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Abstract 

Long-term particle tracking is used to study chaotic transport experimentally in laminar, chaotic, and turbulent 
flows in an annular tank that rotates sufficiently rapidly to insure two-dimensionality of the flow. For the laminar 
and chaotic velocity fields, the flow consists of a chain of vortices sandwiched between unbounded jets. In these 
flow regimes, tracer particles stick for long times to remnants of invariant surfaces around the vortices, then make 
long excursions ("flights") in the jet regions. The probability distributions for the flight time durations exhibit 
power-law rather than exponential decays, indicating that the particle trajectories are described mathematically as 
L6vy flights (i.e. the trajectories have infinite mean square displacement per flight). Sticking time probability 
distributions are also characterized by power laws, as found in previous numerical studies. The mixing of an 
ensemble of tracer particles is superdiffusive: the variance of the displacement grows with time as t * with 1 < 3' < 2. 
The dependence of the diffusion exponent 3' and the scaling of the probability distributions are investigated for 
periodic and chaotic flow regimes, and the results are found to be consistent with theoretical predictions relating 
L6vy flights and anomalous diffusion. For a turbulent flow, the L6vy flight description no longer applies, and 
mixing no longer appears superdiffusive. 

1. Introduction 

The  mixing of  passive impurit ies in fluid flows 
depends  critically on the s tructure and time 

d e p e n d e n c e  of  the velocity field. In the absence 
o f  a flow, Brownian  mot ion  of  individual t racer  

part icles results in molecular  diffusion, char-  
acter ized by the var iance of  the displacement  of  
a part icle distr ibution or 2 which grows linearly 
with time: cr2(t)~ t ~, with 3" = 1. If  the fluid is 
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moving,  advect ion of  t racer  particles by the flow 

results in significant enhancemen t s  in the trans- 
por t  rates. For  m a n y  flows of  interest ,  the 

variance of  a distr ibution grows as a power  law 

with time. If  Y =  1, the enhanced  mixing is 
t e rmed  " n o r m a l "  diffusion, while mixing with 

3' ~ 1 is t e rmed  " a n o m a l o u s "  diffusion [1-3] .  
If  the t racer  t rajectories  are d o m i n a t e d  by 

sticking regions where  tracers  are de ta ined  for  
long periods of  t ime, anomalous  diffusion with 

3' < 1 (subdiffusion) results [4]. O n  the o ther  
hand,  if there  are jet regions in the flow, t racer  
particles may  travel long distances be tween  stick- 
ing events.  I f  these excursions are descr ibed by 
length and time probabi l i ty  distr ibution funct ions 
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that have power law (rather than exponential) 
tails, then superdiffusion (1 < 3' < 2) may result 
[1-3,5-9].  Long excursions with power law 
distributions- L6vy flights- have the interesting 
property that the mean square displacement per 
step diverges [1,2]. (This does not, however, 
mean that the variance of the displacement of an 
ensemble of particles is infinite for L6vy flights.) 
Recent theoretical studies of chaotic advection 
(or "Lagrangian chaos") of tracers in fluid flows 
have demonstrated mechanisms by which L6vy 
flights may occur in real mixing problems [3]. To 
date, however, there have been no direct ob- 
servations of L6vy motion in fluid flows. 

This article presents experimental measure- 
ments of L6vy flights and superdiffusive trans- 
port in a two-dimensional flow in a rotating 
annulus [10]. The flow consists of a chain of 
vortices sandwiched between jet regions (Fig. 1) 
[11-13]. Long-term tracking of large numbers of 

rive measurements of the variance of the dis- 
placement and the sticking and flight time prob- 
ability distribution functions. Studies are made in 
four different flow regimes: time-independent, 
time-periodic, chaotic, and turbulent. We ex- 
plore the dependence of the scaling of the 
variance and the flight and sticking statistics on 
the time dependence of the flow. 

2. Background 

2.1. Hamiltonian formalism and L~vy flights 

Transport in a two-dimensional flow can be 
analyzed from a Hamiltonian perspective [15]. 
Given a stream function O(x, y, t) the equations 
describing particle motion in the flow are given 
by 

particles in the flow [14] makes possible quantita- 

Fig. 1. Streaks formed by 90 s long trajectories of about 40 
particles reveal the presence of six vortices sandwiched 
between two azimuthal jets, as viewed in a reference frame 
co-rotating with the vortex chain. The vortex chain rotates 
with a frequency 0.01429 Hz slower than the 1.5 Hz rotation 
frequency of the annulus. The dashed circle represents the 
outer  radius of the inserted Plexiglas barrier. 

dx a~ dy a~, 
m ,  

d r -  Oy ' d r -  Ox (1) 

which are Hamilton's equations of motion with ~b 
as the Hamiltonian and x and y as the conjugate 

~ , ~  coordinates. The path of a passive tracer in a 
~ ~  two-dimensional flow is, therefore, the phase- 

space trajectory of a Hamiltonian system. If ~/, is 
~ ~  time-independent, the equations of motion are 

"~ " ~ ~ ~ - ~ 3 ~  fully integrable and trajectories follow the 
~ ~ i ~ /  streamlines. In time-independent cellular flows, 

~'i /tt/PJl!;[llO for example, particles within a vortex (a cell) 
._.__~-_.~l~L/!!]~] ideally remain trapped indefinitely; see Fig. 2a. 

