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Numerous experimental and computational studies show that continuous hopper flows of granular
materials obey the Beverloo equation that relates the volume flow rate Q and the orifice width w:
Q ∼ (w/σavg − k)β , where σavg is the average particle diameter, kσavg is an offset where Q ∼ 0,
the power-law scaling exponent β = d − 1/2, and d is the spatial dimension. Recent studies of
hopper flows of deformable particles in different background fluids suggest that the particle stiffness
and dissipation mechanism can also strongly affect the power-law scaling exponent β. We carry
out computational studies of hopper flows of deformable particles with both kinetic friction and
background fluid dissipation in two and three dimensions. We show that the exponent β varies
continuously with the ratio of the viscous drag to the kinetic friction coefficient, λ = ζ/µ. β = d−1/2
in the λ→ 0 limit and d− 3/2 in the λ→∞ limit, with a midpoint λc that depends on the hopper
opening angle θw. We also characterize the spatial structure of the flows and associate changes in
spatial structure of the hopper flows to changes in the exponent β. The offset k increases with
particle stiffness until k ∼ kmax in the hard-particle limit, where kmax ∼ 3.5 is larger for λ → ∞
compared to that for λ → 0. Finally, we show that the simulations of hopper flows of deformable
particles in the λ → ∞ limit recapitulate the experimental results for quasi-2D hopper flows of oil
droplets in water.

I. INTRODUCTION

Silos and hoppers are used frequently in the agri-
culture [1], pharmaceutical[2], and consumer products
industries[3] to store fluids and granular materials. Ma-
terials confined within silos and hoppers are discharged
using vertical or slanted walls that lead to an orifice at
the bottom of the device. Microfluidic devices also incor-
porate flow constrictions to control the pressure and flow
rate of complex fluids, such as emulsion droplets[4]. De-
spite the fact that hopper and silo flows are ubiquitous in
industry, we do not yet have a fundamental understand-
ing of the outflow properties from hoppers and silos. For
example, it is difficult to predict the outflow rate of par-
ticulate materials from hoppers and silos as a function of
the device geometry, orifice size, and particle properties.

For inviscid fluid flows from hoppers, the volume flow
rate Q is proportional to the orifice area (w2 in three di-
mensions, where w is the diameter of the circular orifice)
times the characteristic fluid velocity vc at the orifice,
Q = w2vc[5]. For pressure-driven flows, vc ∼

√
∆P/ρ,

where ∆P is the pressure difference and ρ is the mass
density of the fluid. For viscous fluid flows, the volume
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flow rate Q = Cdw
2vc includes a discharge coefficient Cd

that depends on the hopper geometry and viscosity of
the fluid[6].

Unlike ordinary fluids, granular materials consist of
macro-sized grains that interact via dissipative forces,
which can give rise to intermittency and clogging during
hopper flows in the limit of small orifice sizes. Beverloo
and co-workers[7] carried out seminal experimental stud-
ies of hopper flows of a wide range of granular materials
in air and proposed an empirical form for the flow rate
that allows flow arrest to occur at nonzero orifice width:

Q(w) = C(w/σavg − k)β , (1)

where C is a constant with units of flow rate, σavg is
the average diameter of the particles, Q(kσavg) = 0, and
k depends on the particle properties, such as the stiff-
ness, shape, and friction coefficient. Another key differ-
ence between hopper flows of ordinary fluids and gran-
ular materials is that the power-law scaling exponent
β = d − 1/2, where d is the spatial dimension, is not an
integer for hopper flows of granular materials. This rela-
tion has been verified in 2D and 3D, for spherical [8, 9]
and non-spherical [10] particles, and for frictionless[11]
and frictional[12] particles.

Numerous researchers have provided heuristic argu-
ments for the β = d − 1/2 scaling exponent for hopper
flows of granular materials. For example, Brown and

ar
X

iv
:2

20
8.

05
58

1v
1 

 [
co

nd
-m

at
.s

of
t]

  1
0 

A
ug

 2
02

2

mailto:yuxuan.cheng@yale.edu


2

Richards proposed a model for the regime w � kσavg

where transient arches form and break in a region above
the orifice, creating a free-fall region below with a height
proportional to the orifice width w [13]. Because of
shielding by the transient arches, the grains move at low
velocities until they enter the free-fall region. Thus, the
discharge velocity vc ∼

√
gw when grains reach the ori-

fice, and Q ∼ w2vc ∼ w5/2 in 3D or Q ∼ wvc ∼ w3/2

in 2D. Cutoffs for the finite size of the particles can be
added to these expressions to recover Eq. 1.

The original studies of Beverloo et al. involved hopper
flows of hard grains in air[7]. Recent studies of hopper
flows of spherical glass beads submerged in water have
found that the scaling exponent β ∼ 1 does not obey
β = d− 1/2 from the original Beverloo equation[14, 15].
In addition, studies of qausi-2D hopper flows of air bub-
bles immersed in water have found β ∼ 0.5[16], again
deviating from the exponent in the original Beverloo
equation. Thus, from these previous results, it is not
clear whether the dissipation mechanism (i.e. particle-
particle or background fluid dissipation), particle stiff-
ness or other particle properties control the power-law
scaling exponent in Eq. 1.

In this article, we carry out computer simulations of
hopper flows of deformable particles in two (2D) and
three dimensions (3D), including both interparticle ki-
netic friction and viscous dissipation with the background
fluid. We employ two computational models of particle
deformation: 1) the “soft particle” model that describes
particle deformation as overlaps between pairs of parti-
cles and therefore does not conserve particle volume in 3D
(area in 2D) and 2) the deformable particle model that
includes a shape-energy function for changes in particle
volume (area in 2D), surface area (perimeter in 2D), and
surface bending, as well as an interaction energy that pre-
vents particle overlaps. Studying these two models allows
us to assess the importance of volume conservation in de-
termining the flow properties and provides the ability to
tune the particle stiffness, static and kinetic friction coef-
ficients, and background viscous drag and quantify their
effects on the flow rate.

We find several important results. First, the power-
law scaling exponent β relating the volume flow rate Q
and orifice width w is controlled by the dissipation mech-
anism, i.e. the ratio of the viscous damping coefficient to
the kinetic friction coefficient, λ = ζ/µ. We find that
the exponent varies continuously between β = d− 1/2 in
the λ→ 0 limit and d− 3/2 in the λ→∞ limit, with a
midpoint λc that depends on the hopper opening angle
θw. In contrast, the exponent β is only weakly dependent
on the particle deformability and surface roughness. Sec-
ond, we show that the spatio-temporal dynamics for flows
with the two exponents, β = d − 1/2 and d − 3/2, are
different. In particular, the velocity profile varies more
strongly with the orifice size for flows with β = d−1/2 in
the λ→∞ limit. Third, the offset kσavg at which Q→ 0
decreases with particle deformability, and increases with
the static friction coefficient. Finally, we show that the

simulations of hopper flows using the soft and deformable
particle models in the λ→∞ limit are able to recapitu-
late the experimental results for quasi-2D gravity-driven
hopper flows of oil droplets in water.

