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Liquid Transport Due to Light Scattering
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Using experiments and theory, we show that light scattering by inhomogeneities in the index of
refraction of a fluid can drive a large-scale flow. The experiment uses a near-critical, phase-separated
liquid, which experiences large fluctuations in its index of refraction. A laser beam traversing
the liquid produces a large-scale deformation of the interface and can cause a liquid jet to form.
We demonstrate that the deformation is produced by a scattering-induced flow by obtaining good
agreements between the measured deformations and those calculated assuming this mechanism.

A photon exchanges momentum with its surroundings.
Light-scattering techniques use this effect to probe the
structure of materials. Much of what we know about the
mesoscopic structures in colloidal suspensions, emulsions,
and near-critical fluids have been revealed by light scat-
tering [1, 2, 3, 4]. More recently, many researchers have
explored how the intense light beam generated by a laser
can accelerate and trap micron-sized particles [5, 6]. Ap-
plications range from laser tweezers [7, 8, 9] to particle
sorting in microfluidic channels [10, 11, 12]. However one
consequence of scattering has received little attention.
Since a liquid flows readily, the momentum transferred
by light scattering in a structured fluid can produce a
flow along the light propagation direction.

In this Letter, we examine one example of a struc-
tured fluid, a phase-separated liquid near a second-order
phase transition, and show that a strong flow is produced
by light-scattering off density fluctuations in the liquid.
This flow is measured indirectly via the deformations it
produces on the very soft, near-critical liquid interface.

Figure 1 shows the two different types of deformation
observed. When the laser shines downwards onto the in-
terface, so that the beam travels from the phase with the
higher refractive index to the phase with the lower re-
fractive index, a long, thin jet of the upper-layer liquid
forms along the beam axis and intrudes deep into the
lower fluid [Fig. 1(a)] [13]. Sporadically, the end of the
jet sheds droplets. For modest laser powers, the shedding
is regular in time and allows us to measure the volume
flux, which is typically several tens of cubic microns per
second. When the laser shines upwards, the interface re-
mains unbroken even at high power. Instead, a downward
tether forms on the interface due to radiation pressure
effects [14]. Away from the centerline, the interface also
deflects upwards, forming a hump whose lateral length-
scale is much larger than the beam width [Fig. 1(b)].

Previous works have analyzed how the difference be-
tween the refractive indices of the two liquid phases re-
sults in a radiation pressure which deforms the inter-
face [13, 15]. While this mechanism explains the beam-
sized deformations, it cannot explain either the jet or the

broad hump. In this Letter, we show that these struc-
tures demonstrate the presence of a bulk flow driven by
light scattering. The rest of this paragraph gives the

FIG. 1: Interface deformations. (a) When the laser shines
downwards, the upper fluid (with the larger refractive in-
dex) forms a jet intruding into the lower layer. (∆T = 6K,
ω0 = 3.47 µm, and P = 490 mW) (b) When the laser shines
upwards, the interface forms a downwards tether along the
centerline and an upward, broad hump away from the cen-
terline. (∆T = 1.5 K, ω0 = 4.8 µm, and P as indicated) The
arrows show the direction of propagation of the laser.
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FIG. 2: Toroidal recirculation produced in the lower layer
when the laser shines from below. The hump height is typi-
cally around 10 µm, while the fluid layer is 1mm thick. The
dotted box indicates the area seen in the photographs.

key points of our argument, which are also illustrated
in Fig. 2. We begin with the simpler question of how a
broad hump is created when the interface is illuminated
from below. Light scattering produces an upwards body
force on the liquid within the laser beam, driving an up-
wards flow within the lit region. By conservation of fluid
mass, this flow is replenished by a downwards flow. In the
experiment, and in most situations of interest, inertial ef-
fects are negligible. Since purely viscous flows minimize
dissipation [16], the replenishing flow takes the form of a
single toroidal recirculation. Viscous stresses associated
with the recirculation deform the interface upwards. This
creates a hump whose width corresponds to the size of
the recirculation and is therefore much wider than the
laser beam. In the rest of the paper, we show that the
qualitative scenario described above can quantitatively
account for the broad hump shapes measured. In addi-
tion, we estimate the volume flux of flow driven by the
light in the jetting regime and find reasonable agreement
with the measured values.