Y fl/ Ca) ', (b) 

~ ~ . . ~  

I 
T i m e - I n d e p e n d e n t  t Time-Dependent 

Fig  2 (a) Phase space portrait for an ideal t ime-independent  
(integrable) system; all trajectories are closed curves (b) 
Poincar6 section for a t ime-dependent  (non-integrable) sys- 
tem; some trajectories lie on closed curves ( K A M  tori),  but 
there are large regions (the chaotic sea) with chaotic trajec- 
tories. For the fluid flow in the annulus, the phase space is 
real space. 
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In reality [4,16], molecular diffusion allows trac- 
ers eventually to escape from the vortices, al- 
though the time scale for the escape can be quite 
long compared to the characteristic times for the 
dynamics (e.g. vortex turnover time). The 
combination of advection and molecular diffu- 
sion results in transport that is typically en- 
hanced with 3" = 1 for long times, although sub- 
diffusion (3' < 1) is possible for times shorter 
than diffusive mixing times [4]. 

If the flow is time-dependent, the Hamiltonian 
phase space (real space for fluid mixing) can be 
divided into ordered and disordered regions; see 
Fig. 2b. Tracer particles in the disordered re- 
gions follow chaotic trajectories. This behavior is 
termed Lagrangian chaos or chaotic advection 
[15,17]. The resultant particle trajectories are 
often far more complicated than might be ex- 
pected for a laminar flow. In the absence of 
molecular diffusion, the curves (invariant sur- 
faces) dividing the ordered and disordered re- 
gions act as impenetrable barriers that tracer 
particles cannot cross. 

The motion of tracer particles within the 
disordered regions is affected by the invariant 
surfaces (KAM tori) or their remnants (Can- 
tori). Particles that pass close to an invariant 
surface remain in the vicinity of that surface for a 
long (but finite) time [18-19]. The persistence of 
trajectories near closed surfaces results in long- 
time s t ick ing  of particles. Similarly, if a flow 
contains jet regions and Cantori, long-range and 
long-time excursions called f l ights  are possible. 
(Some authors define a flight as an instantaneous 
jump, i.e. motion with infinite velocity [3], while 
finite-velocity excursions in this terminology are 
called walks; we use the term flight for long 
excursions even though the velocity is finite.) 
Theoretical studies of sticking in Hamiltonian 
models [18-25] have predicted sticking times 
with probability distribution functions (PDFs) 
that are power laws: Ps(t) -- t -". Similarly, power 
law relations are expected for flights in two- 
dimensional flows: P F ( t ) ~  t -~  [3,5-7,19]. 

Long-time flights provide a conceptual link 

between chaotic advection and anomalous diffu- 
sion. Trajectories with power law flight PDFs 
(with decay exponent /z < 3 )  are called L ~ v y  

f l ights  [2]: random walks with infinite mean 
square displacement per flight. Several theoret- 
ical studies predict that power law PDFs can give 
rise to superdiffusive transport. In models by 
Geisel et al. [5], Klafter et al. [6] and Wang [7], 
the scaling of o-2(t) is dominated by the flight- 
time statistics, and the relation between the 
variance and flight exponents (for flights with a 
constant velocity) is 

3' = 4 - / x .  (2) 

In a Hamiltonian model of Zaslavsky [26] both 
the flight and sticking PDFs are important in 
determining the scaling of the variance: 

3" = 2 v / ( i x  - 1). (3) 

Neither (2) nor (3) has been tested experimen- 
tally. 

2.2.  Prev ious  exper imen t s  

Measurements of transport enhancement due 
to chaotic advection have been made for time- 
periodic convection [27]; in those flows there 
were no jet regions so there were no flights, and 
the diffusion was normal with 3' = 1. Studies of 
transport in turbulent surface waves [28] and 
oceanic flow [29,30] yielded evidence of super- 
diffusion and fractal scaling of individual trajec- 
tories, but the mechanisms responsible for the 
observed behavior were unclear. Furthermore,  
too few trajectories were observed to character- 
ize accurately the flight-time probability distribu- 
tion functions. 

