The tonic system. J Exp Biol 43:229-246. [pdf]
- Kerkut GA, Gardner DR (1967). The role of calcium ions in the action potentials of Helix aspersa neurones. Comp Biochem Physiol 20:147-162. [doi]
- Kerkut GA, Lambert JDC, Gayton RJ, Loker JE, Walker RJ (1975). Mapping of nerve cells in the suboesophageal ganglia of Helix aspersa. Comp Biochem Physiol A 50:147-162. [doi]
- Kerkut GA, Thomas RC (1965). An electrogenic sodium pump in snail nerve cells. Comp Biochem Physiol 14:167-183. [doi]
- Kikuyama M, Tazawa M (1998). Temporal relationship between action potential and Ca2+ transient in characean cells. Plant Cell Physiol 39:1359-1366. [pdf]
- Klug A (2011). Short-term synaptic plasticity in the auditory brain stem by using in-vivo-like stimulation parameters. Hear Res 279:51-59. [doi]
- Koester J, Siegelbaum SA (2013). Membrane potential and the passive electrical properties of the neuron. In: Kandel ER, Schwartz JH, Jessell TM, Siegelbaum SA, Hudspeth AJ (eds.), Principles of Neural Science (McGraw Hill, Newark), ch. 6.
- Kostyuk PG (1968). Ionic background of activity in giant neurons of molluscs. In: Salánki J (ed.) Neurobiology of Invertebrates (Plenum Press, New York), pp. 145-167. [Reprinted 2012 by Springer, ISBN 1461586208]
- Krause KM, Vélez SJ (1995). Regeneration of neuromuscular connections in crayfish allotransplanted neurons. J Neurobiol 27:154-171. [doi]
- Kularatne SA, Senanayake N (2014). Venomous snake bites, scorpions, and spiders. Handb Clin Neurol 120:987-1001. [doi]. [pdf]
- Land BR, Johnson BR, Wyttenbach RA, Hoy RR (2007). Tools for physiology labs: Inexpensive equipment for physiological stimulation. J Undergrad Neurosci Educ 3:A30-35. [pdf]
- Land BR, Wyttenbach RA, Johnson BR (2001). Tools for physiology labs: An inexpensive high-performance amplifier and electrode for extracellular recording. J Neurosci Methods 106:47-55. [doi]
- Larimer JL (1988). The command hypothesis: A new view using an old example. Trends Neurosci 11:506-510. [doi]
- Larimer JL, Moore D (2003). Neural basis of a simple behavior: Abdominal positioning in crayfish. Microsc Res Tech 60:346-359. [doi]
- Leise EM, Hall WM, Mulloney B (1986). Functional organization of crayfish abdominal ganglia: I. The flexor systems. J Comp Neurol 253:25-45. [doi]
- Lesage F, Lazdunski M (2000). Molecular and functional properties of two-pore-domain potassium channels. Am J Physiol Renal Physiol 279:F793-F801. [pdf]
- Levy J (2011). Poison: An Illustrated History (Globe Pequot Press, Guilford CT).
- Li WC, Sautois B, Roberts A, Soffe SR (2007). Reconfiguration of a vertebrate motor network: Specific neuron recruitment and context-dependent synaptic plasticity. J Neurosci 27:12267-12276. [doi]
- Lichtman JW, Livet J, Sanes JR (2008). A technicolour approach to the connectome. Nature reviews Neuroscience 9:417-422. [doi] (For more examples, see cbs.fas.harvard.edu/science/connectome-project/brainbow.)
- Llinas RR (1988). The intrinsic electrophysiological properties of mammalian neurons: Insights into central nervous system function. Science 242:1654-1664. [doi]
- Lnenicka GA (1991). The role of activity in the development of phasic and tonic synaptic terminals. Ann NY Acad Sci 627:197-211. [doi]
- Loeb GE, Gans C (1986). Electromyography for Experimentalists (University of Chicago Press, Chicago), pp. 61, 71-76, 175-188.
- Loeb GE, Gans C (1986). Electromyography for Experimentalists (University of Chicago Press, Chicago), ch. 2, 6, 12-13.
- Lunevsky VZ, Zherelova OM, Vostrikov IY, Berestovsky GN (1983). Excitation of Characeae cell membranes as a result of activation of calcium and chloride channels. J Membrane Biol 72:43-58. [doi]
- Malenka RC, Siegelbaum SA (2001). Synaptic plasticity: Diverse targets for regulating synaptic efficacy. In: Cowan WM, Südhof TC, Stevens CF (eds.), Synapses (The Johns Hopkins University Press, Baltimore), ch. 9.
- Mathie A, Veale EL (2007). Therapeutic potential of neuronal two-pore domain potassium-channel modulators. Curr Opin Investig Drugs 8:555-562. [pdf]
- McCarthy BJ, Daws A, Macmillan DL (2004). The activity of abdominal stretch receptors during non-giant swimming in the crayfish Cherax destructor and their role in hydrodynamic efficiency. J Comp Physiol A 190:291-299. [doi]
- McCarthy BJ, Macmillan DL (1995). The role of the muscle receptor organ in the control of abdominal extension in the crayfish, Cherax destructor. J Exp Biol 198:2253-2259. [pdf]
- McCarthy BJ, Macmillan DL (1999). Control of abdominal extension in the freely moving intact crayfish Cherax destructor. I. Activity of the tonic stretch receptor. J Exp Biol 202:171-181. [pdf]
- McCormick DA (2009). Membrane potential and action potential. In: Byrne JH, Roberts JL (eds.), From Molecules to Networks: An Introduction to Cellular and Molecular Neuroscience (Academic Press, San Diego), ch. 5.
- Meech RW, Mackie GO (2007). Evolution of excitability in lower metazoans. In: North G, Greenspan RJ (eds.), Invertebrate Neurobiology (Cold Springs Harbor Laboratory Press, Cold Springs Harbor NY), ch. 22.
- Mercer AL (1999). Changing the way we perceive things: Sensory systems modulation. In: Katz PS (ed.) Beyond Neurotransmission: Neuromodulation and Its Importance for Information Processing (Oxford Univ. Press, Oxford), ch. 6.
- Mercier AJ, Schiebe M, Atwood HL (1990). Pericardial peptides enhance synaptic transmission and tension in phasic extensor muscles of crayfish. Neurosci Lett 111:92-98. [doi]
- Miles FA (1969). Excitable Cells (Heinemann Medical Books, Ltd., London), ch. 4.
- Millar AG, Atwood HL (2004). Crustacean phasic and tonic motor neurons. Integrative and comparative biology 44:4-13. [doi]
- Miller MW, Parnas H, Parnas I (1985). Dopaminergic modulation of neuromuscular transmission in the prawn. J Physiol 363:363-375. [pdf]
- Mittenthal JE, Wine JJ (1978). Segmental homology and variation in flexor motoneurons of the crayfish abdomen. J Comp Neurol 177:311-334. [doi]
- Moller P (1995). Basic elements of electrocommunication systems. In: Moller P (ed.) Electric Fishes: History and Behavior (Chapman and Hall, London), ch. 8.
- Moore JW, Stuart AE (2007). Neurons in Action: Tutorials and Simulations Using NEURON (Sinauer Associates, Sunderland MA). [www.neuronsinaction.com]
- Mulloney B, Hall WM (2000). Functional organization of crayfish abdominal ganglia. III. Swimmeret motor neurons. J Comp Neurol 419:233-243. [doi]
- Mulloney B, Smarandache-Wellmann C (2012). Neurobiology of the crustacean swimmeret system. Prog Neurobiol 96:242-267. [doi]
- Murphy AD (2001). The neuronal basis of feeding in the snail, Helisoma, with comparisons to selected gastropods. Prog Neurobiol 63:383-408. [doi]
- Murphy BF, Larimer JL (1991). The effect of various neurotransmitters and some of their agonists and antagonists on the crayfish abdominal positioning system. Comp Biochem Physiol C 100:687-698. [doi]
- Murray RW (1983). Test Your Understanding of Neurophysiology (Cambridge University Press, Cambridge), pp. 51-58.
- Nicholls JG, Martin AR, Fuchs PA, Brown PA, Diamond ME, Weisblat DA (2012). From Neuron to Brain (Sinauer Associates, Sunderland MA), ch. 16.
- Nistri A, Fisher ND, Gurnell M (1990). Block by the neuropeptide TRH of an apparently novel K+ conductance of rat motoneurones. Neurosci Lett 120:25-30. [pdf]
- Ogden D (1994). Microelectrode Techniques. The Plymouth Workshop Handbook (Company of Biologists, Cambridge), ch. 1, 16.
- Okihara K, Ohkawa T, Kasai M (1993). Effects of calmodulin on Ca2+-dependent Cl−-sensitive anion channels in the Chara plasmalemma: A patch-clamp study. Plant Cell Physiol 34:75-82. [pdf]
- Ozawa S, Tsuda K (1973). Membrane permeability change during inhibitory transmitter action in crayfish stretch receptor cell. J Neurophysiol 36:805-816. [pdf]
- Pasztor VM (1989). Modulation of sensitivity in invertebrate sensory receptors. Sem Neurosci 1:5-14.