The fluid used in the experiments is a water-in-oil mi-
cellar fluid at a critical composition. Above the critical
temperature Tc ≈ 35 ◦C, the fluid separates into two im-
miscible phases with different micelle volume density Φ,
in a second-order phase transition [17]. Near the critical
temperature, many physical properties scale like power
laws in ∆T ≡ T − Tc. For our purpose, the most im-
portant scaling behavior is the divergence of the osmotic
compressibility, χT ∝ ∆T−1.24. The fluid experiences
fluctuations in its order parameter, Φ, which act as light
scatterers. These fluctuations have a correlation length
ξ− ∝ ∆T−0.63, which is typically hundreds of Angstroms.
The very weak absorption of light at the laser frequency
(αth = 3 × 10−4 cm−1) ensures that laser heating is neg-
ligible. The fluid is enclosed in a thermally controlled
fused quartz cell (2 × 10 × 40 mm3). Optical forcing is
provided by a linearly polarized TEM00 continuous Ar+

laser, with a vacuum wavelength of λ = 5145 Å and a
beam power P < 2 W. The beam has a Gaussian profile
with width ω0, varying from 3 µm to 15 µm. More details
about the experiment can be found in [15].

We can construct a simple argument for how u0, the
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FIG. 3: Hump profiles for P = 592 mW (upper profiles) and
for 296 mW (lower profiles). ω0 = 4.8 µm (black dots), 5.3 µm,
6.3 µm, 7.5 µm, 8.9 µm, 11.7 µm, and 15.3 µm (lightest gray
dots) and ∆T = 1.5 K for all profiles. Away from the beam
axis, all of the profiles fall onto the same shape, demonstrating
that only the laser power, and not the light intensity, affects
the large-scale hump shape.

strength of the light-induced flow, depends on the light
intensity. The momentum per unit volume transferred
from the laser beam into the liquid via scattering is pro-
portional to the beam intensity I. Therefore the body
force Fv is also proportional to I. This body force acts
as a pressure gradient along the beam axis. Balancing
Fv against viscous resistance µ u0/ω0

2, where we use the
beam width ω0 as a characteristic lengthscale of the light-
induced flow, yields

u0 ∝ Iω0
2/µ ∝ P/µ. (1)

This argument predicts, counter-intuitively, that the flow
strength has no dependence on the beam intensity. It
only depends on the beam power. If this is true, then
the interface deformation created by the flow should also
have no dependence on the light intensity. Figure 3 shows
two sets of measured hump profiles. Each set is taken
at a fixed beam power, with the different profiles corre-
sponding to different beam sizes. Remarkably, consistent
with the prediction (1), the hump shape away from the
center remains the same for different beam widths when
the power is held constant. In contrast, the downward-
pointing tether at the center of the hump, previously
shown to be created by radiation pressure, varies with
the beam width.

Next, we explicitly calculate the shape of the inter-
face deformation as a function of P and ∆T and com-
pare the calculated shapes with the measured shapes.
This requires us to first relate u0, which characterizes
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the strength of the recirculation, to the laser power P ,
and then to relate the shape deformation to u0.

To obtain u0(P ), we note that each scattering off a den-
sity fluctuation transfers momentum to the fluid. Sum-
ming the individual contributions from all fluctuations in
a unit volume gives the body force:

Fv = D χT I, (2)

where D describes the interaction of the light with the

density fluctuations and is given by π3

λ4

n
c

(

Φ ∂ǫ
∂Φ

)2

T
kBTα−4

×
[

8
3
α3 + 2α2 + 2α −

(

2α2 + 2α + 1
)

ln (1 + 2α)
]

. Here,
α ≡ 2(2πnξ−/λ)2 and n =

√
ǫ is the index of refrac-

tion. This result comes from a calculation analogous to
the turbidity calculation by Puglielli and Ford [18, 19].
Since the correlation length is shorter than the wave-
length of light in the regime examined, the fluctuations
act as Rayleigh scatterers. The calculation also assumes
single scattering, which is justified by the large turbidity
length. Combining this result with the balance from (1),
we see

u0 = C Fv ω0
2/µ = C DχT P/µ, (3)

where C is an undetermined numerical prefactor depen-
dant on the details of the coupling of the light-scattering
force to the large-scale flows. The velocity scale DχT P/µ
is roughly tens of microns per second for experimental
conditions.