The only previous discussion of L6vy flights in 
an experimental system examined anomalous 
self-diffusion in polymer-like breakable micelles, 
fitting experimental measurements to a model 
that assumed L6vy behavior [31]. Flight and 
sticking-time probability distribution functions 
have not been determined in any experiments. 
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Fig. 3. Schematic diagram of the rotating annulus. Flow is 
produced by pumping fluid into the annulus through an inner 
ring of holes (marked I) and out of the tank through an outer 
ring of holes (marked O). The motion of particles in the flow 
is observed with a rotating video camera mounted coaxially 
above the annulus. 

3. Experiments 

The experiments are conducted in an annular 
tank (Fig. 3) that rotates rigidly at a rate of 
1.5 Hz (9.425 rad/s). The working volume has an 
inner radius r 1 = 10.8cm and an outer radius 
r 2 =43 .2cm.  The lid is flat and the bottom 
surface is slightly conical, with height h = 17.1 
(20.3) cm at the inner (outer) radius; see discus- 
sion in [11-13]. The conical bottom models the 
effect of planetary curvature on atmospheric and 
oceanic flows; this effect is not of importance to 
the transport studies presented here [11]. A 6 cm 
tall Plexiglas annulus with inner (outer) radius of 
10.8 (19.4) cm is inserted into the tank to act as a 
barrier; this barrier, by the Taylor-Proudman 
theorem, divides the flow into inner and outer 
regions. The annulus is filled to the top with a 
mixture of 38% glycerol (by weight) in water 
(kinematic viscosity v =0.03cm2/s) ,  except in 
the experiments on turbulent flow where water 
(kinematic viscosity v = 0.009 cm2/s) was used to 
increase the Reynolds number. 

A flow is produced in the annulus by pumping 
the fluid into and out of the tank through 

0.26 cm diameter holes in the bottom. The holes 
are arranged in two concentric rings of 120 holes 
at radii 18.9 and 35.1 cm. In all experiments the 
flow rate of the forcing flow is 45 cm3/s. Two 
forcing techniques are used: 

(1) Radial forcing. In this configuration the 
inner (outer) ring of holes acts as a source 
(sink) through which fluid is pumped into 
(from) the tank. The resulting radial forc- 
ing flow couples with the Coriolis effect to 
produce a strong azimuthal jet that rotates 
(relative to the tank) in the direction 
opposite the rotation of the tank. Jet 
velocities are typically two orders of mag- 
nitude greater than those of the forcing 
flow. 

(2) Azimuthally alternating forcing. In this 
configuration only the outer ring holes are 
used. The ring is divided into six 60 ° 
sectors, alternating between sources and 
sinks. The resulting flow consists of vor- 
tices of both signs, and there is no persis- 
tent jet. 

For both configurations, the rapid rotation of 
the system results in a flow that is predominantly 
two-dimensional [13], as expected by the Taylor-  
Proudman theorem [32]. 

The temperature of the system is monitored 
with a thermistor probe in the fluid lines below 
the tank, and is maintained at 25.5-+0.5°C. 
Spatial non-uniformities in the temperature of 
the tank are minimized by pumping fluid at 
45 cm3/s through the inner and outer holes for at 
least 3/4 hour before each experimental run. 
This technique minimizes convective flows due to 
density variations. 

Velocity measurements are made with hot-film 
probes mounted in the lid [13]. 

4. Dynamics of the velocity field 

The radial forcing configuration was used for 
all experiments except those on turbulent flow, 
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which used the azimuthally alternating forcing 
configuration. With the radial forcing the flow is 
a counter-rotating azimuthal jet between the 
source and sink rings. The jet is bounded by 
sharp velocity gradients above the edge of the 
Plexiglas barrier and above the outer ring of 
holes. At  a sufficient flow rate ( - 1 0  cm3/s), the 
outer  shear layer becomes unstable to the forma- 
tion of a chain of vortices that precesses around 
the tank [13]. The inner shear layer is a Stewart- 
son boundary layer, so it does not become 
unstable to the formation of a vortex chain (this 
is the reason for the insertion of the Plexiglas 

barrier). The  measurements reported in this 
paper,  except those on turbulent flow, were 
made on chains of six vortices. From the per- 
spective of a reference frame moving with the 
vortices (Fig. 1), the chain is sandwiched be- 
tween two azimuthal jets. 

Experiments  are done on four different types 
of velocity fields: 