- Pasztor VM, Macmillan DL (1990). The actions of proctolin, octopamine, and serotonin on crustacean proprioceptors show species and neuron specificity. J Exp Biol 152:485-504. [pdf]
- Patullo BW, Faulkes Z, Macmillan DL (2001). Muscle receptor organs do not mediate load compensation during body roll and defense response extensions in the crayfish Cherax destructor. J Exp Zool 290:783-790. [doi]
- Paupardin-Tritsch D, Colombaioni L, Deterre P, Gerschenfeld HM (1985). Two different mechanisms of calcium spike modulation by dopamine. J Neurosci 5:2522-2532. [pdf]
- Purali N (2005). Structure and function relationship in the abdominal stretch receptor organs of the crayfish. J Comp Neurol 488:369-383. [doi]
- Purves D, Augustine GJ, Fitzpatrick D, Hall WC, LaMantia A-S, McNamara JO, White LE (2012). Neuroscience (Sinauer Associates, Sunderland MA), ch. 3.
- Purves D, Augustine GJ, Fitzpatrick D, Hall WC, LaMantia A-S, McNamara JO, White LE (2012). Neuroscience (Sinauer Associates, Sunderland MA), ch. 1.
- Purves D, Augustine GJ, Fitzpatrick D, Hall WC, LaMantia A-S, McNamara JO, White LE (2012). Neuroscience (Sinauer Associates, Sunderland MA), ch. 2.
- Purves D, Augustine GJ, Fitzpatrick D, Hall WC, LaMantia A-S, McNamara JO, White LE (2012). Neuroscience (Sinauer Associates, Sunderland MA), ch. 5.
- Purves D, Augustine GJ, Fitzpatrick D, Hall WC, LaMantia A-S, McNamara JO, White LE (2012). Neuroscience (Sinauer Associates, Sunderland MA), ch. 6.
- Purves D, Augustine GJ, Fitzpatrick D, Hall WC, LaMantia A-S, McNamara JO, White LE (2012). Neuroscience (Sinauer Associates, Sunderland MA), ch. 8.
- Purves D, Augustine GJ, Fitzpatrick D, Hall WC, LaMantia A-S, McNamara JO, White LE (2012). Neuroscience (Sinauer Associates, Sunderland MA), ch. 9, 16.
- Purves D, Augustine GJ, Fitzpatrick D, Hall WC, LaMantia A-S, McNamara JO, White LE (2012). Neuroscience (Sinauer Associates, Sunderland MA), pp. 290-291.
- Purves RD (1981). Microelectrode Methods for Intracellular Recording and Ionophoresis (Academic Press, New York), pp. 51-53.
- Purves RD (1981). Microelectrode Methods for Intracellular Recording and Ionophoresis (Academic Press, New York), pp. 50-51.
- Purves RD (1981). Microelectrode Methods for Intracellular Recording and Ionophoresis (Academic Press, New York).
- Quicke DLJ, Brace RC (1979). Differential staining of cobalt- and nickel-filled neurones using rubeanic acid. J Microsc 115:161-163. [doi]
- Quinlan EM, Arnett BC, Murphy AD (1997). Feeding stimulants activate an identified dopaminergic interneuron that induces the feeding motor program in Helisoma. J Neurophysiol 78:812-824. [pdf]
- Richter DW, Smith JC (2014). Respiratory rhythm generation in vivo. Physiology 29:58-71. [doi]. [pdf]
- Rudy B (1988). Diversity and ubiquity of K channels. Neuroscience 25:729-749. [doi]
- Rydqvist B (1992). Muscle mechanoreceptors in invertebrates. In: Ito F (ed.) Comparative Aspects of Mechanoreceptor Systems (Springer, Berlin), pp. 233-260. [doi]
- Rydqvist B, Lin JH, Sand P, Swerup C (2007). Mechanotransduction and the crayfish stretch receptor. Physiol Behav 92:21-28. [doi]
- Sacks O (1998). The man who mistook his wife for a hat: And other clinical tales (Simon and Schuster, New York), ch. 3.
- Selverston AI (1985). Model neural networks and behavior (Plenum Press, New York).
- Sherman-Gold R (2012). The Axon Guide: Electrophysiology and Biophysics Laboratory Techniques, 3rd Edition (Molecular Devices Corporation, Union City CA). [pdf]
- Shimmen T (2001). Involvement of receptor potentials and action potentials in mechano-perception in plants. Aust J Plant Physiol 28:567-576. [doi]
- Shimmen T, Mimura T, Kikuyama M, Tazawa M (1994). Characean cells as a tool for studying electrophysiological characteristics of plant cells. Cell Struct Funct 19:263-278. [doi]
- Siegelbaum SA, Koester J (2013). Review of basic circuit theory. In: Kandel ER, Schwartz JH, Jessell TM, Siegelbaum SA, Hudspeth AJ (eds.), Principles of Neural Science, Fifth Edition (McGraw Hill, Newark), pp. 1525-1532.
- Silverthorn DU (2013). Human Physiology: An Integrated Approach (Pearson, Boston), ch. 8, 13.
- Silverthorn DU (2013). Human Physiology: An Integrated Approach (Pearson, Boston), ch. 8.
- Silverthorn DU (2013). Human Physiology: An Integrated Approach (Pearson, Boston), ch. 20.
- Silverthorn DU (2013). Human Physiology: An Integrated Approach (Pearson, Boston), ch. 10, 13.
- Silverthorn DU (2013). Human Physiology: An Integrated Approach (Pearson, Boston), ch. 10.
- Simms BA, Zamponi GW (2014). Neuronal voltage-gated calcium channels: structure, function, and dysfunction. Neuron 82:24-45. [doi]. [pdf]
- Stein PSG, Grillner S, Selverston AI, Stuart DG (1997). Neurons, Networks, and Motor Behavior (MIT Press, Cambridge MA). [Reprinted 2013 by Springer US, ISBN 9781475758603]
- Stewart A (2009). Wicked Plants: The Weed that Killed Lincoln’s Mother and Other Botanical Atrocities (Algonquin Books, Chapel Hill NC).
- Thiel G, Homann U, Plieth C (1997). Ion channel activity during the action potential in Chara: New insights with new techniques. J Exp Bot 48:609-622. [doi]
- Toledo-Rodriguez M, El Manira A, Wallen P, Svirskis G, Hounsgaard J (2005). Cellular signalling properties in microcircuits. Trends Neurosci 28:534-540. [doi]
- Vélez SJ, Wyman RJ (1978a). Synaptic connectivity in a crayfish neuromuscular system: 1. Gradient of innervation and synaptic strength. J Neurophysiol 41:75-84. [pdf]
- Vélez SJ, Wyman RJ (1978b). Synaptic connectivity in a crayfish neuromuscular system: 2. Nerve-muscle matching and nerve branching patterns. J Neurophysiol 41:85-96. [pdf]
- Van Harreveld A (1936). A physiological solution for freshwater crustaceans. Proc Soc Exp Biol Med 34:428-432. [doi]
- Vescovi PJ, Macmillan DL, Simmers AJ (1997). Muscle receptor organs of the crayfish, Cherax destructor: Input to telson motor neurons. J Exp Zool 279:228-242. [doi]
- Walker RJ, Brooks HL, Holden-Dye L (1996). Evolution and overview of classical transmitter molecules and their receptors. Parasitology 113:S3-S33. [doi]
- Wallin BG (1967). Relation between external potasium concentration, membrane potential, and internal ion concentrations in crayfish axons. Acta Physiol Scand 70:431-448. [doi]
- Walsh KA, Macmillan DL, Bourke DW (1994). The effect of ethanol on the dynamic response of a mechanoreceptor neuron. Res Commun Substance 15:9-20.
- Wang YC, Huang RC (2006). Effects of sodium pump activity on spontaneous firing in neurons of the rat suprachiasmatic nucleus. J Neurophysiol 96:109-118. [doi]
- Waxman SG, Zamponi GW (2014). Regulating excitability of peripheral afferents: Emerging ion channel targets. Nature Neurosci 17:153-163. [doi]
- Wayne R (1993). Excitability in plant cells. Am Sci 81:140-151. [pdf]
- Wayne R (1994). The excitability of plant cells: With a special emphasis on characean internodal cells. Bot Rev 60:265-367. [doi]
- Welsh JH, Smith RI, Kammer AE (1968). Laboratory Exercises in Invertebrate Physiology (Burgess Publishing Company, Minneapolis), pp. 85-87.
