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used the potential ar each charge (due to all the others), but for open
segments it is better to use the midpoints, since the end charges are subject
to nonelectrostatic forces.

2Smythe, Ref. 2, Sec. 4.22.

3This result can also be obtained by treating the ribbon as the limiting case
of an elongated ellipsoid. With A=0/2c and c— o, Egs. (2.1) and (2.2)
yield
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This is the net surface charge density (both sides) for an infinite cylinder
of elliptical cross section. In the limit 5— 0 it reduces to a ribbon, and we
recover Eq. (4.6). [In the case ¢ =, the analog to the theorem in Sec. I1 A
states that the charge per unit length (in the z direction) on a strip of width
dx is Adx/(mw/aZ—x?) for all b—but (unlike the finite ellipsoid) it is not
independent of x.]

1t is easy to check that the total linear charge density [ fo(x)dx] is A.

5We have pushed the fixed-position bead model up to n=300 with barely
detectable changes in the curve; the best fit of the form (3.7) occurs for
A=0.384049, B =0.088295.

15This method cannot be applied to the Coulomb problem, of course, be-
cause of the nasty singularity in the integrand.
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1. INTRODUCTION

(Received 27 July 1995; accepted 10 December 1995)

Electric fields produced by coplanar point charges have often been represented by field line
diagrams that depict two-dimensional slices of the three-dimensional field. Serious problems with
these ‘‘conventional’’ field line diagrams (CFLDs) have been overlooked. Two of these problems,
‘“‘equatorial clumping”’ and ‘‘false monopole moment,”” occur because a two-dimensional slice
lacks information vital to the accurate representation of an inherently three-dimensional field.
Equatorial clumping causes most CFLDs to exhibit unphysical behavior such as irregular spacing
between field lines terminating on negative charges. CFLDs can also mistakenly indicate that a
neutral charge distribution has a significant monopole moment. Such phenomena make the visual
estimation of local field strengths impossible and render CFLDs of little utility for representing
three-dimensional fields. While these ‘‘projection’’ problems can be avoided by using
two-dimensional field line diagrams to represent two-dimensional (1/r) electric fields, or by using
three-dimensional field line diagrams to represent three-dimensional fields, other forms of distortion
generally remain. © 1996 American Association of Physics Teachers.

veys information about the local direction of the electric

Elementary physics textbooks generally attempt some
form of two-dimensional graphical representation of the
three-dimensional electric field produced by coplanar point
charges. The most common approach, the conventional field
line diagram (CFLD), employs continuous electric field
lines, or ““lines of force,”” which are everywhere tangent to
the electric field. Each field line is traced from a positive
charge until it terminates on a negative charge or at infinity
(i.e., ““far’’ from all charges). An individual field line con-
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field, but not about the field’s magnitude. The latter property
requires consideration of the local density of field lines. Fig-
ure 1(a), for example, illustrates the CFLD for a simple di-
pole. Field lines near the dipole are generally spaced close
together, which is thought to indicate a high field strength,
while more distant lines are spaced farther apart. The ten-
dency of the field line density to decrease with distance from
the dipole is apparently consistent with the asymptotic 1/
decay of the field strength. Field lines are, of course, crea-
tures of fiction.! However CFLDs such as Fig. 1(a) are gen-
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Fig. 1. Conventional field line diagram (CFLD) for a dipole. (The sign and
magnitude of each charge appear in the circular region surrounding the
charge. Field lines are initiated much closer to positive charges than the size
of the circular regions appears to suggest.) (a) The symmetry of the field is
made apparent by setting the starting angle for field line emission, 6, equal
to 0. (b) The symmetry is hidden by choosing an arbitrary value for 6,.

erally thought to be useful, since it is believed that they
allow, by direct inspection, estimation of the electric field’s
local direction and local magnitude.

Textbooks sometimes note that field line density is propor-
tional to field strength in three dimensions, but rarely address
the relationship between these quantities in the two-
dimensional diagrams actually used for field visualization.
The reader is left to infer that a similar, if not identical,
relationship holds in two dimensions.? In fact, in almost ev-
ery CFLD, field strength has no consistent relationship to the
observed field line density. While several phenomena con-
tribute to this result, we focus here on a particular type of
distortion which we call ‘‘equatorial clumping.”” It is well
known that field line diagrams imperfectly represent electric
fields in relatively minor ways,3 but the more disturbing ef-
fect of equatorial clumping has not been reported in the elec-
tromagnetism literature. While field line density and field
strength are not related in any simple fashion in a CFLD,
individual field lines are, by definition, tangent to the local
electric field. Therefore, CFLDs, while failing to accurately
reflect a field’s local magnitude, do correctly report its local
direction.