The remainder of the article is organized as follows.
In Section II, we describe the simulation methods in-
cluding the soft particle and deformable particle models,
the equations of motion, and simulation protocol that we
employ to generate continuous flows. In Section III, we
describe the experimental system, including the hopper
geometry and method to generate emulsion droplets and
flows. In Section IV, we show results for the volume flow
rate (area flow rate in 2D) Q versus the orifice width w
for the soft particle model and the deformable particle
model as a function of ζ/µ and particle deformability in
both 2D and 3D. We characterize the spatial structure
of the flows by measuring the velocity as a function of
distance from the orifice and we associate changes in the
spatial structure of the flows to changes in the power-law
scaling exponent β. In Section 4, we discuss the impli-
cations of our results, and propose future research direc-
tions, such as developing an improved deformable particle
model that includes surface tension, which would allow
more quantitative comparisons between the simulations
and experiments on hopper flows of oil droplets in water.
We also include three Appendices. In Appendix A, we
describe the details of the frictionless, deformable particle
model. In Appendix B, we show more detailed compar-
isons of the flow rate for the soft particle and deformable
particle models in the compressible and incompressible
particle limits. In Appendix C, we show that the system
size effects on the flow rate are small in the simulations.

II. SIMULATION METHODS

In this section, we describe the methods for simulat-
ing gravity-driven hopper flows of bidisperse particles in
2D and 3D. We first illustrate the hopper geometry. We
then describe the two methods for modeling the parti-
cle shape and interactions: 1) the soft particle model,
which treats each spherical particle as a single degree of
freedom located at its center of mass and mimics particle
contact interactions by allowing overlaps between pairs of
particles and 2) the deformable particle model that uses
a shape-energy function to penalize changes in particle
volume (area in 2D), surface area (perimeter in 2D), and
surface bending. The deformable particle model can be
implemented such that the particles are nearly friction-
less or the model can include surface roughness. For each
model, we describe the forces that result from the shape-
energy function, particle-particle interactions, and dis-
sipative forces arising from interparticle kinetic friction
and drag from the background fluid, and then we write
down the resulting equations of motion for each particle.
Finally, we discuss the initialization of the particle po-
sitions and velocities and the method used to generate
continuous flows.
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FIG. 1. Snapshot from simulations of hopper flows of bidisperse mixtures in a gravitational field using the (a) soft particle (SP)
and (f) deformable particle (DP) models in 2D. The hopper geometry can be slanted with variable tilt angle θw, e.g. θw = 45◦

in (a) and 90◦ in (f). ~g indicates the direction of the gravitational acceleration, W is the separation between the straight walls
far from the orifice, h indicates the distance from the hopper orifice, and w is the width of the orifice. (b) Close-up of hopper
flow using the SP model with N/2 large particles and N/2 small particles with diameter ratio 1.4, highlighting overlapping
particles m and n with separation rmn < σmn, where σmn = (σm + σn)/2. (c) Illustration of the method to calculate the
closest separation between frictionless, deformable particles m and n. δm is the width of the edges of particle m and δn,jm,i is
the shortest distance between edges i and j on particles m and n, respectively. (See Appendix A.) (d) Close-up of hopper flow
using the DP model with surface roughness with N/2 large particles, N/2 small particles, and area ratio 1.96. am is the area
and pm is the perimeter of deformable particle m. Both small and large particles have Nv = 16 vertices. (e) Illustration of
the interactions between deformable particles m and n with surface roughness. δm is the diameter of each circular vertex on
particle m and δn,jm,i is the distance between vertices i and j on particles m and n, respectively.

A. Hopper Geometry

In 2D, the hopper is constructed from two infinitely
long straight (top and bottom) walls separated by a dis-
tance W ∼ 60σs (where σs is the diameter of the small
particle), which connect to the right wall at an angle
θw as shown in Fig.1 (a). The gravitational field points
from left to right. The orifice is centered and has width
w < 12σs, so that W/w > 5, which ensures that the
top and bottom walls are sufficiently separated such that
they do not influence the flow. In 3D, the hopper is an
infinitely long cylinder with diameter W ∼ 30σs, and the
long axis of the cylinder is oriented in the direction of
gravity. The hopper in 3D has a flat base (θw = 90◦)
containing a circular orifice with diameter w that is cen-
tered on the long axis of the cylinder.

In 2D, we focus on systems containing N = 1600 par-
ticles, but we also considered systems over a range from
N = 800 to 3200 to assess system size effects. In 3D,
we focus on systems with N = 6400 particles. To mimic
continuous flows, particles that exit the hopper orifice are
replaced on the left side of the hopper near the leftmost
flowing particles and given the same speed as neighboring

particles. The distance between the hopper orifice and
the leftmost flowing particle is L ∼ 20-30σs.

B. Soft Particle Model

For gravity-driven hopper flows, there are typically
four contributions to the total potential energy: 1) the
shape-energy function Usm, 2) the gravitational poten-
tial energy Ugm, 3) the particle-particle interaction energy
Uint, and 4) the particle-wall interaction energy Uwm. For
the SP model, Usm = 0. Purely repulsive interparticle
forces are generated by allowing overlaps between pairs
of spherical particles[17–20], as shown in Fig.1 (b). The
pairwise interaction energy of the SP model is given by

Uint =

N∑
m=1

N∑
n>m

εsp
2

(1−rmn/σmn)2Θ(1−rmn/σmn). (2)

In Eq. 2, σmn = (σm + σn)/2 is the average diameter of
particlesm and n, rmn is the separation between particles
m to n, and εsp is the characteristic energy scale of the
repulsive interaction. The Heaviside step function Θ(·)
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ensures that the pair forces are non-zero only between
overlapping particles.