- Whitlock JR, Heynen AJ, Shuler MG, Bear MF (2006). Learning induces long-term potentiation in the hippocampus. Science 313:1093-1097. [doi]
- Wiersma CAG, Furshpan E, Florey E (1953). Physiological and pharmacological observations on muscle receptor organs of the crayfish, Cambarus clarkii Girard. J Exp Biol 30:136-150. [pdf]
- Williams SE (1976). Comparative sensory physiology of droseraceae—Evolution of a plant sensory system. P Am Philos Soc 120:187-204. [pdf]
- Wine JJ, Mittenthal JE, Kennedy D (1974). Structure of tonic flexor motoneurons in crayfish abdominal ganglia. J Comp Physiol 93:315-335. [doi]
- Wright SH (2004). Generation of resting membrane potential. Adv Physiol Educ 28:139-142. [doi]
- Xu J, He L, Wu LG (2007). Role of Ca2+ channels in short-term synaptic plasticity. Curr Opin Neurobiol 17:352-359. [doi]
- Xu-Friedman MA (2013). Illustrating concepts of quantal analysis with an intuitive classroom model. Adv Physiol Educ 37:112-116. [doi]
- Xu-Friedman MA, Regehr WG (2004). Structural contributions to short-term synaptic plasticity. Physiol Rev 84:69-85. [doi]
- Zakon HH (2012). Adaptive evolution of voltage-gated sodium channels: The first 800 million years. Proc Natl Acad Sci U S A 109 Suppl 1:10619-10625. [doi]. [pdf]
- Zhao B, Rassendren F, Kaang BK, Furukawa Y, Kubo T, Kandel ER (1994). A new class of noninactivating K+ channels from Aplysia capable of contributing to the resting potential and firing patterns of neurons. Neuron 13:1205-1213. [doi]
- Zucker RS, Kullmann DM, Schwartz TL (2009). Release of neurotransmitters. In: Byrne JH, Roberts JL (eds.), From Molecules to Networks: An Introduction to Cellular and Molecular Neuroscience (Academic Press, San Diego), pp. 255-258.
- Zucker RS, Regehr WG (2002). Short-term synaptic plasticity. Annu Rev Physiol 64:355-405. [doi]
1. Membrane Properties
- Byrne JH, Shepherd GM (2009). Electrotonic properties of axons and dendrites. In: Byrne JH, Roberts JL (eds.), From Molecules to Networks: An Introduction to Cellular and Molecular Neuroscience (Academic Press, San Diego), ch. 4.
- Koester J, Siegelbaum SA (2013). Membrane potential and the passive electrical properties of the neuron. In: Kandel ER, Schwartz JH, Jessell TM, Siegelbaum SA, Hudspeth AJ (eds.), Principles of Neural Science (McGraw Hill, Newark), ch. 6.
- Moller P (1995). Basic elements of electrocommunication systems. In: Moller P (ed.) Electric Fishes: History and Behavior (Chapman and Hall, London), ch. 8.
- Siegelbaum SA, Koester J (2013). Review of basic circuit theory. In: Kandel ER, Schwartz JH, Jessell TM, Siegelbaum SA, Hudspeth AJ (eds.), Principles of Neural Science, Fifth Edition (McGraw Hill, Newark), pp. 1525-1532.
1i. Membrane Properties (Supplement)
- Byrne JH, Shepherd GM (2009). Electrotonic properties of axons and dendrites. In: Byrne JH, Roberts JL (eds.), From Molecules to Networks: An Introduction to Cellular and Molecular Neuroscience (Academic Press, San Diego), ch. 4.
- Hille B (2001). Ion Channels of Excitable Membranes (Sinauer Associates, Sunderland MA), ch. 1.
- Koester J, Siegelbaum SA (2013). Membrane potential and the passive electrical properties of the neuron. In: Kandel ER, Schwartz JH, Jessell TM, Siegelbaum SA, Hudspeth AJ (eds.), Principles of Neural Science (McGraw Hill, Newark), ch. 6.
- Moller P (1995). Basic elements of electrocommunication systems. In: Moller P (ed.) Electric Fishes: History and Behavior (Chapman and Hall, London), ch. 8.
- Sherman-Gold R (2012). The Axon Guide: Electrophysiology and Biophysics Laboratory Techniques, 3rd Edition (Molecular Devices Corporation, Union City CA). [pdf]
- Siegelbaum SA, Koester J (2013). Review of basic circuit theory. In: Kandel ER, Schwartz JH, Jessell TM, Siegelbaum SA, Hudspeth AJ (eds.), Principles of Neural Science, Fifth Edition (McGraw Hill, Newark), pp. 1525-1532.
2. Motor Nerve Recording
- Aidley DJ (1998). The Physiology of Excitable Cells (Cambridge University Press, Cambridge), pp. 46-49.
- Evoy WH, Kennedy D, Wilson DM (1967). Discharge patterns of neurones supplying tonic abdominal flexor muscles in the crayfish. J Exp Biol 46:393-411. [pdf]
- Hartline DK, Colman DR (2007). Rapid conduction and the evolution of giant axons and myelinated fibers. Current Biology 17:R29-35. [doi]
- Kennedy D, Evoy WH, Fields HL (1966). The unit basis of some crustacean reflexes. Symp Soc Exp Biol 20:75-109. [pdf]
- Kennedy D, Takeda K (1965a). Reflex control of abdominal flexor muscles in the crayfish I. The twitch system. J Exp Biol 43:221-227. [pdf]
- Kennedy D, Takeda K (1965b). Reflex control of abdominal flexor muscles in the crayfish II. The tonic system. J Exp Biol 43:229-246. [pdf]
- Koester J, Siegelbaum SA (2013). Membrane potential and the passive electrical properties of the neuron. In: Kandel ER, Schwartz JH, Jessell TM, Siegelbaum SA, Hudspeth AJ (eds.), Principles of Neural Science (McGraw Hill, Newark), ch. 6.
- Larimer JL, Moore D (2003). Neural basis of a simple behavior: Abdominal positioning in crayfish. Microsc Res Tech 60:346-359. [doi]
2i. Motor Nerve Recording (Supplement)
- Aidley DJ (1998). The Physiology of Excitable Cells (Cambridge University Press, Cambridge), pp. 46-49, 52-53.
- Atwood HL (2008). Parallel ‘phasic’ and ‘tonic’ motor systems of the crayfish abdomen. J Exp Biol 211:2193-2195. [doi]
- Brown RH, Cannon SC, Rowland LP (2013). Diseases of the nerve and motor unit. In: Kandel ER, Schwartz JH, Jessell TM, Siegelbaum SA, Hudspeth AJ (eds.), Principles of Neural Science (McGraw Hill, Newark), ch. 14.
- Cattaert D, Le Ray D (2001). Adaptive motor control in crayfish. Prog Neurobiol 63:199-240. [pdf]
- Clarac F, Pearlstein E (2007). Invertebrate preparations and their contribution to neurobiology in the second half of the 20th century. Brain Res Rev 54:113-161. [pdf]
- Evoy WH, Kennedy D, Wilson DM (1967). Discharge patterns of neurones supplying tonic abdominal flexor muscles in the crayfish. J Exp Biol 46:393-411. [pdf]
- Hartline DK, Colman DR (2007). Rapid conduction and the evolution of giant axons and myelinated fibers. Current Biology 17:R29-35. [doi]
- Hille B (2001). Ion Channels of Excitable Membranes (Sinauer Associates, Sunderland MA), ch. 1, especially pp. 72-74.
- Junge D (1981). Nerve and Muscle Excitation (Sinauer Associates, Sunderland MA), pp. 2-7.
- Koester J, Siegelbaum SA (2013). Membrane potential and the passive electrical properties of the neuron. In: Kandel ER, Schwartz JH, Jessell TM, Siegelbaum SA, Hudspeth AJ (eds.), Principles of Neural Science (McGraw Hill, Newark), ch. 6.
- Loeb GE, Gans C (1986). Electromyography for Experimentalists (University of Chicago Press, Chicago), pp. 61, 71-76, 175-188.
- Mulloney B, Smarandache-Wellmann C (2012). Neurobiology of the crustacean swimmeret system. Prog Neurobiol 96:242-267. [doi]
- Murphy BF, Larimer JL (1991). The effect of various neurotransmitters and some of their agonists and antagonists on the crayfish abdominal positioning system. Comp Biochem Physiol C 100:687-698. [doi]
- Murray RW (1983). Test Your Understanding of Neurophysiology (Cambridge University Press, Cambridge), pp. 51-58.
- Purves D, Augustine GJ, Fitzpatrick D, Hall WC, LaMantia A-S, McNamara JO, White LE (2012). Neuroscience (Sinauer Associates, Sunderland MA), ch. 3.
- Silverthorn DU (2013). Human Physiology: An Integrated Approach (Pearson, Boston), ch. 8, 13.