- T i m e - i n d e p e n d e n t f l o w :  This flow with a circu- 
lar chain of six vortices is time-periodic in the 
reference frame of the tank but is time-indepen- 
dent  in a reference frame that co-rotates with the 
vortex chain; see Fig. 4a. Ideally, particle trajec- 
tories in this flow follow the streamlines, and 
there  is no chaotic mixing. 
- T i m e - p e r i o d i c  f l o w :  In this regime, the ve- 
locity field is simply periodic in the co-rotating 
frame of the vortex chain but is doubly periodic 
in other  reference frames, except for the refer- 
ence frame of the tank. This flow is produced 
using radial forcing with a non-axisymmetric 
perturbation:  the forcing flow through one 60 ° 
sector of source and sink holes is restricted to 
less than half that for the rest of the forcing 
holes. Thus the size of each vortex diminishes as 
the vortex moves through the restricted region. 
The period of the perturbation is the time for a 
vortex to precess around the annulus (70.0 s). In 
the reference frame of the tank (Fig. 4b), the 
time dependence is similar to the time-indepen- 
dent flow case, since the perturbation is station- 

ary in the tank's reference frame. In this regime, 
chaotic particle trajectories are common,  despite 
the fact that the flow is laminar. 
- C h a o t i c  f l o w :  A chaotic velocity field is ob- 
tained with one 60 ° sector of source and sink 
holes closed completely; see Fig. 4c. There  are 
still well-defined vortices in the flow, but the 
number of vortices alternates between five and 
six over long periods of time. 
- T u r b u l e n t  f l o w :  A turbulent flow cannot be 
achieved with our  low flow rate pump for the 
radial forcing configuration, but a turbulent flow 
is obtainable with the low pump rate for another  
flow configuration, one with azimuthally alter- 
nating forcing. The turbulence is enhanced by 
using water as the working fluid to increase the 
Reynolds number. The resulting turbulent flow 
has no persistent vortices. The velocity power 
spectrum consists of broadband noise and no 
dominant spectral components;  see Fig. 4d. 

5. Particle-tracking and analysis techniques 

5.1 .  T r a c e r  p a r t i c l e s  

The particles are made from fluorescent 
crayons (Crayola ® brand: atomic tangerine, sun- 
glow, unmellow yellow and laser lemon) that are 
melted together,  mixed with concrete powder  to 
increase the density, then chopped and sieved to 
produce 1-2 mm cubical particles. The particles 
are suspended in a sample of the working fluid 
that has been heated to drive out dissolved air. 
Particles used in the experiment are those that 
remain suspended in the sample for at least four 
minutes. This method produces particles that will 
remain suspended in the flow for hours, even 
with the tank spinning at 1.5 Hz where centrifu- 
gal accelerations are up to four times that of 
gravity. 

Stokes drag can cause particle trajectories to 
deviate from those for ideal passive particles, 
even if the particles are neutrally buoyant.  This 
effect is quantified by the dimensionless Stokes 
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Velocity Time Series Power Spectra 
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Fig. 4. Velocity time series and power spectral density P ( f )  obtained from measurements of the azimuthal velocity component at 
r = 35.1 cm: (a) A flow which is periodic in the tank frame and time-independent in the reference frame co-rotating with the six 
vort ices-  see Fig. 1; (b) time-periodic flow; (c) chaotic flow; (d) turbulent flow. Because the time series are taken in the tank 
frame of reference, and the perturbation of the flow in (b) is fixed in this tank frame, the power spectrum in (b) is periodic in both 
the tank frame and in the frame co-rotating with the vortex chain. 

number,  which is given by S ~  Ud2/18vL for a 
neutrally buoyant particle, where d is the par- 
ticle diameter, v is the kinematic viscosity of the 
fluid, and U and L are the characteristic velocity 
and length scales of the flow [33]. Drag effects 
are negligible if S ~ 1. For a typical velocity scale 
( l c m / s )  and length scale (10cm), we have 
S~0 .002 ,  insuring that the particles are suffi- 
ciently passive on these scales. For very small 
structures in the flow, the particles will not 
follow precisely the velocity field. Other effects 

that can cause particles to deviate from the ideal 
trajectories (e.g. Bassett and "added mass" 
effects [33]) are negligible in these experiments. 

5.2. Image acquisition and real-time analysis 

Particles in the flow are illuminated in a 6 cm 
tall horizontal section near the midheight of the 
annulus. Care is taken not to illuminate any 
tracers in the vicinity of either the upper or 
lower Ekman layers, which are only 0 .6mm 



76 T.H. Solomon et al. / Physica D 76 (1994) 70-84 

thick [11]. Because of the two-dimensionality of 
the flow [13], tracer particles remain in the 
illuminated regions for long times, typically 
30 min, but Ekman pumping [11] results in slow 
vertical drifts that ultimately limit the tracking 
times that can be achieved. 