Section II examines the theoretical relationship between
field line density and field strength. Our computational
scheme for producing CFLDs is outlined in Sec. III. Equa-
torial clumping is discussed in Sec. IV. Equatorial clumping
is infrequently seen in textbook figures, for the simple reason
that textbooks generally illustrate only monopole and dipole
fields, which do not exhibit the effect. Since most point
charge distributions (including the simple quadrupole) do
manifest equatorial clumping, the absence of this effect in
more ambitious textbook figures suggests that these CFLDs
are artist’s renderings, not the result of an analytical
calculation* or a numerical computation such as the one out-
lined in Sec. III. Equatorial clumping is also observed in the
CFLDs produced by some educational software.’

Equatorial clumping derives from the fact that a two-
dimensional slice of a three-dimensional vector field lacks
information vital to an accurate representation of the field.
For ease of reference we refer to this loss of information as a
““projection’” effect, although, strictly speaking, a slice is not
equivalent to a projection. Section V looks at another projec-
tion effect, the appearance of spurious monopole moments in
CFLDs. Section VI considers two methods for avoiding pro-
jection effects by avoiding the use of a slice. Unfortunately,
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Fig. 2. Gaussian tube encircles some of the field lines emitted by a positive
charge. Gauss’ law relates the field strength, E, the area A, and the three-
dimensional field line density, p.

even if one of these methods can be employed, another sig-
nificant form of graphical distortion, which we call ‘‘bound-
ary clumping,” will often remain. This effect, which also
thwarts attempts to visually estimate local field strength, is
discussed in Sec. VII. Section VIII considers the problems
associated with the use of three-dimensional rather than two-
dimensional field line diagrams. The authors conclude that
electric fields are not well represented by graphical tech-
niques that employ continuous lines of force.

II. RELATING FIELD LINE DENSITY TO FIELD
STRENGTH

The relationship between field line density and field
strength is determined by Gauss’ law:

§ (Eﬁ dA)=47qunclosed’ (1)

where the integral is taken over a closed Gaussian surface
enclosing net charge . cosed, # i an outward-drawn unit
normal to the surface, and CGS units are used. To relate field
line density to field strength we select as our Gaussian sur-
face the narrow closed tube shown in Fig. 2. To prevent field
lines from leaving the tube along its length, the ‘‘sides’” of
the tube are chosen to be everywhere tangent to the electric
field. The ends of the tube are oriented perpendicular to the
field. The tube encircles a large but finite number of field
lines, each of which begins on the positive point charge of
magnitude g, and terminates at infinity or on a negative
charge.

As the field is uniform over each end of the tube (A and A’
are assumed small), and no charge is enclosed,

§ (E-n dA)=—EA+E'A' =47qenci05sa=0, 2)
so that
EA=E'A’. 3)

To represent the electric field by a three-dimensional field
line diagram, we first select a value for N, the number of
field lines emitted by a positive charge of unity magnitude.

~ We then uniformly distribute gN field lines over the surface

of an infinitesimal sphere surrounding the point charge (the
question of when uniformity can be achieved is deferred un-
til Sec. VIII). The number of field lines entering the tube is
given by pA, where p, the field line density, is defined as the
number of field lines per unit area. Since no field lines es-
cape through the walls of the tube,

pA=p'A’. 4)
Combining Eqs. (3) and (4), we obtain
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E'=p'(E/p)xp’. &)

Thus, the density of field lines penetrating a surface with
normal # is proportional to the strength of the field in the 7
direction, or

E(x)-nxp(x,R). (6)

Since Gauss’ law gives rise to Eq. (6), the proportionality
between field line density and field strength is an inherently
three-dimensional result. In principle, Eq. (6) permits the vi-
sual estimation of local field strength in a three-dimensional
field line diagram. Three-dimensional field line diagrams are
rarely used, however, since two-dimensional renderings of
such diagrams are difficult or impossible to interpret.

One might assume that the field line density in a CFLD, a
two-dimensional slice of three-space, would proportionally
reflect the density of field lines in three-space. If this were
true, Eq. (6) would indirectly permit the visual estimation of
field strength in a CFLD. The assumption may seem plau-
sible because the CFLD, drawn in the plane that contains the
charge distribution, possesses the unique property that field
lines starting in the plane remain within it and no other field
lines enter the plane. This property may suggest that local
field line densities in the CFLD reflect (i.e., are proportional
to) the three-dimensional field line density appearing in Eq.
(6). Unfortunately, however plausible this assumption may
seem, it is incorrect.