3. Motor Nerve Tracing
- Kennedy D, Takeda K (1965). Reflex control of abdominal flexor muscles in the crayfish II. The tonic system. J Exp Biol 43:229-246. [pdf]
- Larimer JL, Moore D (2003). Neural basis of a simple behavior: Abdominal positioning in crayfish. Microsc Res Tech 60:346-359. [doi]
- Lichtman JW, Livet J, Sanes JR (2008). A technicolour approach to the connectome. Nat Rev Neurosci 9:417-422. [doi] (For more examples, see cbs.fas.harvard.edu/science/connectome-project/brainbow.)
- Mittenthal JE, Wine JJ (1978). Segmental homology and variation in flexor motoneurons of the crayfish abdomen. J Comp Neurol 177:311-334. [doi]
- Mulloney B, Hall WM (2000). Functional organization of crayfish abdominal ganglia. III. Swimmeret motor neurons. J Comp Neurol 419:233-243. [doi]
- Murphy AD (2001). The neuronal basis of feeding in the snail, Helisoma, with comparisons to selected gastropods. Prog Neurobiol 63:383-408. [doi]
- Purali N (2005). Structure and function relationship in the abdominal stretch receptor organs of the crayfish. J Comp Neurol 488:369-383. [doi]
- Purves D, Augustine GJ, Fitzpatrick D, Hall WC, LaMantia A-S, McNamara JO, White LE (2012). Neuroscience (Sinauer Associates, Sunderland MA), ch. 1.
- Quicke DLJ, Brace RC (1979). Differential staining of cobalt- and nickel-filled neurones using rubeanic acid. J Microsc 115:161-163. [doi]
- Silverthorn DU (2013). Human Physiology: An Integrated Approach (Pearson, Boston), ch. 8.
- Wine JJ, Mittenthal JE, Kennedy D (1974). Structure of tonic flexor motoneurons in crayfish abdominal ganglia. J Comp Physiol 93:315-335. [doi]
3i. Motor Nerve Tracing (Supplement)
- Bishop CA, Wine JJ, Nagy F, O’Shea MR (1987). Physiological consequences of a peptide cotransmitter in a crayfish nerve-muscle preparation. J Neurosci 7:1769-1779. [pdf]
- Kennedy D, Takeda K (1965). Reflex control of abdominal flexor muscles in the crayfish II. The tonic system. J Exp Biol 43:229-246. [pdf]
- Larimer JL, Moore D (2003). Neural basis of a simple behavior: Abdominal positioning in crayfish. Microsc Res Tech 60:346-359. [doi]
- Lichtman JW, Livet J, Sanes JR (2008). A technicolour approach to the connectome. Nat Rev Neurosci 9:417-422. [doi] (For more examples, see cbs.fas.harvard.edu/science/connectome-project/brainbow.)
- Mittenthal JE, Wine JJ (1978). Segmental homology and variation in flexor motoneurons of the crayfish abdomen. J Comp Neurol 177:311-334. [doi]
- Mulloney B, Hall WM (2000). Functional organization of crayfish abdominal ganglia. III. Swimmeret motor neurons. J Comp Neurol 419:233-243. [doi]
- Murphy AD (2001). The neuronal basis of feeding in the snail, Helisoma, with comparisons to selected gastropods. Prog Neurobiol 63:383-408. [doi]
- Purali N (2005). Structure and function relationship in the abdominal stretch receptor organs of the crayfish. J Comp Neurol 488:369-383. [doi]
- Purves D, Augustine GJ, Fitzpatrick D, Hall WC, LaMantia A-S, McNamara JO, White LE (2012). Neuroscience (Sinauer Associates, Sunderland MA), ch. 1.
- Quicke DLJ, Brace RC (1979). Differential staining of cobalt- and nickel-filled neurones using rubeanic acid. J Microsc 115:161-163. [doi]
- Silverthorn DU (2013). Human Physiology: An Integrated Approach (Pearson, Boston), ch. 8.
- Wine JJ, Mittenthal JE, Kennedy D (1974). Structure of tonic flexor motoneurons in crayfish abdominal ganglia. J Comp Physiol 93:315-335. [doi]
4. Muscle Resting Potential
- Aidley DJ (1998). The Physiology of Excitable Cells (Cambridge University Press, Cambridge), p. 21.
- Baker PF, Hodgkin AL, Shaw TI (1962). The effects of changes in internal ionic concentrations on the electrical properties of perfused giant axons. J Physiol 164:355-374. [pdf]
- Hodgkin AL, Horowicz P (1959). The influence of potassium and chloride ions on the membrane potential of single muscle fibres. J Physiol 148:127-160. [pdf]
- Honoré E (2007). The neuronal background K2P channels: Focus on TREK1. Nature Rev Neurosci 8:251-261. [doi]
- Jones SW (1989). On the resting potential of isolated frog sympathetic neurons. Neuron 3:153-161. [doi]
- Kerkut GA, Thomas RC (1965). An electrogenic sodium pump in snail nerve cells. Comp Biochem Physiol 14:167-183. [doi]
- Lesage F, Lazdunski M (2000). Molecular and functional properties of two-pore-domain potassium channels. Am J Physiol Renal Physiol 279:F793-F801. [pdf]
- McCormick DA (2009). Membrane potential and action potential. In: Byrne JH, Roberts JL (eds.), From Molecules to Networks: An Introduction to Cellular and Molecular Neuroscience (Academic Press, San Diego), ch. 5.
- Nistri A, Fisher ND, Gurnell M (1990). Block by the neuropeptide TRH of an apparently novel K+ conductance of rat motoneurones. Neurosci Lett 120:25-30. [pdf]
- Purves D, Augustine GJ, Fitzpatrick D, Hall WC, LaMantia A-S, McNamara JO, White LE (2012). Neuroscience (Sinauer Associates, Sunderland MA), ch. 2.
- Van Harreveld A (1936). A physiological solution for freshwater crustaceans. Proc Soc Exp Biol Med 34:428-432. [doi]
- Wallin BG (1967). Relation between external potasium concentration, membrane potential, and internal ion concentrations in crayfish axons. Acta Physiol Scand 70:431-448. [doi]
- Wang YC, Huang RC (2006). Effects of sodium pump activity on spontaneous firing in neurons of the rat suprachiasmatic nucleus. J Neurophysiol 96:109-118. [doi]
- Wright SH (2004). Generation of resting membrane potential. Adv Physiol Educ 28:139-142. [doi]
4i. Muscle Resting Potential (Supplement)
- Brickley SG, Mody I (2012). Extrasynaptic GABA(A) receptors: Their function in the CNS and implications for disease. Neuron 73:23-34. [doi]
- Dey D, Eckle VS, Vitko I, Sullivan KA, Lasiecka ZM, Winckler B, Stornetta RL, Williamson JM, Kapur J, Perez-Reyes E (2014). A potassium leak channel silences hyperactive neurons and ameliorates status epilepticus. Epilepsia 55:203-213. [doi]
- Hinkle M, Heller P, Van der Kloot W (1971). The influence of potassium and chloride ions on the membrane potential of single muscle fibers of the crayfish. Comp Biochem Physiol A 40:181-201. [doi]
- Hodgkin AL, Horowicz P (1959). The influence of potassium and chloride ions on the membrane potential of single muscle fibres. J Physiol 148:127-160. [pdf]
- Honoré E (2007). The neuronal background K2P channels: Focus on TREK1. Nature Rev Neurosci 8:251-261. [doi]
- Hultborn H, Kiehn O (1992). Neuromodulation of vertebrate motor neuron membrane properties. Curr Opin Neurobiol 2:770-775. [doi]
- Jones SW (1989). On the resting potential of isolated frog sympathetic neurons. Neuron 3:153-161. [doi]
- Kerkut GA, Thomas RC (1965). An electrogenic sodium pump in snail nerve cells. Comp Biochem Physiol 14:167-183. [doi]
- Lesage F, Lazdunski M (2000). Molecular and functional properties of two-pore-domain potassium channels. Am J Physiol Renal Physiol 279:F793-F801. [pdf]
- Mathie A, Veale EL (2007). Therapeutic potential of neuronal two-pore domain potassium-channel modulators. Curr Opin Investig Drugs 8:555-562. [pdf]
- McCormick DA (2009). Membrane potential and action potential. In: Byrne JH, Roberts JL (eds.), From Molecules to Networks: An Introduction to Cellular and Molecular Neuroscience (Academic Press, San Diego), ch. 5.
- Moore JW, Stuart AE (2007). Neurons in Action: Tutorials and Simulations Using NEURON (Sinauer Associates, Sunderland MA). [www.neuronsinaction.com]
- Purves RD (1981). Microelectrode Methods for Intracellular Recording and Ionophoresis (Academic Press, New York), pp. 51-53.
- Rudy B (1988). Diversity and ubiquity of K channels. Neuroscience 25:729-749. [doi]
- Silverthorn DU (2013). Human Physiology: An Integrated Approach (Pearson, Boston), ch. 20.