The illuminated particles are imaged with a 
charge-coupled device video camera (Sanyo 
VDC 3800) whose rotation rate can be tuned to 
match the rotation rate of the reference frame of 
the propagating vortex chain; see Fig. 3. The 
video signal is partially processed [14] in real 
time with a Matrox IM-640 image processor 
installed in a PC-compatible workstation (Austin 
Computer  Systems 486/33E). For each frame, 
the image processor subtracts a reference image 
and identifies bright pixels (i.e., those associated 
with particles in the flow) whose coordinates 
(encoded as 3-byte words) are transferred to the 
host PC and stored to disk. Up to 15 images/s 
(30images/s  without background subtraction) 
can be processed in real time with this approach, 
although frame rates of 10 images/s are used in 
the present experiments. In a typical image 
about 40 illuminated particles are visible, each 
represented by a cluster of approximately 10 
pixels. The processing therefore results in a 
reduction of the data rate to 10-15 kbytes/s, 
small enough to enable real-time storage of the 
data with conventional hard disks. The data 
reduction also allows experimental runs to con- 
tinue for long durations without filling up the 
disk: runs of 7 hours, for example, generate data 
files containing 300-400 Mbytes of pixel coordi- 
nates, far smaller files than would be generated 
by 7 hours of unprocessed images (67 Gbytes at 
10 frames/s). 

5.3. Particle-tracking and transport analysis 

After an experimental run is completed, the 
stored pixel coordinates are analyzed to identify 
contiguous clusters of pixels corresponding to a 
tracer particle and to extract the individual 
trajectories. (See [14] for more details.) For a 

typical run of 4 hours with about 30 tracers 
visible at any given time, there are typically 5-10 
trajectories with duration greater than 20 min- 
utes, 30 with 10-20 minutes duration, and sever- 
al hundred with 2-10 minutes duration. Statistics 
for the longer times are improved by repeating 
the experiments with the same control parame- 
ters. 

The transport is analyzed as a one-dimensional 
process in the azimuthal direction 0. The var- 
iance is calculated by the relations 

~r2(t) = ((AO(t, ~') - (AO(t, ~)) ) z ) ,  

AO(t, r) = 0(r + t) - 0(r) ,  (4) 

where the ensemble average is over ~- for in- 
dividual trajectories and over the different tra- 
jectories in the run. (~- serves as an offset, in 
integral multiples of the typical vortex turnover 
time of 20 s, that treats different sections of each 
trajectory as additional trajectories with new 
initial locations.) This procedure treats each 
tracer as though starting from the same angle at 
the same time. This method is accurate for times 
greater than typical vortex turnover times (20 s) 
but results in a variance that grows as t 2 for short 
times. Only those trajectories that display both 
sticking and flight events are used in the calcula- 
tion of the variance, and the first sticking and 
last flight events are removed to avoid any 
biasing. Different analysis techniques were ex- 
amined to insure that the results presented in 
this paper are not strongly dependent on the 
biasing effects. 

Sticking and flight time probability distribution 
functions (PDFs) are determined from local 
extrema of 0(t); see e.g. Fig. 7. A flight is 
identified by an angular deviation A0 > ~ / 3  
(angular width of a single vortex) between suc- 
cessive extrema, and the sticking events are the 
intervals between flights. The PDFs are are 
normalized histograms of these events. The 
PDFs are adjusted to correct for biases toward 
shorter sticking/flight times, due to the finite 
duration of the measured trajectories. The ad- 
justment is determined by generating long, artifi- 
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cial trajectories numerically with known, ideal, 
power-law sticking and flight time distributions. 
These long trajectories are then chopped ran- 
domly into smaller sections with a distribution of 
durations comparable to those in the experi- 
ment.  PDFs determined from these chopped 
trajectories are also biased toward smaller times. 
The adjustment is determined by comparing the 
PDFs from the chopped trajectories to the ideal 
PDFs (both from numerical data); the exponents 
characterizing the PDFs for the chopped time 
series are about 0.3 larger than for the original 
long time series. 

6.  R e s u l t s  

6.1. Time-independent flow: no chaotic mixing 

Ideally, particle trajectories in a time-indepen- 
dent flow fall on closed streamlines and there is 
no chaotic advection. While molecular diffusion 
of the tracer particles is completely negligible on 
the time scale of the experiments, slight im- 
perfections due to noise (mainly from a small 
non-uniformity in temperature), Ekman pump- 
ing, and finite-size particle effects can have a 
noticeable effect on the trajectories. Such im- 
perfections are inevitable in an experiment, even 
when Fourier spectra indicate that the velocity 
field is time-independent, as is the case for the 
flow in Fig. 5. The imperfections allow tracers to 
wander between neighboring streamlines, appar- 
ently filling the interior of a vortex; see Fig. 5. 
The imperfections occasionally lead to the es- 
cape of a tracer particle near a separatrix, but we 
find that in practice tracers remain trapped for 
long periods of time. Trapping times of 800 s -  
approximately 40 vortex turnover t imes -  are 

common; see Fig. 5a. Similarly, tracers that start 
in a jet remain in the jet for long times; see Fig. 
5b. 