We next relate the flow within the region illuminated
by the laser beam to the large-scale recirculating flow re-
sponsible for the broad hump. The liquid in the lower
layer lies within a cylindrical cell of radius r0 and depth
L. Since the laser beam width is much narrower than
the width of the recirculation, we represent the light-
induced flow as simply a point force along the centerline
of a cylindrical cell. Also, as the interface deformations
are much smaller than the scale of the flow, we treat
the interface between the layers as perfectly flat. These
simplifications allow us to obtain an analytic solution for
the bulk flow. In our model, the single toroidal recir-
culation corresponds to an eigenfunction which satisfies
no-slip boundary conditions on the side walls of the con-
tainer and free-stress boundary conditions on the top and
bottom surfaces of the container. The top and bottom
boundary conditions are not consistent with the experi-
mental situation. However the error introduced primarily
affects the absolute scale for the strength of the recircu-
lation, which controls the absolute scale for the height of
the interface deformation. It has little effect on the rela-
tive shape of the deformation or how it changes with the
laser power P or the temperature T , which are the as-
pects we focus on when we compare the calculation with
the measurements. Figure 4 plots the vertical velocity
uz(r) in the middle of the liquid layer. Note the flow is
upwards at small r and downwards near the side-wall,
consistent with the sketch in Fig. 2.
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FIG. 4: Form of the vertical velocity uz at the mid-plane of
the fluid layer, from the flow model. The layer aspect ratio
(depth/radius = L/r0) is 1/5.

Finally, we relate the interface deformation h(r) to the
viscous stresses σzz associated with the toroidal recircu-
lation, and therefore to the laser power P . Because the
capillary lengthscale goes to 0 near Tc, buoyancy is as im-
portant as surface tension in resisting the deformation.
The steady-state interface h(r) is therefore given by

2γκ(r) + ∆ρgh(r) = σzz ≡ C
DχT P

L
g(r, r0/L), (4)

where κ(r) is the mean curvature of the interface. To dis-
play the various dependencies of σzz , we have rewritten
it in terms of a dimensional stress and two dimensionless
quantities, the constant C and the function g(r, r0/L)
describing the radial decay of the stress. The boundary
condition at the wall of cylindrical cell is h(r0) = 0. Near
the centerline, the interface develops a downward tether
due to radiation pressure. We account for this O(ω0)
tether by imposing the boundary condition dh/dr = 0 at
r = ω0, which mimics the observed circular rim, created
by radiation effects which are not included here.

Numerical solutions of (4) at different laser powers are
displayed in Fig. 5, together with experimentally mea-
sured interface profiles at the same laser powers. Values
of the material parameters and beam size used in the cal-
culation are taken from the experiment. The value of the
unknown constant C is fixed at 33 by requiring that the
maximum height of the calculated shape equals the mea-
sured shape at P = 592 mW. This is the only fitting ad-
justment we have made between the calculation and the
measurement. The agreement between the measured and
the calculated interface shapes is excellent. Comparisons
at larger ∆T for a range of powers produced good agree-
ment as well, although the smaller size of the hump at
larger ∆T makes detailed comparisons less precise. This
behavior in ∆T rules out thermocapillary flows, used to
drive drop motion in previous studies [20], which vanish
close to the critical point.

We next consider the liquid transport inside the jet.
While the complexity of the pattern of light propaga-
tion at the interface prevents a detailed comparison be-
tween the calculation and the measurements, it is pos-
sible to obtain a rough estimate. Since the jet radius
rj is observed to increase weakly with the beam power
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FIG. 5: The calculated (solid line) and experimental (dots)
hump profile for ∆T = 1.5 K, ω0 = 4.8 µm. From bottom to
top, P = 88.8, 177.6, 296.0, 414.4, and 592.0 mW.

and is always less than the beam size ω0, we assume sim-
ply that the power of the light trapped inside the jet
is 2P (rj

2/ω0
2), a fraction of the incident beam power.

Given the beam power inside the jet and (3), the trans-
port flux is

Q = u0 π rj
2 ≈ 2π C

DχT P

µ

(

rj
4

ω0
2

)

. (5)

This estimate gives the right order of magnitude for the
volume flux. For example, an experiment with P =
473.6 mW at ∆T = 4 K and ω0 = 5.08 µm yields a jet
with roughly 1 µm radius and measured volume flux of
110 µm3/s. The estimate (5) gives 310 µm3/s.

In conclusion, we have used a combination of experi-
ment and theory to demonstrate that light-scattering can
produce a significant flow in a structured fluid. In the ex-
periment, we measure the large-scale interface deforma-
tion and the liquid transport produced by illumination
of an intense laser. To show that the deformation is a re-
sult of light-induced flow, we compare interface deforma-
tions calculated based on the light-scattering mechanism
against measured deformations. Excellent agreements
are found between the calculated and the measured de-
formations. We emphasize that such light-induced flows
exist whenever fluids have mesoscopic spatial variation
in the refractive index and do not require the fluid to
be near a second-order phase transition. For example, a
suspension of 100 nm-diameter glass beads in water at
10% volume fraction would experience a scattering force
5 times larger than is seen in our experiment. While

such an effect has been used to transport individual col-
loidal particles whose size is comparable with the beam
width [21], the possibility of transporting smaller col-
loidal particles collectively has not been noted before and
is worth further investigation.
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