We consider a similar repulsive interaction between the
hopper walls and each particle m that is in contact with
the walls:

Uwm =
εw
2

(1− 2dw/σm)2Θ(1− 2dw/σm), (3)

where dw is the distance between the center of particle
m and the hopper wall and εw is the characteristic en-
ergy scale of the particle-wall interaction. Thus, the total
potential energy of the system is given by

U =

N∑
m=1

(Usm + Ugm + Uwm) + Uint, (4)

where Ugm = −Mmgh, h is the height of the center of
mass of particle m, g is the gravitational acceleration,
Mm = ρVm,0 is the mass of particle m with mass density
ρ and volume Vm,0 = πσ3

m/6. (In 2D, Mm = ρam,0 is the
mass of particle m with areal mass density ρ and area
am,0 = πσ2

m/4.)
We include two types of dissipative forces on the par-

ticles. First, we consider viscous drag forces on particles
moving in a background viscous fluid:

~F ζm = −ζ~vm, (5)

where ζ is the drag coefficient and ~vm is the velocity of
particle m. The second dissipative force arises from ki-
netic friction between contacting particles. The kinetic
friction force is proportional to the relative velocity be-
tween contacting particles[21]:

~Fµm = −µ
N∑

n 6=m

(~vm − ~vn)Θ(1− rmn/σmn), (6)

where µ is the kinetic friction coefficient. The dimen-
sionless parameter λ = ζ/µ determines whether the en-
ergy dissipation arises mainly from viscous drag (λ� 1)
or from kinetic friction (λ � 1). We measure the ki-
netic friction and drag coefficients in units of µ0 = ζ0 =
ρσd−1

avg gt0, where t0 =
√
σavg/g. For the SP model, the

equation of motion for each particle m is

Mm
∂2~rm
∂t2

= −~∇rmU + ~F ζm + ~Fµm. (7)

We integrate Eq. 7 using a modified velocity Verlet in-
tegration scheme with time step ∆t = 10−3t0. The flow
rate Q is measured in units of Q0 = σdavg/t0.

For the SP model, we focus on bidisperse systems in
2D and 3D composed of half large particles and half small
particles with diameter ratio α = σl/σs = 1.4 to avoid
crystallization[22]. The average diameter of particles in
the bidisperse system is σavg = (σl+σs)/2 = 1.2σs. Two
important dimensionless energy scales are the ratios of
the characteristic particle-particle and particle-wall re-
pulsive energy scales to the gravitational potential en-
ergy, i.e. Esp = εsp/(gρσ

d+1
avg ) and Ew = εw/(gρσ

d+1
avg ),

where d = 2, 3 in two and three dimensions, respectively.
We set Ew = 104 to minimize overlaps between the par-
ticles and hopper walls and will vary Esp to determine
the effect of particle softness on the flow rate Q(w).

C. Deformable Particle Model

To explicitly model changes in particle shape, we re-
cently developed the deformable particle (DP) model in
both 2D [23, 24] and 3D[25]. In 2D, the particles are mod-
eled as deformable polygons composed of Nv vertices. We
can achieve deformable particles with nearly smooth sur-
faces by modeling the vertices as circulo-lines as shown
in Fig.1 (c) or achieve deformable particles with nonzero
surface roughness by modeling the vertices as small disks
as shown in Fig.1 (d) and (e). We consider the following
shape-energy function for particle m:

Usm =
ka
2

(am − am,0)2 +
klNv

2

Nv∑
i=1

(lm,i − lm,0)2

+
kb

2Nv

Nv∑
i=1

(
l̂m,i − l̂m,i+1

lm,0

)2

,

(8)

which includes three terms. The first term imposes
a harmonic energy penalty for changes in particle area
am from the preferred value am,0 and ka controls the
fluctuations in particle area. The second term imposes
a harmonic energy penalty for deviations in the separa-
tions lm,i between adjacent vertices i and i+ 1 from the
equilibrium length lm,0 and kl controls fluctuations in the
separations between adjacent vertices. The third term is

the bending energy that favors particle shapes with l̂m,i
and l̂m,i+1 in the same direction. kb is the bending rigid-

ity that controls fluctuations in the angle between l̂m,i
and l̂m,i+1. The factor of Nv in the numerator of the
second term and in the denominator of the third term of
Eq. 8 ensure that Usm does not depend on Nv.

We focus on hopper flows of N = 1600 bidisperse de-
formable particles in 2D with half large particles and
half small particles. We define effective diameters σl =√

4a0,l/π and σs =
√

4a0,s/π for the large and small par-
ticles, respectively, and set the diameter ratio σl/σs =
1.4. We choose Nv = 16, which gives an effective fric-
tion coefficient µeff ∼ 0.6 for the DP model with surface
roughness[26]. For the nearly smooth DP model, we find
that Nv ≥ 16 does not affect the properties of the hopper
flows. From a0,s and l0,s, we can define the dimension-
less shape parameter in 2D, A0 = (Nvl0,s)

2/4πa0,s. We
study systems composed of nearly circular particles with
A0 = (Nv/π) tan(π/Nv) ∼ 1.013, which is the value for
a regular polygon with Nv = 16 sides.

For the DP model with surface roughness, each ver-
tex in particle m is represented by a disk with diameter
δm = lm,0 and the total interaction energy Uint is cal-
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culated by summing up all the repulsive interactions be-
tween overlapping circular vertices on different particles:

Uint =

N∑
m=1

N∑
n>m

Nv∑
i=1

Nv∑
j=1

εc
2

(1−δn,jm,i/δmn)2Θ(1−δn,jm,i/δmn),

(9)
where δmn = (δm + δn)/2 is the average vertex diameter
on particles m and n, εc gives the characteristic energy
scale of the repulsive interactions between vertices, and
δn,jm,i is the separation between vertex i on particle m and
vertex j on particle n. For the nearly smooth DP model,
we represent edges of the polygon as circulo-lines with
width δm = 0.1lm,0 and length lm,i. The interparticle re-

pulsive interactions still follow Eq.9, but δn,jm,i represents
the distance between edges i and j on particles m and n,
respectively. See Appendix A for more details on imple-
menting the nearly frictionless DP model in 2D.

The wall interaction between vertex i on particle m
and the hopper wall is

Uwm,i =
εw
2

(1− 2dw/δm)2Θ(1− 2dw/δm), (10)

where dw is the minimum distance between vertex i on
particle m and the hopper wall. The total potential en-
ergy U is again the sum of the shape-energy function Usm,
the gravitational potential energy Ugm, and the particle-
wall interactions Uwm over all particles plus the potential
energy from particle-particle interactions Uint, as given
in Eq. 4.