The azimuthal coordinate O(t) for a particle in 
a vortex oscillates about a constant value, while 
for a particle in a jet O(t) grows linearly with 
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Fig. 5. (a) and (b) Tracer particle trajectories in the time- 
independent  flow, viewed in a reference frame co-rotating 
with the vortex chain. (c) The azimuthal displacement as a 
function of  time for the particles in (a) and (b); the starting 
angle 0 ( t = 0 )  is arbitrary. The inner and outer  circles 
represent the annulus boundaries,  and the dashed circle 
denotes the outer edge of  the Plexiglas barrier. 

time, as shown in Fig. 5c. In the absence of 
noise, the variance of a distribution of particles 
grows as t 2 (ballistic separation) [34]. 

6.2. Time-periodic flow: L~vy flights and 
superdiffusion 

Particle trajectories in the time-periodic flow 
are typically chaotic; see Fig. 6. Instead of being 
trapped indefinitely, particles have sticking 
events interspersed with flights in the jet regions. 
This intermittent sticking/flight behavior is ap- 
parent in plots of 0(t), as shown in Fig. 7. The 
observed sticking times and flight times range 
from --10 s (one-half a vortex turnover time) to 
--600 s. The slopes of the flight segments are 
approximately constant, indicating that the 
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" ( b )  

Fig. 6. Chaotic particle trajectories in a time-periodic flow. Long sticking events can be seen in each case, and flights of length 
greater  than one rotation about the annulus can be seen in (c), (d). Hyperbolic fixed points, near which the particle motion is 
particularly sensitive to transitions between flights and sticking events, are evident in all the trajectories. The particle motion is 
viewed from a reference frame that is co-rotating with the vortex chain, and the beginning of  each trajectory is marked by a circle, 
the end by a triangle. 

azimuthal velocity, to = dO/dt, remains steady 
during the flights, except when the tracer passes 
near a hyperbolic point, where both to and the 
radial component of velocity can decrease nearly 
to zero. 

Fig. 8 is a scatter plot of the azimuthal dis- 
placement A0(t) of a distribution of tracers in the 
time-periodic case. High concentrations along 
the horizontal axis and along diagonals illustrate 
the importance of sticking events and flights, 
respectively, on the transport phenomena. There 
is an asymmetry between positive and negative 
displacements, due to a higher probability for 
corotating than for counter-rotating flights. This 
asymmetry in the flights is likely due to the 
curvature of the system, which results in longer 

and more curved separatrices outside the vortex 
chain than inside (see Fig. 6) and a larger 
exchange rate between the vortices and the outer 
jet [35]. 

Approximately 40 hours of data from six 
experimental runs (each 6-7 hours duration) are 
combined to determine the variance and the 
statistical properties. The variance cr2(t) is shown 
in Fig. 9. The slope 3' of the log-log plot (see 
inset) drops from the expected value of 2 at short 
times (see Section 5.3) and forms a plateau at 
3' = 1.65 -+ 0.15 for times t > 10 s, indicating 
superdiffusive mixing. We are unable to char- 
acterize accurately the width of the plateau, 
since the data become unreliable for t ~> 1000 s 
(due to poor statistics at these times). 
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Fig. 7. Azimuthal displacement O(t) as a function of time for 
the particle trajectories in Fig. 6. The oscillations of the 
tracer particle trajectories correspond to motion around a 
vortex, and the diagonal lines correspond to flights. The 
starting angle O(t = 0) is arbitrary. 

T h e  probabi l i ty  distribution funct ion  ( P D F )  o f  
s t icking t imes ,  Ps( t ) ,  s h o w n  in Fig. 10a, exhibits  
a p o w e r  law decay  (for  t < 300 s) with an expo-  
nent  v = 1.6 +- 0.3.  ( A  semi - log  p l o t  o f  the data 
has  a definite  upward  curvature for t < 300 s, 
indicat ing that the P D F  is not  exponent ia l . )  
T h e r e  is a slight drop-o f f  in Ps  f rom p o w e r  law 
scal ing for t > 300 s, indicating a poss ib le  transi- 
t ion  to  exponent ia l  decay  at large t imes.  This  
d r o p - o f f  m a y  occur  because  our  1 - 2  m m  diam- 
e ter  tracer particles cannot  probe  small  struc- 
tures  [33], such as higher order  is land chains.  O n  
these  length scales ,  the S tokes  n u m b e r  (Sec t ion  
5 .1 )  can approach  unity ,  and drag effects  o n  the 
partic les  can n o  longer  be neglected .  

T h e  flight t ime P D F  also exhibits  p o w e r  law 
scaling: P v ( t ) ~  t -~', with p, = 2 . 3 -  0.2 (see  Fig. 
10b),  indicat ing that the  trajectories  can be  
character ized  mathemat i ca l ly  as L6vy  flights. 
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Fig. 8. Scatter plot showing the azimuthal positions of an 
ensemble of particles at discrete times for the time-periodic 
flow (where O(t = 0)= 0 for all particles). 