While Eq. (6) defines a global linear relationship between
field strength and three-dimensional field line density, there
is no consistent relationship between field strength and field
line density in a CFLD. This is explained in part by phenom-
ena such as equatorial clumping, which misrepresent local
field strength to varying degrees in different regions of a
CFLD. It is easily demonstrated, however, that even if local
distortions were absent, no global relationship is possible.
Consider the CFLD associated with an isolated positive
charge. The charge, by virtue of emitting gN field lines, will
produce a certain field line density at a distance d. If g is
doubled, the charge emits twice as many field lines,® dou-
bling the density. Since the strength of the field is propor-
tional to the magnitude of the charge, it appears that field
strength and two-dimensional field line density are linearly
related. Suppose, however, that d, rather than g, is doubled.
The field strength, which decays as 1/r2, decreases by a fac-
tor of 4. The field lines, linearly diverging within the plane of
the CFLD, double their separation in traveling the additional
distance, decreasing the density by a factor of 2. The latter
experiment suggests that field strength and two-dimensional
field line density are quadratically related. Since the linear
and the quadratic relationship cannot both be satisfied, the
two quantities cannot share any consistent relationship.

Even if one has not been taught that high field line densi-
ties in a CFLD reflect high local field strengths, there is a
natural tendency to make such an association. Unfortunately,
since Eq. (6) does not apply to CFLDs, these visual estimates
may be highly inaccurate, even in the case of a simple quad-
rupole.

III. PRODUCING TWO-DIMENSIONAL FIELD LINE
DIAGRAMS

The following computational scheme is used to create
CFLDs:
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(1) Specify the two-dimensional distribution of point
charges.

(2) Specify the number of field lines, N, that represent a
charge of unit magnitude. (For example, if N=12, a +2
charge ‘‘emits’’ 24 field lines, while a —3 charge should
‘‘absorb’’ 36 field lines.)

(3) Initiate field lines very close to each positive charge at
uniform angular intervals consistent with the choice of
N. (For example, if N=12, a +2 charge emits one field
line every 2/24 radians.) The use of equal intervals
assumes uniformity of the field at the starting location;
for uniformity to actually be present, the starting location
must be close enough to the originating charge that its
uniform field dominates the total electric field.

(4) Follow each field line from its starting point until it
closely approaches a negative charge or appears to be
diverging to infinity. To determine the path of a field
line, first compute the x and y components of the total
field at the current location from the point charge contri-
butions, g,7;/r?. Then incrementally advance the field
line, parametrized by arclength s, by solving the differ-
ential equations: dx/ds=E,/|E|, dy/ds=E J/|E| (E, is
zero in the plane of the diagram and can be ignored.)
Dynamic adjustment of the integration stepsize will al-
low relatively sharp turns in field lines, such as occur at
“‘saddle points’> where E =0, to be accurately followed.

While the choice of N determines the angular spacing be-
tween field lines, the overall angular orientation of the emis-
sion pattern of field lines is determined by the starting angle,
6, selected for each positive charge. While the ,’s are
computationally arbitrary, some choices may be better than
others. For example, in the dipole field illustrated in Fig.
1(a), the choice 6,=0 (which places the first outgoing field
line at the 12 o’clock position) results in field lines symmet-
ric about the y axis, consistent with the azimuthal symmetry
actually present in the three-dimension field. In Fig. 1(b) the
symmetry of the field has been hidden by slightly decreasing
6. For an arbitrary, asymmetric charge distribution, the phe-
nomenon of ‘‘hidden field symmetries’’ cannot occur. How-
ever charge distributions of pedagogical interest, i.e., a mul-
tipole or parallel lines of point charges, often possess some
type of symmetry. In such cases poor choices for each 6, will
result in CFLDs that do not reflect that symmetry.

An apparent problem with our computational scheme is
that it omits all of the field lines that begin at infinity. In a
charge distribution containing solely negative charges, for
example, this scheme produces no field lines at all. The prob-
lem of missing field lines is easily remedied by reversing the
sign of each charge in the distribution, so the number of field
lines emitted in the CFLD is no smaller than the number of
lines absorbed. This modification of the charge distribution
should not change any field properties that are correctly re-
flected in the field line diagram, since charge reversal only
brings about a global reversal in the direction of the electric
field.

IV. EQUATORIAL CLUMPING

Figure 3 illustrates the phenomenon of ‘‘equatorial clump-
ing’’ for a simple point charge distribution. Field lines emit-
ted uniformly from the +1 and +3 charges terminate non-
uniformly on the —4 charge. The nonuniformity is more
apparent in Fig. 4, a 32-fold magnification of the region near
the negative charge. If Eq. (6) were thought to apply to Fig.
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Fig. 3. CFLD for a coplanar point charge distribution demonstrating ‘‘equa-
torial clumping,’’ the nonuniform spacing of field lines that should terminate
uniformly on the negative charge.