As for the SP model, we consider two types of dissipa-
tive forces acting on the deformable particles. Since we
will write equations of motion for each vertex, we con-
sider dissipative forces acting on the individual vertices.
First, the viscous drag force on vertex i on particle m is:

~F ζm,i = − ζ

Nv
~vm,i, (11)

where ~vm,i is the velocity of vertex i on particle m. The
kinetic friction force on vertex i on particle m arising
from an overlap with vertex j on particle n is

~Fµm,i = −µ
N∑

n6=m

Nv∑
j=1

(~vm,i − ~vn,j)Θ(1− δn,jm,i/δmn). (12)

Thus, for the DP model, the equation of motion for vertex
i on particle m is

Mm,i
∂2~rm,i
∂t2

= −~∇rm,i
U + ~F ζm,i + ~Fµm,i, (13)

where Mm,i = Mm/Nv is the mass of vertex i on particle
m. From Eqs. 8, 9, and 10, we can obtain five dimension-
less energy scales for the DP model in a gravitational
field in 2D: Ka = kaσ

2
avg/(gρ), Kl = kl/(gρ), Kb =

kb/(gρσ
4
avg), Ew = εw/(gρσ

2
avg) and Ec = εc/(gρσ

2
avg),

where σavg = (σs + σl)/2. We choose Ka > 104 so that
the fluctuations in the particle areas are negligible. We

also set Kc = Kw = 104 to minimize vertex-vertex and
vertex-wall overlaps. We will vary Kl and Kb to de-
termine their effects on the flow rate. The time t and
flow rate Q are measured in units of t0 =

√
σavg/g and

Q0 = σdavg/t0. The equations of motion are integrated
using a modified velocity Verlet algorithm with a time
step of 10−3t0.

D. Simulation Initialization

For the DP model, we initialize the particles as regular
polygons, and set the edge lengths to be equal to their
equilibrium values lm,0 =

√
4am,0Nv tan(π/Nv)/Nv. For

both the SP and DP models, we randomly place the par-
ticles within the hopper with zero velocity. Initially,
gravity is turned off, and energy minimization (using
FIRE[27]) is carried out to ensure no overlaps between
the particles and the particles and the walls. After the
removal of overlaps, gravity is turned on and the parti-
cles begin to fall toward the orifice. To achieve continuous
flow, particles that exit the hopper orifice are placed back
into the left side of the hopper in contact with one of the
bulk particles with the same velocity as the particle it is
touching. A particle is considered outside of the hopper
(and does not contribute to the flow rate) when it first
exits the orifice. However, particles are put back into the
hopper only after they fall at least two particle diameters
past the orifice.

III. EXPERIMENTAL METHODS

Below, we will compare the simulation results for hop-
per flows using the SP and DP models in 2D to experi-
mental studies of quasi-2D hopper flows of oil droplets in
water. In this section, we describe the details of the ex-
perimental studies. We consider silicon oil-in-water emul-
sions undergoing gravity-driven hopper flows in narrow
channels.

The oil-in-water emulsions are prepared through the
aid of a Micronit focused-flow microfluidic device. This
device is capable of producing hundreds of droplets with
volumes set by the relative flow rates between the con-
tinuous and dispersed phases [28, 29]. To stabilize the
emulsions, the droplets are suspended and created in a
5% Tween 20 nonionic detergent solution [30]. The den-
sity of the droplets is ρoil ∼ 0.936 g/ml, and they are
suspended in water with density ρwater ∼ 0.997 g/ml.

The oil-in-water emulsions produced by the flow-
focused microfluidic device are then injected between two
75× 50 mm2 microscope slides separated by a thin sheet
of either a glass cover-slip or laser-cut plastic, ranging
in thickness from 180 to 220 µm, in accordance with
prior work on the clogging of emulsion droplets [19].
In both cases, the thickness of the sheet is sufficiently
small (smaller than the smallest droplet diameter) to
keep droplets from stacking. Hence, the thickness of
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FIG. 2. Area flow rate Q versus orifice width w/σavg for
hopper flows in 2D using the SP and DP models with (a)
kinetic friction only, µ/µ0 = 10

√
10, and (c) viscous drag

only, ζ/ζ0 = 1/
√

10. We consider the SP model with Esp =
102 (asterisks) and 104 (squares), the frictionless DP model
with Kl = 10 and Kb = 10−1 (crosses) and Kl = 10 and
Kb = 10 (circles), and the DP model with surface roughness
with Kl = 10 and Kb = 10−1 (triangles). The solid curves in
(a) and (c) are fits to the power-law scaling relation in Eq. 1.
In (b) and (d), we show log10(Q/C) versus log10(w/σavg − k)
for the data in (a) and (c), and the dotted and dashed lines
have slopes of 1/2 and 3/2, respectively.
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FIG. 3. (a) Volume flow rate Q versus orifice diameter
w/σavg for hopper flows in 3D using the SP model with
Esp = 102 and either kinetic friction only, µ/µ0 = 10

√
10

(circles), or viscous drag only, ζ/ζ0 = 1/
√

10 (crosses) for the
dissipative forces. The solid curves in (a) are fits to the power-
law scaling relation in Eq. 1. In (b), we show log10(Q/C)
versus log10(w/σavg − k) for the data in (a), and the dotted
and dashed lines have slopes of 3/2 and 5/2, respectively.

the spacer, which also doubles as the hopper itself, con-
fines the droplets to nearly two-dimensions [31]. The
chambers are sealed with Norland Optical Adhesive 68
and placed under ultraviolet light to harden. Inside the
chambers, the droplets generally have polydispersity in
size between 6-15% (where the polydispersity is defined
by the standard deviation of the droplet diameter di-
vided by the mean). The mean diameter of the droplets
ranged from 250-400 µm between different experiments.
However, the mean diameter was always larger than the
chamber thickness, which ensures that the droplets are
quasi-two-dimensional. Across all experiments, the av-
erage droplet diameter is σavg ∼ 315 µm. Occasionally,
the oil droplets coalesce into larger droplets with diam-
eters significantly greater than 400 µm; however, these
larger droplets are either among the last droplets to pass
through the opening, thus acting solely as sources of pres-
sure, or the very first, thus contributing nothing to the
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subsequent flow.
Two hopper geometries were used for these experimen-

tal studies: the first has two walls oriented at 45◦, and the
second has one 45◦ wall facing a 0◦ wall (that is, a wall
parallel to the direction of droplet motion). The 45◦/0◦

geometry is made with cover-slip glasses. The 45◦/45◦

geometry uses thin sheets of plastic that are laser cut into
the desired shapes. The length and width of the glass and
plastic hoppers are chosen to appropriately fit the micro-
scope slide, ensuring room for hundreds of droplets, but
small enough to ensure that the droplets have enough
space to clear the orifice unimpeded by droplets that had
gathered outside of the hopper. The range of the hopper
openings is w/σavg ∼ 1.7 to 12.3.