D a t a  f r o m  both  co-  and counter -ro ta t ing  flights 
have  b e e n  inc luded in the  ca lcu lat ion  o f  PF" 
Separate  plots  o f  the  P D F  for co-  and counter -  
rotating flights s h o w  p o w e r  law scal ing with  the  
s a m e  decay  e x p o n e n t  /z, within e x p e r i m e n t a l  
uncertainty .  

T h e  flight length P D F  is also  descr ibed  by a 
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Fig. 9. Variance of the azimuthal displacement of about 3000 
tracer particle trajectories in a time-periodic flow. The slope, 
shown in the inset, has a plateau that yields the exponent for 
the power-law growth, 3' = 1.65 + 0.15 (superdiffusion). 
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Fig. 10. (a) Sticking-time and (b) flight-time probability 
distribution functions for particles in the time-periodic flow. 

The distribution functions are described by power laws with 
decay exponents v = 1.6 --- 0.3 a n d / . t  = 2.3 +- 0.2,  respective- 
ly. 

power law: PL ~ 0 -n ,  with , / =  2.05 +- 0.30; see 
Fig. 11. The exponents for the flight length and 
time PDFs are the same (within experimental 
uncertainty) because the flight lengths A0 and 
times At are linearly related, as shown in Fig. 12. 
There is a slight curvature for small At, caused 
by decreases in the azimuthal velocity when 
tracers pass near hyperbolic points. Since flights 
begin and end with tracers near hyperbolic 
points, this effect is most prominent for short 
flights. 

6.3. Chaotic flow 

One 7-hour experimental run was performed 
in the chaotic regime. Plots of O(t) for particles in 
the chaotic velocity field still reveal well-defined 
sticking events and flights, as illustrated in Fig. 
13. A scatter plot of AO(t) for an ensemble of 
particles (Fig. 14) is similar to that for the time- 
periodic case (Fig. 8), although the flights and 
sticking events do not dominate the transport as 
much (i.e. the concentrations along the horizon- 
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Fig. 11. Flight length probability distribution in the time- 
periodic flow, showing a power law decay with exponent 
~7 = 2.05 -+ 0.30. 

tal axis and diagonals are not as high). The slope 
3' does not form a plateau at 1.65 (see Fig. 15); 
rather, it continues to drop, forming what might 
be the beginning of a plateau 3' = 1.55 + 0.25 for 
t > 80 s. We do not have enough long trajectories 
to extend the graph beyond t ~ 500 s, so it cannot 
be determined if the asymptotic behavior is 
superdiffusive. 
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v o r t i c e s .  
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Fig. 13. The azimuthal displacement O(t) for five typical 
trajectories in the chaotic flow, showing the presence of 
flights and sticking events. The starting angle O(t = 0) is 
arbitrary. 
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Fig. 14. Scatter plot showing the azimuthal positions of an 
ensemble of particles at discrete times for the chaotic flow 
(where O(t = 0 ) =  0 for all particles). 
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Fig. 15. Variance of the azimuthal displacement of  about 600 
tracer particle trajectories in a chaotic flow. The slope, shown 
in the inset, has a plateau (for t > 8 0 s )  that yields the 
exponent  for the power law growth, "y = 1.55 -+ 0.25 (super- 
diffusion). 

As was the case for the time-periodic flows, 
the sticking and flight time PDFs can both be 
characterized by power law relations, as shown 
in Fig. 16. The added flow complexity, however,  
reduces the typical sticking and flight times, 
resulting in larger decay exponents: v = 2.1 ---0.3 
and /z =2.6---0.3 for sticking and flight time 
distributions, respectively. 
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Fig. 16. (a) Sticking time and (b) flight time probability 
distribution functions for particles in the chaotic flow. The 
distribution functions are described by power laws with decay 
exponents v = 2.1 --- 0.3 and /x  = 2.6 --+ 0.3, respectively. 
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6.4.  T u r b u l e n t  f l o w :  no  f l ights  

T h e  large Reyno lds  n u m b e r  and the absence  
of  az imutha l  jets  leads to a behav io r  in the 
tu rbu len t  r eg ime  tha t  contras ts  m a r k e d l y  with 
tha t  in the l amina r  and chaot ic  regimes.  Tracers  
in the  tu rbu len t  flow wande r  errat ical ly,  and 
the re  are  no well-defined flights (which are 

d e p e n d e n t  on  jet  regions)  or  sticking events :  
c o m p a r e  plots  o f  t ra jec tor ies  in the tu rbu len t  
flow, Figs. 17a, b,  with those  for  the per iodic  
flow, Figs. 6 a - d ,  and c o m p a r e  plots o f  az imutha l  
d i sp l acemen t  O(t) in Fig. 17c with Fig. 7 and Fig. 
13. 