- Wallin BG (1967). Relation between external potasium concentration, membrane potential, and internal ion concentrations in crayfish axons. Acta Physiol Scand 70:431-448. [doi]
- Waxman SG, Zamponi GW (2014). Regulating excitability of peripheral afferents: Emerging ion channel targets. Nature Neurosci 17:153-163. [doi]
- Zhao B, Rassendren F, Kaang BK, Furukawa Y, Kubo T, Kandel ER (1994). A new class of noninactivating K+ channels from Aplysia capable of contributing to the resting potential and firing patterns of neurons. Neuron 13:1205-1213. [doi]
5. Synaptic Connectivity
- Atwood HL (1982). Synapses and neurotransmitters. In: Atwood HL, Sandeman DC (eds.), The Biology of Crustacea, Vol 3, Neurobiology: Structure and Function (Academic Press, New York), ch. 3.
- Atwood HL (2008). Parallel ‘phasic’ and ‘tonic’ motor systems of the crayfish abdomen. J Exp Biol 211:2193-2195. [doi]
- Byrne JH (2009). Postsynaptic potentials and synaptic integration. In: Byrne JH, Roberts JL (eds.), From Molecules to Networks: An Introduction to Cellular and Molecular Neuroscience (Academic Press, San Diego), ch. 16.
- Clement JF, Taylor AK, Velez SJ (1983). Effect of a limited target area on regeneration of specific neuromuscular connections in the crayfish. J Neurophysiol 49:216-226. [pdf]
- Krause KM, Vélez SJ (1995). Regeneration of neuromuscular connections in crayfish allotransplanted neurons. J Neurobiol 27:154-171. [doi]
- Nicholls JG, Martin AR, Fuchs PA, Brown PA, Diamond ME, Weisblat DA (2012). From Neuron to Brain (Sinauer Associates, Sunderland MA), ch. 16.
- Purves D, Augustine GJ, Fitzpatrick D, Hall WC, LaMantia A-S, McNamara JO, White LE (2012). Neuroscience (Sinauer Associates, Sunderland MA), ch. 5.
- Vélez SJ, Wyman RJ (1978a). Synaptic connectivity in a crayfish neuromuscular system: 1. Gradient of innervation and synaptic strength. J Neurophysiol 41:75-84. [pdf]
- Vélez SJ, Wyman RJ (1978b). Synaptic connectivity in a crayfish neuromuscular system: 2. Nerve-muscle matching and nerve branching patterns. J Neurophysiol 41:85-96. [pdf]
5i. Synaptic Connectivity (Supplement)
- Brown RH, Cannon SC, Rowland LP (2013). Diseases of the nerve and motor unit. In: Kandel ER, Schwartz JH, Jessell TM, Siegelbaum SA, Hudspeth AJ (eds.), Principles of Neural Science (McGraw Hill, Newark), ch. 14.
- Emes RD, Grant SG (2012). Evolution of synapse complexity and diversity. Annu Rev Neurosci 35:111-131. [doi]
- Harris-Warrick RM (2000). Ion channels and receptors: molecular targets for behavioral evolution. J Comp Physiol A 186:605-616. [pdf]
- Moore JW, Stuart AE (2007). Neurons in Action: Tutorials and Simulations Using NEURON (Sinauer Associates, Sunderland MA). [www.neuronsinaction.com]
- Purves D, Augustine GJ, Fitzpatrick D, Hall WC, LaMantia A-S, McNamara JO, White LE (2012). Neuroscience (Sinauer Associates, Sunderland MA), ch. 6.
- Walker RJ, Brooks HL, Holden-Dye L (1996). Evolution and overview of classical transmitter molecules and their receptors. Parasitology 113:S3-S33. [doi]
- Xu-Friedman MA (2013). Illustrating concepts of quantal analysis with an intuitive classroom model. Adv Physiol Educ 37:112-116. [doi]
6. Synaptic Plasticity
- Bao J-X, Kandel ER, Hawkins RD (1997). Involvement of pre- and postsynaptic mechanisms in posttetanic potentiation at Aplysia synapses. Science 275:969-973. [doi]
- Bittner GD (1989). Synaptic plasticity at the crayfish opener neuromuscular preparation. J Neurobiol 20:386-408. [doi]
- Byrne JH, LaBar KS, LeDoux JE, Lindquist DH, Thompson RH, Teyler TJ (2009). Learning and memory: Basic mechanisms. In: Byrne JH, Roberts JL (eds.), From Molecules to Networks: An Introduction to Cellular and Molecular Neuroscience (Academic Press, San Diego), pp. 539-608.
- Djokaj S, Cooper RL, Rathmayer W (2001). Presynaptic effects of octopamine, serotonin, and cocktails of the two modulators on neuromuscular transmission in crustaceans. J Comp Physiol A 187:145-154. [doi]
- Fisher SA, Fischer TM, Carew TJ (1997). Multiple overlapping processes underlying short-term synaptic enhancement. Trends Neurosci 20:170-177. [doi]
- Glusman S, Kravitz EA (1982). The action of serotonin on excitatory nerve terminals in lobster nerve-muscle preparations. J Physiol 325:223-241. [pdf]
- Larimer JL, Moore D (2003). Neural basis of a simple behavior: Abdominal positioning in crayfish. Microsc Res Tech 60:346-359. [doi]
- Miller MW, Parnas H, Parnas I (1985). Dopaminergic modulation of neuromuscular transmission in the prawn. J Physiol 363:363-375. [pdf]
- Purves D, Augustine GJ, Fitzpatrick D, Hall WC, LaMantia A-S, McNamara JO, White LE (2012). Neuroscience (Sinauer Associates, Sunderland MA), ch. 8.
- Xu-Friedman MA, Regehr WG (2004). Structural contributions to short-term synaptic plasticity. Physiol Rev 84:69-85. [doi]
- Zucker RS, Kullmann DM, Schwartz TL (2009). Release of neurotransmitters. In: Byrne JH, Roberts JL (eds.), From Molecules to Networks: An Introduction to Cellular and Molecular Neuroscience (Academic Press, San Diego), pp. 255-258.
- Zucker RS, Regehr WG (2002). Short-term synaptic plasticity. Annu Rev Physiol 64:355-405. [doi]
6i. Synaptic Plasticity (Supplement)
- Baxter DA, Bittner GD, Brown TH (1985). Quantal mechanism of long-term synaptic potentiation. Proc Natl Acad Sci U S A 82:5978-5982. [pdf]
- Breen CA, Atwood HL (1983). Octopamine—a neurohormone with presynaptic activity-dependent effects at crayfish neuromuscular junctions. Nature 303:716-718. [doi]
- Djokaj S, Cooper RL, Rathmayer W (2001). Presynaptic effects of octopamine, serotonin, and cocktails of the two modulators on neuromuscular transmission in crustaceans. J Comp Physiol A 187:145-154. [doi]
- Hong SJ, Lnenicka GA (1995). Activity-dependent reduction in voltage-dependent calcium current in a crayfish motoneuron. J Neurosci 15:3539-3547. [pdf]
- Johnson BR, Peck JH, Harris-Warrick RM (1995). Distributed amine modulation of graded chemical transmission in the pyloric network of the lobster stomatogastric ganglion. J Neurophysiol 74:437-452. [pdf]
- Lnenicka GA (1991). The role of activity in the development of phasic and tonic synaptic terminals. Ann NY Acad Sci 627:197-211. [doi]
- Mercier AJ, Schiebe M, Atwood HL (1990). Pericardial peptides enhance synaptic transmission and tension in phasic extensor muscles of crayfish. Neurosci Lett 111:92-98. [doi]
- Millar AG, Atwood HL (2004). Crustacean phasic and tonic motor neurons. Integrative and comparative biology 44:4-13. [doi]
- ------
- Abbott LF, Regehr WG (2004). Synaptic computation. Nature 431:796-803. [doi]
- Fortune ES, Rose GJ (2001). Short-term synaptic plasticity as a temporal filter. Trends Neurosci 24:381-385. [doi]
- Klug A (2011). Short-term synaptic plasticity in the auditory brain stem by using in-vivo-like stimulation parameters. Hear Res 279:51-59. [doi]
- Li WC, Sautois B, Roberts A, Soffe SR (2007). Reconfiguration of a vertebrate motor network: Specific neuron recruitment and context-dependent synaptic plasticity. J Neurosci 27:12267-12276. [doi]
- ------
- Bailey CH, Chen M (1991). Morphological aspects of synaptic plasticity in Aplysia an anatomical substrate for long-term memory. Ann NY Acad Sci 627:181-196. [doi]
- Bao J-X, Kandel ER, Hawkins RD (1997). Involvement of pre- and postsynaptic mechanisms in posttetanic potentiation at Aplysia synapses. Science 275:969-973. [doi]
- Byrne JH, LaBar KS, LeDoux JE, Lindquist DH, Thompson RH, Teyler TJ (2009). Learning and memory: Basic mechanisms. In: Byrne JH, Roberts JL (eds.), From Molecules to Networks: An Introduction to Cellular and Molecular Neuroscience (Academic Press, San Diego), pp. 539-608.