To initialize the experiments, a large air bubble is in-
troduced into the sample chamber to clog the opening.
This allows droplets to stack against the bubble and cre-
ate a well-packed initial condition. We then press the
sample chamber which induces the air bubble to exit,
thus initiating the oil droplet flow. To observe the flow
we rotate a microscope 90◦, aligning the stage parallel
to the direction of gravity and viewing the sample with
a horizontally directed microscope objective (1.6×). An
external lamp is used for illumination and images are
taken with a digital camera recording at 0.75 fps. Us-
ing image analysis, we obtain the droplet positions and
areas, and use standard methods to track the droplet
motion [32].

Similar to the simulations, the time and area flow rate
units in the experiments are defined as t0 =

√
σavg/geff

and Q0 = σ2
avg/t0. We use the mean diameter across

all of the experiments, σavg ∼ 315 µm, and geff =
g(ρwater − ρoil)/ρoil is the acceleration imposed by oil-
in-water buoyancy and g ∼ 9.8 m/s2 is the gravitational
constant.

IV. RESULTS

In this section, we describe the results of our numeri-
cal simulations of hopper flows of the soft particle model
(SP) in 2D and 3D and the deformable particle (DP)
model in 2D. We investigate the scaling of the flow rate
Q versus the orifice width w as a function of the ratio of
the viscous drag and kinetic friction coefficients, particle
deformability, surface roughness, and spatial dimension.
We find that the flow rate Q scales as a power-law in the
orifice width w/σavg with a cutoff k, Q = C(w/σavg−k)β .
The power-law scaling exponent β depends strongly on
the ratio of the viscous drag and kinetic friction coef-
ficients λ = ζ/µ, but it does not depend on the par-
ticle deformability or surface roughness. In particular,
if the particles only experience kinetic friction, without
viscous drag, β = d − 1/2, as found by Beverloo and
others for hopper flows of granular materials. However,
if the particles only experience viscous drag, without ki-
netic friction, β = d − 3/2. Further, we show that the
scaling exponent β varies continuously with λ between

β = d−1/2 in the λ→ 0 limit and d−3/2 in the λ→∞
limit, with a midpoint λc that decreases with decreas-
ing hopper opening angle θw. We show that the change
in the power-law scaling exponent β is associated with
changes in the spatio-temporal dynamics of the flows. In
particular, the gradient in the velocity profile varies more
strongly with the orifice size w for flows with β = d−3/2
than those with β = d−1/2. We then show that the offset
k at which Q(kσs) = 0 decreases from values above 3 to
below 1 as the particle deformability increases. We also
find that both the soft and deformable particle models in
the λ→∞ limit are able to recapitulate Q(w) obtained
from experimental studies of quasi-2D hopper flows of oil
droplets in water.
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FIG. 4. Power-law scaling exponent β from Eq. 1 plotted
versus the ratio of the viscous drag and kinetic friction coeffi-
cients λ = ζ/µ for hopper flows in (a) 2D and (b) 3D. In 2D,
we consider the SP model with Esp = 50 (triangles) and 103

(diamonds), frictional DP model with Kl = 10 andKb = 10−1

(stars), and the frictionless DP model with Kl = 10 and
Kb = 10−1 (crosses), Kl = 10 and Kb = 102 (squares), and
Kl = 103 and Kb = 10−1 (asterisks), all with hopper open-
ing angle θw = 90◦. In 3D, we consider the SP model with
Esp = 102 (circles). In (a) and (b), the solid curves are fits to
the sigmoid in Eq. 14 and the horizontal dashed lines indicate
β = 5/2, 3/2, and 1/2.

In Fig. 2 (a), we show the area flow rate Q versus the
orifice width w/σavg for the soft particle and deformable
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particle models with kinetic friction only (i.e. µ/µ0 =

10
√

10 and ζ = 0) in 2D for hopper opening angle θw =
90◦. We compare results for the SP model with Esp = 102

and 104, the frictionless DP model with Kl = 10 and
Kb = 10−1, Kl = 10 and Kb = 10, and Kl = 103 and
Kb = 10−1, and the frictional DP model with Kl = 10
and Kb = 10. Q(w) for all of these systems can be fit
to the power-law scaling relation in Eq. 1. While C and
k for these systems vary, the power-law scaling exponent
β = 3/2 is the same for all models as shown in Fig. 2 (b).
(Note that both the SP and DP models can be studied in
the rigid-particle limit, i.e. Esp → ∞ for the SP model
and Kb →∞ for the DP model. In this limit, Q(w) is the
same for both models as shown in Appendix B.) Since we
compared systems with different values of Ksp, Kb, and
Kl and with different values of surface roughness and
obtained the same values of β, these results emphasize
that β does not depend strongly on particle deformability
and surface roughness.

In Fig. 2 (c), we show similar results for Q versus
w/σavg for same 2D models, but for systems with vis-

cous drag forces only (i.e. µ = 0 and ζ/ζ0 = 1/
√

10) for
the dissipative forces. All of the data can also be fit to
the power-law scaling relation in Eq. 1. Again, C and
k vary, but the power-law scaling exponent β = 1/2 is
the same for all models, as shown in Fig. 2 (d). Clearly,
the power-law scaling exponent β does not depend on
particle deformability and surface roughness, but it de-
pends strongly on the type of dissipative forces that are
included.

In Fig. 3 (a), we show similar results for the volume
flow rate Q versus orifice width w/σavg for the SP model
in 3D with Esp = 102 and either kinetic friction forces

only (µ/µ0 = 10
√

10, ζ = 0) or viscous drag forces only

(µ = 0, ζ/ζ0 = 1/
√

10). Q(w) for both systems can be fit
by Eq. 1 and have power-law scaling exponents β = 5/2
and 3/2 in the limits λ→ 0 and∞, respectively, as shown
in Fig. 3 (b). Figs. 2 and 3 illustrate that β = d− 1/2 in
the λ→ 0 limit and β = d− 3/2 in the λ→∞ limit.

What is the value of the power-law exponent β at in-
termediate values of λ? In Fig. 4, we show β from fits
of Q(w) to Eq. 1 for the SP and DP models in 2D (for
hopper opening angle θw = 90◦) and the SP model in 3D
versus the ratio of the viscous drag and kinetic friction
coefficients λ. β varies continuously with λ in both 2D
and 3D and can be described by a sigmoidal function:

β =
1

2

(
d− tanh

[
log10 (λ− λc)1/b

])
, (14)

where λc ∼ 0.05 and ∼ 0.07 in 2D and 3D is the char-
acteristic value at which the power-law scaling exponent
reaches the midpoint βc = d − 1 and 0 < 1/b < 1 is the
stretching exponent. We show explicitly in 2D that β(λ)
does not depend on particle deformability and surface
roughness. Further, these results do not depend on the
number of particles N > 800 as shown in Appendix C.
We find similar results for β(λ)in 3D.
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FIG. 5. Average speed of the particles in the direction of
gravity at the center of the hopper vg as a function of distance
h/σavg above the hopper orifice in 2D using the SP model with
Esp = 102 and dissipative forces (a) with λ → 0 that yield
β = d − 1/2, (b) with λ ∼ λc that yield β ∼ d − 1, and (c)
with λ → ∞ that yield β = d − 3/2. The arrows indicate
increasing orifice diameters from w/σavg = 4.0 (blue) to 10.6
(red).