A sca t te r  p lot  of  O(t), Fig. 18, shows a much  
m o r e  un i fo rm spread ing  of  an ensemble  of  
par t ic les  than  in the  t ime-per iod ic  case (Fig. 8) 
and  the  chaot ic  case (Fig. 14). The  ave rage  
angu la r  devia t ions  are  much  smal ler  for  a given 
t ime  than  for  the per iod ic  and chaot ic  flows, due 
to the  absence  of  long- range  flights. T h e  slope 3' 
o f  a l o g - l o g  plot  of  the  var iance  trz( t)  (Fig. 19) 
d rops  s teadi ly  f rom 2 and appea r s  to app roach  
the  va lue  expec ted  for  n o r m a l  diffusion (y  = 1) 
at  long t imes;  howeve r ,  we cannot  follow par-  
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Fig. 17. (a) and (b) Tracer particle trajectories in the 
turbulent flow, viewed in the annulus reference frame. (c) 
The azimuthal displacement for the particles in (a) and (b). 
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Fig. 18. Scatter plot showing the azimuthal positions of an 
ensemble of particles at discrete times, for the turbulent flow. 

ticles for  long enough  t imes to d e t e r m i n e  the 
asympto t i c  behav ior .  

The re  are  no flights or  sticking events  in the  
tu rbu len t  flow, but  by t rea t ing  the t ra jec tor ies  as 
r a n d o m  walks,  we  can define a s tep as the  t ime  
be tween  two successive e x t r e m a  in O(t). We find 
that  the probabi l i ty  dis t r ibut ion funct ion  is ex- 
ponent ia l ,  P( t )  = A e -'/~, with A = 0.158 and  ~- = 
15.2 s (see Fig. 20),  in contras t  to the  p o w e r  law 
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Fig. 19. Variance of the azimuthal displacement of about 
1300 tracer particle trajectories in a turbulent flow. The slope 
in the inset decreases monotonically toward unity and has no 
plateau, in contrast to the cases for superdiffusion; compare 
Fig. 9 and Fig. 15. 
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Fig. 20. Probability distribution for azimuthal displacement 
in the turbulent flow. The distribution is exponential with a 
decay time of 15.2 s. 

PDFs  observed for flights in the t ime-periodic 
and chaotic regimes. 

7. Discussion 

The data f rom the four regimes are summa- 
rized in Table  1. The results f rom the time- 
periodic and chaotic regimes can be used to test 
theoretical  predictions relating flight/sticking 
t ime statistics to superdiffusive transport.  Eq. 
(2), which assumes that L6vy flights dominate  
the behavior ,  is in good agreement  with our 
results for both  of these regimes. Eq. (3), which 
relates the variance exponent  to the power  law 
exponents  for both the sticking and flight PDFs,  
is consistent with the observations for the time- 
periodic regime, given the uncertainty in our 

Table 1 
Exponents v and /z characterizing the power law decay of 
probability distribution functions for the sticking and flight 
times, respectively, and the exponent ), for the power-law 
time dependence of the variance of the azimuthal displace- 
meat. 

Flow regime v /.t 2, 
(co-rotating frame) 

Time-independent N/A a N/A a 2 
Time-periodic 1.6 +- 0,3 2.3 -+ 0.2 1.65 -- 0.15 
Chaotic 2.1 +- 0.3 2.6 -- 0.3 1.55 -- 0.25 
Weakly turbulent N/A a N/A a ~ 1 

a N/A = not applicable. 

exponent  values. However ,  for the chaotic re- 
gime, the latter theory predicts an increase in 3' 
to a value greater  than 2; al though the ex- 
perimental  uncertainties are larger in this re- 
gime, the data appear  to be inconsistent with the 

prediction. 
Several theories have analyzed power  law 

sticking behavior  in model  systems. There  is no 
universal agreement  about  the decay exponent ,  
or even if the exponent  should be universal. 
Exponents  ranging f rom v = 0 .7-3 .8  have been 
predicted for different systems [18,20-25,36,37]. 
In one numerical study, values of  v ranged f rom 
0.7 to 2.8 for a single system, depending on the 
parameters  of the model  [37]. Our  exper imental  
values of  v (1.6 for t ime-periodic and 2.1 for 
chaotic regimes) are consistent with this picture 
of  a non-universal exponent .  

In summary,  by tracking large numbers  of  
tracer particles in a two-dimensional  flow, we are 
able to obtain direct experimental  evidence of 
L6vy flights and anomalous  diffusion. The  mo- 
tion of tracer particles is dominated by clearly 
distinguished sticking and flight events that  alter- 
nate irregularly in time. The probabil i ty dis- 
tribution functions for both sticking and flight 
events are described by power  laws for the 
periodic and chaotic flows examined;  the expo- 
nent values depend on the parameters  of the 
flow. The exponent  for the variance of the 
displacement for the periodic and chaotic flows 
lies in the range 1 < y  < 2 ,  i.e., the mot ion is 
superdiffusive. Future work will involve studies 
of subdiffusion (y  < 1) in exper iments  with alter- 

nating forcing. 
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