- Dittman JS, Kreitzer AC, Regehr WG (2000). Interplay between facilitation, depression, and residual calcium at three presynaptic terminals. J Neurosci 20:1374-1385. [pdf]
- Fioravante D, Regehr WG (2011). Short-term forms of presynaptic plasticity. Curr Opin Neurobiol 21:269-274. [doi]
- Fisher SA, Fischer TM, Carew TJ (1997). Multiple overlapping processes underlying short-term synaptic enhancement. Trends Neurosci 20:170-177. [doi]
- Malenka RC, Siegelbaum SA (2001). Synaptic plasticity: Diverse targets for regulating synaptic efficacy. In: Cowan WM, Südhof TC, Stevens CF (eds.), Synapses (The Johns Hopkins University Press, Baltimore), ch. 9.
- Nicholls JG, Martin AR, Fuchs PA, Brown PA, Diamond ME, Weisblat DA (2012). From Neuron to Brain (Sinauer Associates, Sunderland MA), ch. 16.
- Purves D, Augustine GJ, Fitzpatrick D, Hall WC, LaMantia A-S, McNamara JO, White LE (2012). Neuroscience (Sinauer Associates, Sunderland MA), ch. 6.
- Whitlock JR, Heynen AJ, Shuler MG, Bear MF (2006). Learning induces long-term potentiation in the hippocampus. Science 313:1093-1097. [doi]
- Xu J, He L, Wu LG (2007). Role of Ca2+ channels in short-term synaptic plasticity. Curr Opin Neurobiol 17:352-359. [doi]
- Xu-Friedman MA, Regehr WG (2004). Structural contributions to short-term synaptic plasticity. Physiol Rev 84:69-85. [doi]
- Zucker RS, Regehr WG (2002). Short-term synaptic plasticity. Annu Rev Physiol 64:355-405. [doi]
7. Stretch Receptor
- Faulkes Z, Macmillan DL (2002). Effects of removal of muscle receptor organ input on the temporal structure of non-giant swimming cycles in the crayfish, Cherax destructor. Mar Freshw Behav Phy 35:149-155. [doi]
- Hill RW, Wyse GA, Anderson M (2012). Animal Physiology (Sinauer Associates, Sunderland MA), ch. 14.
- McCarthy BJ, Daws A, Macmillan DL (2004). The activity of abdominal stretch receptors during non-giant swimming in the crayfish Cherax destructor and their role in hydrodynamic efficiency. J Comp Physiol A 190:291-299. [doi]
- McCarthy BJ, Macmillan DL (1995). The role of the muscle receptor organ in the control of abdominal extension in the crayfish, Cherax destructor. J Exp Biol 198:2253-2259. [pdf]
- McCarthy BJ, Macmillan DL (1999). Control of abdominal extension in the freely moving intact crayfish Cherax destructor. I. Activity of the tonic stretch receptor. J Exp Biol 202:171-181. [pdf]
- Ozawa S, Tsuda K (1973). Membrane permeability change during inhibitory transmitter action in crayfish stretch receptor cell. J Neurophysiol 36:805-816. [pdf]
- Patullo BW, Faulkes Z, Macmillan DL (2001). Muscle receptor organs do not mediate load compensation during body roll and defense response extensions in the crayfish Cherax destructor. J Exp Zool 290:783-790. [doi]
- Purali N (2005). Structure and function relationship in the abdominal stretch receptor organs of the crayfish. J Comp Neurol 488:369-383. [doi]
- Purves D, Augustine GJ, Fitzpatrick D, Hall WC, LaMantia A-S, McNamara JO, White LE (2012). Neuroscience (Sinauer Associates, Sunderland MA), ch. 9, 16.
- Rydqvist B, Lin JH, Sand P, Swerup C (2007). Mechanotransduction and the crayfish stretch receptor. Physiol Behav 92:21-28. [doi]
- Sacks O (1998). The man who mistook his wife for a hat: And other clinical tales (Simon and Schuster, New York), ch. 3.
- Silverthorn DU (2013). Human Physiology: An Integrated Approach (Pearson, Boston), ch. 10, 13.
7i. Stretch Receptor (Supplement)
- Delcomyn F (1998). Foundations of Neurobiology (W.H. Freeman, New York), ch. 9.
- Eckert R, Randall D, Augustine GJ (1988). Animal Physiology: Mechanisms and Adaptations (W.H. Freeman, New York), ch. 7.
- Fields HL (1976). Crustacean abdominal and thoracic muscle receptor organs. In: Mill PJ (ed.) Structure and Function of Proprioceptors in the Invertebrates (John Wiley and Sons, New York), pp. 65-114.
- Grass Instrument Company (1990). The Crayfish Stretch Receptor. Pamphlet accompanying live demonstration at the 20th Annual Meeting of the Society for Neuroscience, St. Louis. [pdf]
- Hill RW, Wyse GA, Anderson M (2012). Animal Physiology (Sinauer Associates, Sunderland MA), ch. 14.
- Kandel ER, Schwartz JH, Jessell TM, Siegelbaum SA, Hudspeth AJ (2013). Principles of Neural Science (McGraw Hill), ch. 21-22, 35-36.
- McCarthy BJ, Macmillan DL (1995). The role of the muscle receptor organ in the control of abdominal extension in the crayfish, Cherax destructor. J Exp Biol 198:2253-2259. [pdf]
- McCarthy BJ, Macmillan DL (1999). Control of abdominal extension in the freely moving intact crayfish Cherax destructor. I. Activity of the tonic stretch receptor. J Exp Biol 202:171-181. [pdf]
- Mercer AL (1999). Changing the way we perceive things: Sensory systems modulation. In: Katz PS (ed.) Beyond Neurotransmission: Neuromodulation and Its Importance for Information Processing (Oxford Univ. Press, Oxford), ch. 6.
- Miles FA (1969). Excitable Cells (Heinemann Medical Books, Ltd., London), ch. 4.
- Ozawa S, Tsuda K (1973). Membrane permeability change during inhibitory transmitter action in crayfish stretch receptor cell. J Neurophysiol 36:805-816. [pdf]
- Pasztor VM (1989). Modulation of sensitivity in invertebrate sensory receptors. Sem Neurosci 1:5-14.
- Pasztor VM, Macmillan DL (1990). The actions of proctolin, octopamine, and serotonin on crustacean proprioceptors show species and neuron specificity. J Exp Biol 152:485-504. [pdf]
- Purves D, Augustine GJ, Fitzpatrick D, Hall WC, LaMantia A-S, McNamara JO, White LE (2012). Neuroscience (Sinauer Associates, Sunderland MA), ch. 9, 16.
- Rydqvist B (1992). Muscle mechanoreceptors in invertebrates. In: Ito F (ed.) Comparative Aspects of Mechanoreceptor Systems (Springer, Berlin), pp. 233-260. [doi]
- Rydqvist B, Lin JH, Sand P, Swerup C (2007). Mechanotransduction and the crayfish stretch receptor. Physiol Behav 92:21-28. [doi]
- Sacks O (1998). The man who mistook his wife for a hat: And other clinical tales (Simon and Schuster, New York), ch. 3.
- Silverthorn DU (2013). Human Physiology: An Integrated Approach (Pearson, Boston), ch. 10.
- Vescovi PJ, Macmillan DL, Simmers AJ (1997). Muscle receptor organs of the crayfish, Cherax destructor: Input to telson motor neurons. J Exp Zool 279:228-242. [doi]
- Walsh KA, Macmillan DL, Bourke DW (1994). The effect of ethanol on the dynamic response of a mechanoreceptor neuron. Res Commun Substance 15:9-20.
- Welsh JH, Smith RI, Kammer AE (1968). Laboratory Exercises in Invertebrate Physiology (Burgess Publishing Company, Minneapolis), pp. 85-87.
- Wiersma CAG, Furshpan E, Florey E (1953). Physiological and pharmacological observations on muscle receptor organs of the crayfish, Cambarus clarkii Girard. J Exp Biol 30:136-150. [pdf]
8. Snail Brain—Excitability
- Byrne JH, LaBar KS, LeDoux JE, Lindquist DH, Thompson RH, Teyler TJ (2009). Learning and memory: Basic mechanisms. In: Byrne JH, Roberts JL (eds.), From Molecules to Networks: An Introduction to Cellular and Molecular Neuroscience (Academic Press, San Diego), pp. 539-608.
- Elliott CJ, Susswein AJ (2002). Comparative neuroethology of feeding control in molluscs. J Exp Biol 205:877-896. [pdf]
- Kerkut GA, Gardner DR (1967). The role of calcium ions in the action potentials of Helix aspersa neurones. Comp Biochem Physiol 20:147-162. [doi]
- Kerkut GA, Lambert JDC, Gayton RJ, Loker JE, Walker RJ (1975). Mapping of nerve cells in the suboesophageal ganglia of Helix aspersa. Comp Biochem Physiol A 50:147-162. [doi]
- McCormick DA (2009). Membrane potential and action potential. In: Byrne JH, Roberts JL (eds.), From Molecules to Networks: An Introduction to Cellular and Molecular Neuroscience (Academic Press, San Diego), ch. 5.