What is different about the spatiotemporal dynamics
of the hopper flows with different values of the power-law
scaling exponent β? To address this question, we calcu-
late the velocity profiles in systems with different values
of β. In Fig. 5, we show (for the SP model in 2D with
θw = 90◦) the average speed of the particles in the direc-
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FIG. 6. (a) Power-law scaling exponent β versus the ratio
λ of the viscous drag and kinetic friction coefficients for the
frictionless DP model in 2D with Kl = 10 and Kb = 10−1

for hopper opening angles θw = 90◦ (crosses), 60◦ (circles),
30◦ (asterisks), and 20◦ (triangles). The solid lines are fits
to Eq. 14. The horizontal dotted and dashed lines indicate
β = 3/2 and 1/2. (b) Ratio of the average magnitude of
the drag force on a particle to the average magnitude of the
kinetic friction force on a particle |~F ζ |/|~Fµ| plotted versus θw
for the systems in (a) at λ = 10−2.

tion of gravity at the center of the hopper vg as a func-
tion of the distance above the hopper orifice h/σavg for
three ratios of the dissipative forces, λ→ 0, λ ∼ λc, and
λ→∞. To smooth the velocity profile, we define vg at lo-

cation ~r as vg(~r) =
∑N
i=1 vgiφ(~r−~ri), where ~ri and vgi are

the position and speed in the direction of gravity of parti-
cle i and φ(~r−~ri) = (

√
2πσavg)−2 exp(−|~r−~ri|2/2σ2

avg) is
a Gaussian coarse-graining function[33, 34]. For systems
with λ → 0 and β = d − 1/2, vg(h = 0) ∼ wβ/wd−1 ∼
w1/2, and thus vg(h = 0) increases with the orifice diam-
eter w, as shown in Fig. 5 (a). For systems with λ→∞
and β = d − 3/2, vg(h = 0) ∼ wβ/wd−1 ∼ w−1/2,
and thus vg(h = 0) decreases with increasing w, as
shown in Fig. 5 (c). In contrast, the average speed
in the direction of gravity far from the hopper orifice,
vg(h → ∞) ∼ wβ/W ∼ wβ , increases with w for all
values of λ, as shown in Fig. 5 (a)-(c). Because of the
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FIG. 7. (a) The offset k obtained from fits of the area flow
rate Q(w) to Eq. 1 versus Esp (with θw = 90◦) using the
2D SP model in the λ → ∞ limit (stars) and λ → 0 limit
(circles). The offset k for the 2D frictionless DP model on a
color scale (b) from 0 (blue) to 1.7 (red) in the λ → 0 limit
(with θw = 90◦) and (c) from 1 (blue) to 3.5 (red) in the
λ → ∞ limit (with θw = 90◦) as a function of the perimeter
Kl and bending Kb energy scales.
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difference in how vg(0) and vg(∞) depend on the ori-
fice width w for different values of λ, the gradient of the
velocity profile dvg/dh can easily distinguish flows with
small versus large values of λ. As shown in Fig. 5 (a), for
λ→ 0, dvg/dh does not depend strongly on w, suggesting
a weak variation of the pressure profile on w. However,
for λ→∞, dvg/dh decreases strongly with increasing w,
indicating large pressure profiles in systems with small
w. In this limit, the large differences in viscous drag
forces caused by the velocity difference v(0) − v(∞) are
balanced by overlap forces, which give rise to the large
pressure profile. As expected, vg near the orifice for the
intermediate case λ ∼ λc possess very weak dependence
on w.

We have shown that β(λ) does not depend on par-
ticle deformability and surface roughness, but it does
depend strongly on the nature of the dissipative forces
(i.e. whether viscous drag or kinetic frictional forces
dominate) and the resulting velocity profile in the hop-
per. These results suggest that β(λ) can be altered by
varying the hopper opening angle θw since changes in θw
modify the velocity profile. In Fig.6 (a), we show β(λ)
from hopper flows using the frictionless DP model in 2D
with θw = 90◦, 60◦, 30◦, and 20◦. Over this range in
θw, the characteristic λc at which β reaches its midpoint
decreases from 5 × 10−2 to 6 × 10−3. As the hopper
wall angle θw decreases (i.e. the hopper walls become
more aligned with the direction of gravity), in the regime
λ ∼ λc, the ratio of the average force stemming from
the viscous drag to that stemming from the kinetic fric-

tion |~F ζ |/|~Fµ| increases (Fig.6 (b)), and thus λc must
decrease with decreasing θw. In the low-θw limit (i.e.
θw ≤ 30◦), the ratio stops increasing and λc reaches a
plateau value, ∼ 5 × 10−3. Note that the time required
to reach steady-state diverges as θw → 0, and thus we
are limited in the values of θw that we can study.

In contrast to the power-law scaling exponent β, the
offset k at which Q(kσavg) = 0 depends on particle de-
formability and surface roughness. Previous studies have
shown that k varies from ∼ 1.3 to 2.9 as the static friction
coefficient increases[7, 35]. In Fig. 2, we show similar re-
sults that k increases with surface roughness for the DP
model. How does the offset k depend on particle de-
formability? In Fig. 7 (c), we show k as a function of
the perimeter Kl and bending Kb energy scales for the
frictionless DP model in 2D in the λ → ∞ limit (for
θw = 90◦). At small Kl, k increases from ∼ 1 to ∼ 3.5
as Kb increases from 10−2 to above 102, suggesting the
formation of transient multi-particle arches in the rigid-
particle limit. (Note that we have shown in Appendix
B that the DP model reaches the hard-particle limit for
Kb > 102.) We find similar results for the 2D SP model
for λ→∞ (Fig. 7 (a)): the offset k increases from k ∼ 1
to 3.5 as Esp approaches the rigid-particle limit. At small
Kb for the DP model, k increases, but only from k ∼ 1 to
2 as Kl increases from 1 to 103, suggesting the formation
of small arches and increased particle rigidity. However,
Kl � 103 is required to reach k ∼ 3.5 as found in the
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FIG. 8. Oil-in-water emulsions flowing through a plastic hop-
per with orifice diameter w ∼ 180 µm and (a) 45◦/45◦ and
(b) 45◦/0◦ wall geometries. The droplets have an average di-
ameter σavg ∼ 304 µm with a polydispersity ∆σ/σavg ∼ 7%.
(c) Area flow rate Q plotted versus orifice diameter w. The
solid line provides a fit to Eq. 1 with β ∼ 0.49, k ∼ 1.47, and
C ∼ 1.6 × 10−4. (d) Q/C plotted versus log10(w/σavg − k)
for the data in (c). The dashed line has a slope of 1/2. In (c)
and (d), we show data for both 45◦/45◦ (circles) and 45◦/0◦

(crosses) wall geometries.

rigid-particle limit for the DP model when increasing the
bending energy. In addition, we find that the prefactor
in Eq. 1 (with N = 1600) C ∼ 0.45 for all Kb and Kl for
the DP model and all Esp for the SP model, emphasiz-
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ing that C is weakly dependent on particle deformability.
We show the system size dependence of the prefactor in
Appendix C.

For hopper flows with λ→ 0, the increase in the offset
k is much less pronounced. (See Fig. 7 (a) and (b).) For
example, for the 2D DP model, k < 1 for Kb = 10−2

and k ∼ 1.5 for Kb = 102 in the rigid-particle limit.
Thus, large multi-particle arches do not form frequently
in λ → 0 hopper flows. Again, C ∼ 0.15 for all Kb, Kl

and Esp values (for N = 1600).
As discussed in the Introduction, numerous experi-

mental studies have shown that hopper flows of granular
materials with static and kinetic frictional forces posses
β = d−1/2 and can be modeled quantitatively using the
SP model. Here, we present the results from quasi-2D ex-
periments of hopper flows of oil droplets in water. (See
Fig. 8 (a) and (b).) Unlike the simulations where the
number of particles in the hopper is kept constant (by
replenishing them when particles exit), the number of
particles in the hopper experiments decreases with time.
The hopper flow is driven by hydrostatic pressure, which
scales with the height hmax of the droplet pile pushing
out of the opening. Given the triangular geometry, this
distance can be related to the number of droplets N that
have yet to exit, hmax ∼

√
N . Hence, the droplet flux

can be written as

dN

dt
= c0
√
N, (15)

where c0 has units of inverse time. This relation is ex-
perimentally observed for a large range of N , with slight
deviations as the first ∼ 100 and last ∼ 100 droplets
flow out due to transient effects. Fitting the steady-state
data gives values for c0, which we non-dimensionalize as
Q = c0

√
σavg/geff . Fig. 8 (c) and (d) show the results

for the area flow rate Q versus the orifice width w/σavg.
While we have two experimental geometries, the results
for the area flow rate Q are identical. Q(w) can be fit
by the power-law scaling relation in Eq. 1 with β ∼ 0.49
and k ∼ 1.5. These values of β and k are consistent with
the simulation results for λ → ∞ and Esp ∼ 102 for the
SP model and the k ∼ 1.5 contour for the frictionless DP
model in Fig. 7 (c). These results emphasize that the
kinetic frictional forces are weak relative to the viscous
drag forces in hopper flows of oil droplets in water.

V. DISCUSSION AND CONCLUSIONS

In this article, we carried out extensive numerical simu-
lations of gravity-driven hopper flows of particulate me-
dia in 2D and 3D using the soft (SP) and deformable
particle (DP) models. We found several important re-
sults. First, we showed quite generally that the flow rate
Q versus orifice width w obeys the power-law scaling re-
lation: Q(w) = C(w/σavg − k)β . While k depend on the
particle deformability and surface roughness, the expo-
nent β does not. Instead, β is controlled by the ratio of
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⃗rn,j
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FIG. 9. Schematic of the frictionless DP model to illustrate
the contact distance δn,jm,i between vertex i on particle m with

position ~rm,i and vertex j on particle n with position ~rn,j . ~lm,i
is the vector pointing from ~rm,i to ~rm,i+1 and n̂m,i ·~lm,i = 0.
The definition of δn,jm,i depends on the location of the inter-

section point P of the line along ~lm,i and the line that is

perpendicular to ~lm,i that includes ~rn,j . If point P is between
~rm,i and ~rm,i+1, δn,jm,i = ~r n,jm,i · n̂m,i as shown in (a), otherwise

δn,jm,i = |~r n,jm,i | as shown in (b).

the viscous drag to the kinetic friction coefficients λ and
β varies continuously from β = d − 1/2 in the λ → 0
limit to β = d − 3/2 in the λ → ∞ limit. The mid-
point βc(λc) can be tuned by varying the hopper opening
angle θw since it can alter the ratio of the average vis-
cous drag force to the average kinetic friction force. The
spatiotemporal dynamics of the flows differ for systems
with different power-law exponents. In particular, the
gradients of the velocity and pressure profiles vary more
strongly with the orifice width for β = d−3/2 than those
with β = d − 1/2. We also found the offset k increases
with particle stiffness until k ∼ kmax in the hard-particle
limit, where kmax ∼ 3.5 in λ → ∞ limit and kmax ∼ 1.6
in λ → 0 limit. In addition, we showed that both the
SP and DP models are able to recapitulate the flow rate
Q(w) from experimental studies of quasi-2D hopper flows
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of oil droplets in water.

These results suggest a number of promising future re-
search directions. First, the current studies focused on
nearly spherical particles. How does the power-law scal-
ing exponent β(λ) depend on particle shape? By chang-
ing the reference shape parameter A0 in the DP model,
we can determine β(λ) as a function of the particle shape.
Second, in the current studies, we included viscous drag
and kinetic friction forces between particle pairs, but we
did not include kinetic friction forces between the parti-
cles and the side walls with kinetic friction coefficient ν.
How does the power-law scaling exponent vary with the
dimensionless ratios ζ/ν and µ/ν that quantify the domi-
nant dissipative forces? Third, in the current studies, we
found that both the SP and DP models are able to reca-
pitulate Q(w) in the experimental studies of hopper flows
of emulsion droplets. However, in future studies, we seek
a more quantitative approach where the simulations can
recover the particle shapes during the hopper flows in ex-
periments. To do this, we will refine the model for surface
tension in the DP model. In addition, we will simulate
hopper flows of emulsion droplets in the intermittent and
clogging regime for w ∼ kσavg. In this regime, we expect
qualitatively different results for the SP and DP models,
since truly deformable particles can significantly change
their shapes, but maintain their volume, to alleviate clogs
in hopper flows.