- Murphy AD (2001). The neuronal basis of feeding in the snail, Helisoma, with comparisons to selected gastropods. Prog Neurobiol 63:383-408. [doi]
- Quinlan EM, Arnett BC, Murphy AD (1997). Feeding stimulants activate an identified dopaminergic interneuron that induces the feeding motor program in Helisoma. J Neurophysiol 78:812-824. [pdf]
- Toledo-Rodriguez M, El Manira A, Wallen P, Svirskis G, Hounsgaard J (2005). Cellular signalling properties in microcircuits. Trends Neurosci 28:534-540. [doi]
8i. Snail Brain—Excitability (Supplement)
- Benson JA, Adams WB (1989). Ionic mechanisms of endogenous activity in molluscan burster neurons. In: Jacklet JW (ed.) Neuronal and cellular oscillators (Marcel Dekker, New York), pp. 87-120.
- DiFrancesco D (2010). The role of the funny current in pacemaker activity. Circ Res 106:434-446. [doi]. [pdf]
- Glaizner B (1968). Pharmacological mapping of cells in the suboesophageal ganglia of Helix aspersa. In: Salánki J (ed.) Neurobiology of Invertebrates (Plenum Press, New York), pp. 267-284. [Reprinted 2012 by Springer, ISBN 1461586208]
- Kerkut GA, Gardner DR (1967). The role of calcium ions in the action potentials of Helix aspersa neurones. Comp Biochem Physiol 20:147-162. [doi]
- Kerkut GA, Lambert JDC, Gayton RJ, Loker JE, Walker RJ (1975). Mapping of nerve cells in the suboesophageal ganglia of Helix aspersa. Comp Biochem Physiol A 50:147-162. [doi]
- Llinas RR (1988). The intrinsic electrophysiological properties of mammalian neurons: Insights into central nervous system function. Science 242:1654-1664. [doi]
- McCormick DA (2009). Membrane potential and action potential. In: Byrne JH, Roberts JL (eds.), From Molecules to Networks: An Introduction to Cellular and Molecular Neuroscience (Academic Press, San Diego), ch. 5.
- Moore JW, Stuart AE (2007). Neurons in Action: Tutorials and Simulations Using NEURON (Sinauer Associates, Sunderland MA). [www.neuronsinaction.com]
- Murphy AD (2001). The neuronal basis of feeding in the snail, Helisoma, with comparisons to selected gastropods. Prog Neurobiol 63:383-408. [doi]
- Purves RD (1981). Microelectrode Methods for Intracellular Recording and Ionophoresis (Academic Press, New York), pp. 50-51.
- Richter DW, Smith JC (2014). Respiratory rhythm generation in vivo. Physiology 29:58-71. [doi]. [pdf]
- Selverston AI (1985). Model neural networks and behavior (Plenum Press, New York).
- Stein PSG, Grillner S, Selverston AI, Stuart DG (1997). Neurons, Networks, and Motor Behavior (MIT Press, Cambridge MA). [Reprinted 2013 by Springer US, ISBN 9781475758603]
9. Snail Brain—Ionic Basis
- Adams DJ, Smith SJ, Thompson SH (1980). Ionic currents in molluscan soma. Annu Rev Neurosci 3:141-167. [doi]
- Jan LY, Jan YN (2012). Voltage-gated potassium channels and the diversity of electrical signalling. J Physiol 590:2591-2599. [doi]. [pdf]
- Kerkut GA, Gardner DR (1967). The role of calcium ions in the action potentials of Helix aspersa neurones. Comp Biochem Physiol 20:147-162. [doi]
- McCormick DA (2009). Membrane potential and action potential. In: Byrne JH, Roberts JL (eds.), From Molecules to Networks: An Introduction to Cellular and Molecular Neuroscience (Academic Press, San Diego), ch. 5.
9i. Snail Brain—Ionic Basis (Supplement)
- Adams ME, Olivera BM (1994). Neurotoxins: Overview of an emerging research technology. Trends Neurosci 17:151-155. [doi]
- Adams ME, Swanson GJ (1996). Neurotoxins. Trends Neurosci 19 Supplement:S1-S36.
- Ashcroft FM (2006). From molecule to malady. Nature 440:440-447. [doi]. [pdf]
- Bean BP (2007). The action potential in mammalian central neurons. Nature Rev Neurosci 8:451-465. [doi]. [pdf]
- Bokisch AJ, Walker RJ (1986). The ionic mechanism associated with the action of putative transmitters on identified neurons of the snail, Helix aspersa. Comp Biochem Physiol C 84:231-241. [doi]
- Carrasquillo Y, Nerbonne JM (2014). IA channels: Diverse regulatory mechanisms. Neuroscientist 20:104-111. [doi]. [pdf]
- Catterall WA, Dib-Hajj S, Meisler MH, Pietrobon D (2008). Inherited neuronal ion channelopathies: New windows on complex neurological diseases. J Neurosci 28:11768-11777. [doi]. [pdf]
- Dib-Hajj SD, Cummins TR, Black JA, Waxman SG (2010). Sodium channels in normal and pathological pain. Annu Rev Neurosci 33:325-347. [doi]. [pdf]
- Gonzalez C, Baez-Nieto D, Valencia I, Oyarzun I, Rojas P, Naranjo D, Latorre R (2012). K+ channels: Function-structural overview. Compr Physiol 2:2087-2149. [doi]. [pdf]
- Jan LY, Jan YN (2012). Voltage-gated potassium channels and the diversity of electrical signalling. J Physiol 590:2591-2599. [doi]. [pdf]
- Kerkut GA, Gardner DR (1967). The role of calcium ions in the action potentials of Helix aspersa neurones. Comp Biochem Physiol 20:147-162. [doi]
- Kerkut GA, Lambert JDC, Gayton RJ, Loker JE, Walker RJ (1975). Mapping of nerve cells in the suboesophageal ganglia of Helix aspersa. Comp Biochem Physiol A 50:147-162. [doi]
- Kostyuk PG (1968). Ionic background of activity in giant neurons of molluscs. In: Salánki J (ed.) Neurobiology of Invertebrates (Plenum Press, New York), pp. 145-167. [Reprinted 2012 by Springer, ISBN 1461586208]
- Kularatne SA, Senanayake N (2014). Venomous snake bites, scorpions, and spiders. Handb Clin Neurol 120:987-1001. [doi]. [pdf]
- Levy J (2011). Poison: An Illustrated History (Globe Pequot Press, Guilford CT).
- McCormick DA (2009). Membrane potential and action potential. In: Byrne JH, Roberts JL (eds.), From Molecules to Networks: An Introduction to Cellular and Molecular Neuroscience (Academic Press, San Diego), ch. 5.
- Paupardin-Tritsch D, Colombaioni L, Deterre P, Gerschenfeld HM (1985). Two different mechanisms of calcium spike modulation by dopamine. J Neurosci 5:2522-2532. [pdf]
- Simms BA, Zamponi GW (2014). Neuronal voltage-gated calcium channels: structure, function, and dysfunction. Neuron 82:24-45. [doi]. [pdf]
- Stewart A (2009). Wicked Plants: The Weed that Killed Lincoln’s Mother and Other Botanical Atrocities (Algonquin Books, Chapel Hill NC).
- Zakon HH (2012). Adaptive evolution of voltage-gated sodium channels: The first 800 million years. Proc Natl Acad Sci U S A 109 Suppl 1:10619-10625. [doi]. [pdf]
10. Plant Action Potential
- Beilby MJ (2007). Action potential in charophytes. Int Rev Cytol 257:43-82. [doi]
- Fromm J, Lautner S (2007). Electrical signals and their physiological significance in plants. Plant Cell Environ 30:249-257. [doi]
- Greenspan RJ (2007). An Introduction to Nervous Systems (Cold Spring Harbor Laboratory Press, Cold Spring Harbor NY), ch. Chapter 1.
- Lunevsky VZ, Zherelova OM, Vostrikov IY, Berestovsky GN (1983). Excitation of Characeae cell membranes as a result of activation of calcium and chloride channels. J Membrane Biol 72:43-58. [doi]
- McCormick DA (2009). Membrane potential and action potential. In: Byrne JH, Roberts JL (eds.), From Molecules to Networks: An Introduction to Cellular and Molecular Neuroscience (Academic Press, San Diego), ch. 5.
- Meech RW, Mackie GO (2007). Evolution of excitability in lower metazoans. In: North G, Greenspan RJ (eds.), Invertebrate Neurobiology (Cold Springs Harbor Laboratory Press, Cold Springs Harbor NY), ch. 22.
- Shimmen T, Mimura T, Kikuyama M, Tazawa M (1994). Characean cells as a tool for studying electrophysiological characteristics of plant cells. Cell Struct Funct 19:263-278. [doi]
- Wayne R (1993). Excitability in plant cells. Am Sci 81:140-151. [pdf]
- Wayne R (1994). The excitability of plant cells: With a special emphasis on characean internodal cells. Bot Rev 60:265-367. [doi]
10i. Plant Action Potential (Supplement)
- Beilby MJ (2007). Action potential in charophytes. Int Rev Cytol 257:43-82. [doi]
- Fromm J, Lautner S (2007). Electrical signals and their physiological significance in plants. Plant Cell Environ 30:249-257. [doi]
- Hille B (2001). Ion Channels of Excitable Membranes (Sinauer Associates, Sunderland MA), ch. 22.
- Johnson BR, Wyttenbach RA, Wayne R, Hoy RR (2002). Action potentials in a giant algal cell: A comparative approach to mechanisms and evolution of excitability. J Undergrad Neurosci Educ 1:A23-27. [pdf]
- Kaneko T, Saito C, Shimmen T, Kikuyama M (2005). Possible involvement of mechanosensitive Ca2+ channels of plasma membrane in mechanoperception in Chara. Plant Cell Physiol 46:130-135. [doi]
- Kikuyama M, Tazawa M (1998). Temporal relationship between action potential and Ca2+ transient in characean cells. Plant Cell Physiol 39:1359-1366. [pdf]
- Koester J, Siegelbaum SA (2013). Membrane potential and the passive electrical properties of the neuron. In: Kandel ER, Schwartz JH, Jessell TM, Siegelbaum SA, Hudspeth AJ (eds.), Principles of Neural Science (McGraw Hill, Newark), ch. 6.
- McCormick DA (2009). Membrane potential and action potential. In: Byrne JH, Roberts JL (eds.), From Molecules to Networks: An Introduction to Cellular and Molecular Neuroscience (Academic Press, San Diego), ch. 5.
- Meech RW, Mackie GO (2007). Evolution of excitability in lower metazoans. In: North G, Greenspan RJ (eds.), Invertebrate Neurobiology (Cold Springs Harbor Laboratory Press, Cold Springs Harbor NY), ch. 22.
- Okihara K, Ohkawa T, Kasai M (1993). Effects of calmodulin on Ca2+-dependent Cl−-sensitive anion channels in the Chara plasmalemma: A patch-clamp study. Plant Cell Physiol 34:75-82. [pdf]
- Purves D, Augustine GJ, Fitzpatrick D, Hall WC, LaMantia A-S, McNamara JO, White LE (2012). Neuroscience (Sinauer Associates, Sunderland MA), pp. 290-291.
- Shimmen T (2001). Involvement of receptor potentials and action potentials in mechano-perception in plants. Aust J Plant Physiol 28:567-576. [doi]
- Thiel G, Homann U, Plieth C (1997). Ion channel activity during the action potential in Chara: New insights with new techniques. J Exp Bot 48:609-622. [doi]
- Wayne R (1994). The excitability of plant cells: With a special emphasis on characean internodal cells. Bot Rev 60:265-367. [doi]
- Williams SE (1976). Comparative sensory physiology of droseraceae—Evolution of a plant sensory system. P Am Philos Soc 120:187-204. [pdf]
A. Crayfish NMJ
- Atwood HL (1976). Organization and synaptic physiology of crustacean neuromuscular systems. Prog Neurobiol 7:291-391. [doi]
- Atwood HL (1982). Synapses and neurotransmitters. In: Atwood HL, Sandeman DC (eds.), The Biology of Crustacea, Vol 3, Neurobiology: Structure and Function (Academic Press, New York), ch. 3.
- Atwood HL (2008). Parallel ‘phasic’ and ‘tonic’ motor systems of the crayfish abdomen. J Exp Biol 211:2193-2195. [doi]
- Barthe J-Y, Bevengut M, Clarac F (1993). In vitro protolin and serotonin induced modulations of the abdominal motor system activities in crayfish. Brain Res 623:101-109. [doi]
- Bishop CA, Krouse ME, Wine JJ (1991). Peptide cotransmitter potentiates calcium channel activity in crayfish skeletal muscle. J Neurosci 11:269-276. [pdf]
- Bishop CA, Wine JJ, Nagy F, O’Shea MR (1987). Physiological consequences of a peptide cotransmitter in a crayfish nerve-muscle preparation. J Neurosci 7:1769-1779. [pdf]
- Clement JF, Taylor AK, Velez SJ (1983). Effect of a limited target area on regeneration of specific neuromuscular connections in the crayfish. J Neurophysiol 49:216-226. [pdf]
- Drummond JM, Macmillan DL (1998). The abdominal motor system of the crayfish, Cherax destructor. II. Morphology and physiology of the deep extensor motor neurons. J Comp Physiol A 183:603-619. [doi]
- Drummond JM, Macmillan DL (1998). The abdominal motor system of the crayfish, Cherax destructor. I. Morphology and physiology of the superficial extensor motor neurons. J Comp Physiol A 183:583-601. [doi]
- Evoy WH, Beranek R (1972). Pharmacological localization of excitatory and inhibitory synaptic regions in crayfish slow abdominal flexor muscle-fibres. Comp Gen Pharmacol 3:178-186. [doi]
- Hoyle G (1983). Muscles and their Neural Control (John Wiley and Sons, New York), pp. 483-525.
- Kennedy D, Evoy WH, Fields HL (1966). The unit basis of some crustacean reflexes. Symp Soc Exp Biol 20:75-109. [pdf]
- Kennedy D, Takeda K (1965). Reflex control of abdominal flexor muscles in the crayfish II. The tonic system. J Exp Biol 43:229-246. [pdf]
- Larimer JL (1988). The command hypothesis: A new view using an old example. Trends Neurosci 11:506-510. [doi]
- Larimer JL, Moore D (2003). Neural basis of a simple behavior: Abdominal positioning in crayfish. Microsc Res Tech 60:346-359. [doi]
- Leise EM, Hall WM, Mulloney B (1986). Functional organization of crayfish abdominal ganglia: I. The flexor systems. J Comp Neurol 253:25-45. [doi]
- McCarthy BJ, Macmillan DL (1999). Control of abdominal extension in the freely moving intact crayfish Cherax destructor. I. Activity of the tonic stretch receptor. J Exp Biol 202:171-181. [pdf]
- Murphy BF, Larimer JL (1991). The effect of various neurotransmitters and some of their agonists and antagonists on the crayfish abdominal positioning system. Comp Biochem Physiol C 100:687-698. [doi]
- Vélez SJ, Wyman RJ (1978). Synaptic connectivity in a crayfish neuromuscular system: 1. Gradient of innervation and synaptic strength. J Neurophysiol 41:75-84. [pdf]
- Vélez SJ, Wyman RJ (1978). Synaptic connectivity in a crayfish neuromuscular system: 2. Nerve-muscle matching and nerve branching patterns. J Neurophysiol 41:85-96. [pdf]
- Wine JJ, Mittenthal JE, Kennedy D (1974). Structure of tonic flexor motoneurons in crayfish abdominal ganglia. J Comp Physiol 93:315-335. [doi]
C. Recording Tips
- Duncan G (1990). Physics in the Life Sciences (Blackwell Scientific Publications, Oxford), ch. 10-11.
- Loeb GE, Gans C (1986). Electromyography for Experimentalists (University of Chicago Press, Chicago), ch. 2, 6, 12-13.
- Ogden D (1994). Microelectrode Techniques. The Plymouth Workshop Handbook (Company of Biologists, Cambridge), ch. 1, 16.
- Purves RD (1981). Microelectrode Methods for Intracellular Recording and Ionophoresis (Academic Press, New York).
- Sherman-Gold R (2012). The Axon Guide: Electrophysiology and Biophysics Laboratory Techniques, 3rd Edition (Molecular Devices Corporation, Union City CA). [pdf]
Ci. Recording Tips (Supplement)
- Johnson BR, Hauptman SA, Bonow RH (2007). Construction of a simple suction electrode for extracellular recording and stimulation. J Undergrad Neurosci Educ 6:A21-26. [pdf]
- Katz B (1966). Nerve, Muscle, and Synapse (McGraw-Hill, New York), pp. 17-19.
- Land BR, Johnson BR, Wyttenbach RA, Hoy RR (2007). Tools for physiology labs: Inexpensive equipment for physiological stimulation. J Undergrad Neurosci Educ 3:A30-35. [pdf]
- Land BR, Wyttenbach RA, Johnson BR (2001). Tools for physiology labs: An inexpensive high-performance amplifier and electrode for extracellular recording. J Neurosci Methods 106:47-55. [doi]
- Purves RD (1981). Microelectrode Methods for Intracellular Recording and Ionophoresis (Academic Press, New York), pp. 50-51.
- Sherman-Gold R (2012). The Axon Guide: Electrophysiology and Biophysics Laboratory Techniques, 3rd Edition (Molecular Devices Corporation, Union City CA). [pdf]