APPENDIX A

In this Appendix, we include more details concerning
the detection of contacts between frictionless deformable
particles in 2D. For frictionless deformable particles, the
ith vertex on a given particle m is modeled as a circulo-
line made up of a rectangular region with length lm,i plus
a pair of half-circular end caps with radius δm . Here,
we describe how to calculate the closest distance δn,jm,i
between vertex i on particle m and vertex j on particle n
as shown in Fig.9. We first find the line L that includes

the point ~rn,j and is perpendicular to ~lm,i. If line L

intersects the line along ~lm,i at a point between ~rm,i and
~rm,i+1, the closest distance between vertices i and j is

the distance between ~rn,j and the line along ~lm,i, i.e.

δn,jm,i = ~r n,jm,i · n̂m,i as shown in Fig.9 (a). In this case,
the repulsive pair force from Uint is in the direction of
n̂m,i (perpendicular to the surface of particle m), and
therefore it is a frictionless interaction[36].

If line L does not intersect the line along ~lm,i at a point
between ~rm,i and ~rm,i+1, the closest distance between

vertices i and j is δn,jm,i = |~r n,jm,i | as shown in Fig.9 (b).

Again, in this case, the gradient of Uint is along r̂ n,jm,i , and
thus the repulsive interaction force is frictionless.
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FIG. 10. Area flow rate Q versus orifice width w/σavg for
hopper flows in 2D using the SP model Esp = 102 (circles) and
105 (squares) and the frictionless DP model with Kl = 10 and
Kb = 10−1 (crosses) and Kl = 10 and Kb = 102 (asterisks)
with (a) kinetic friction forces only (µ/µ0 = 10

√
10, ζ = 0)

and (b) viscous drag forces only (ζ/ζ0 = 1/
√

10, µ = 0). The
solid curves are fits to the power-law scaling relation for Q(w)
in Eq. 1. In the hard-particle limit, we find (a) C ≈ 0.12 and
k ≈ 1.6 for λ→ 0 and (b) C ≈ 0.42 and k ≈ 3.4 for λ→∞.

APPENDIX B

In this Appendix, we show results for the area flow rate
Q(w) in the rigid-particle limit for both cases λ→ 0 and
λ→∞. We also show that conservation of total particle
area is important for accurately modeling the area flow
rate in hopper flows of soft and deformable particles in
2D. (Similar results are found in 3D.) As discussed in
Sec. II, the SP model does not explicitly model particle
shape change, but instead mimics particle deformability
by allowing overlaps between neighboring particles. As
a result, the SP model does not conserve total particle
area. In contrast, the DP model includes a term in the
shape-energy function to conserve particle area as parti-
cles change their shapes. (See Eq. 8.) However, in the
large-Esp limit for the SP model, where particle overlaps
in SP model are small, and in the large-Kb limit for the
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FIG. 11. (a) Power-law scaling exponent β plotted versus the
ratio of the viscous drag to the kinetic friction coefficients
λ from the data in Fig. 4 (a) for the SP and DP models in
2D with θw = 90◦. We also show data for the SP model
in 2D with Esp = 20 (circles). (b) Schematic of the 2w ×
w rectangular region in 2D over which the particle number
density ρn is measured. (c) The power-law scaling exponent

β
′
(λ) obtained by fitting the corrected area flow rate, Q

′
=

Qaeff/aavg to Eq. 1.

DP model, the area flow rate Q(w) is same for these two
models. As shown in Fig.10, Q(w) is nearly identical for
the SP model with Esp = 105 and for the frictionless DP
model with Kb = 102 in the λ → 0 and λ → ∞ lim-

its. For λ → 0 with β = 3/2, the offset k ≈ 1.6 in the
hard-particle limit, in close agreement with experiments
of hopper flows of frictional grains. For λ → ∞ with
β = 1/2, the offset k ≈ 3.4 in the hard-particle limit.
Note that the offset k has different values for λ→ 0 and
λ→∞ in the hard-particle limit, which suggests that k
is controlled by the flow dynamics and cannot be deter-
mined by the hopper geometry alone [14, 15].
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FIG. 12. (a) Power-law scaling exponent β versus the ratio
of the viscous drag and the kinetic friction coefficients λ for
the SP model in 2D with Esp = 50, θw = 90◦, and N = 800
(crosses), 1600 (circles), and 3200 (asterisks). The horizontal
dashed lines indicate β = 3/2 and 1/2. The solid line is a fit
to Eq. 14. (b) Prefactor C in Eq. 1 normalized by the value
at N = 800 versus the system size N for the 2D SP model for
both λ→ 0 (circles) and λ→∞ (stars).

For extremely soft particles, the overlaps that occur
in the SP model are sufficiently large that they influence
the hopper flow dynamics. For example, in Fig.11(a),
we show the power-law exponent β as a function of λ
for the SP model with Esp = 20 in addition to all of
the data in Fig.4(a). For this data, the area flow rate
Q was calculated by counting the number of mass points
that flow past the orifice opening per unit time divided
by the particle areal mass density ρ. The power-law
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exponent β(λ) for the SP model with extremely large
overlaps (Esp = 20) deviates from all of the other data.
We can correct Q(w) for the SP model with large parti-
cle overlaps by determining the true particle area flow-
ing through the hopper orifice. To do this, we con-
sider a 2w×w rectangular region near the hopper orifice
as shown in Fig.11(b) and measure the number density
ρn = N/A in this region. The effective particle area in
this region is aeff = 1/ρn, and the corrected area flow
rate is Q′ = Qaeff/aavg, where aavg = (as + al)/2. In
Fig.11 (c), we show the power-law scaling exponent β′

obtained from fitting Q′ to Eq. 1. We find that the data
from Fig.4(a) (where the particle overlaps are small) do

not change and β
′

= β. However, β
′

for the SP model
with Esp = 20 shifts so that it falls on the rest of the
data from Fig.4(a).

APPENDIX C

In this Appendix, we investigate how the power-law
exponent β(λ) obtained by fitting Q(w) to Eq. 1 depends
on system size for the SP model in 2D. In Fig. 12 (a),
we show β(λ) for the 2D SP model with Esp = 102 and
θw = 90◦ for N = 800, 1600, and N = 3200. We find
that β is very weakly dependent on system size for the
2D SP model, and we expect similar results for the SP
model in 3D. Based on our recent studies of jamming
of deformable particles, we expect similar weak system
size dependence of β for the 2D DP model[23, 24]. We
also show the system size dependence of the prefactor C
in Eq. 1 for the 2D SP model in Fig.12 (b). C grows
roughly linearly with system size, but the slope is much
weaker for systems with λ→∞.
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