4, one would mistakenly conclude that the electric field very
close to the negative charge was weaker in the ““12 to 4
o’clock’” range than elsewhere. Figure 5, a plot of the angu-
lar density of terminating field lines, provides a more quan-
titative illustration of the effect. The equatorial clumping evi-
dent in Fig. 4 appears in Fig. 5 in the lower angular density
in the 12 to 4 o’clock range (approximately 37/2 to 27 in
Fig. 5) than elsewhere. Figure 5 also contains two large
spikes, indicating very high field line densities, which are not
seen in Fig. 4. The spikes, which span a narrow range in 6,
are overlooked by the 48 terminating field lines of Fig. 4, but
are picked up by the 40 000 field lines of Fig. 5. This dem-
onstrates that the extent of equatorial clumping actually ob-
served in a CFLD depends on the choice of N, which pro-
portionally alters the local field line density, p.

Equation (6), if used to interpret Figs. 3—5, would provide
misleading information about the magnitude of the field in
the vicinity of the —4 charge. Sufficiently close to that
charge, its nearly infinite, perfectly uniform field must domi-
nate the total field, but uniformity is not seen in the figure.
One might have expected that the computational scheme of
Sec. III would automatically result in uniformity for the field
lines terminating on negative charges, since uniformity was
imposed on the field lines emitted by the positive charges.

Equatorial clumping may also provide false information
about charge magnitude, which is reflected in a CFLD by the

|

Fig. 4. Thirty-two-fold magnification of the negative charge in Fig. 3 em-
phasizing the nonuniform termination of field lines.
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Fig. 5. The angular density of 40 000 field lines terminating on the negative
charge of Fig. 4. The angular range begins at the 12 o’clock position, and
proceeds counterclockwise around the charge. The density has been scaled
by the uniform density (indicated by a dashed line) that would be observed
if there were no equatorial clumping.

number of field lines attached to each charge. Figure 6 illus-
trates the field of a linear quadrupole, with charges +2, —4,
and +2, for N=9. While equatorial clumping, i.e., an in-
crease in field line density, is apparent near the ‘‘equator’’ of
the —4 charge, the expected number of field lines are at-
tached to each charge—18 lines begin on each positive
charge and 36 lines terminate on the negative charge. In Fig.
7, the —4 charge is replaced by a small cluster of —1
charges, two on the x axis (‘‘equatorial charges’’), and two
on the y axis (‘“‘polar charges’’). While each —1 charge
should absorb nine field lines, the incoming field lines con-
tinue to express their preference for landing in the equatorial
region of the ‘“‘—4’’ charge. Each equatorial charge absorbs
11 field lines and each polar charge absorbs seven field lines.
Inspecting the field line diagram, one would incorrectly con-
clude that the magnitude of the equatorial charges exceeds
that of the polar charges by the ratio 11:7.8

The calculational degrees of freedom in our CFLD algo-
rithm are easily ruled out as the source of equatorial clump-
ing. As Fig. 5 demonstrates, increasing the field line density
to better represent the continuous nature of the vector field
only makes equatorial clumping more apparent. Varying the
starting angles similarly has no effect on density plots such

W/
)

4

Wy
A

Fig. 6. CFLD for a linear quadrupole, with equatorial clumping evident near
the equator of the negative charge.
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Fig. 7. CFLD for a charge distribution similar to the linear quadrupole of
Fig. 6. Equatorial clumping causes the wrong number of field lines to ter-

minate on the negative charges. Each +2 charge emits 18 field lines; the
polar and equatorial —1 charges absorb, respectively, 7 and 11 field lines.

as Fig. 5. (Section VII considers a different type of CFLD
distortion which is affected by the choice of starting angles.)
Finally, equatorial clumping is not affected by the choice of
starting distances for field lines, so long as this distance is
sufficiently small.

Numerical errors are also easily ruled out as the source of
equatorial clumping. No change in clumping is observed
when the integration stepsize is reduced or when the Eulerian
integration scheme is replaced by a fourth-order (Runge-
Kutta) method. Furthermore, each terminating field line re-
turns to its point of origin to very high accuracy when inte-
grated backward.

Equatorial clumping results, instead, from a projection ef-
fect; CFLDs, which are two-dimensional, cannot accurately
represent inherently three-dimensional electric fields. This
explanation is easily confirmed by producing a three-
dimensional field line diagram for the linear quadrupole, by
extension of the scheme outlined in Sec. III. No equatorial
clumping is observed in three dimensions—field lines uni-
formly emitted from positive charges are uniformly absorbed
on negative charges. Since three-dimensional field line dia-
grams are not easy to interpret visually, the absence of equa-
torial clumping is best verified numerically. When dense
groups of field lines are initiated from regions of small but
equal solid angle, dQ) , =d(cos 6)d ¢, on a spherical surface
surrounding a positive point charge, they land in regions of
equal solid angle, dQ)_=dQ,|q./q_|, on a spherical sur-
face surrounding a negative charge.

The behavior of such field line groups describes a map-
ping of regions of solid angle from positive to negative
charges. This mapping, while area-preserving (up to the fac-
tor |q./q_|), is not shape preserving. In particular, when
terminating field lines are compressed in the @ direction in
the equatorial region, they stretch in the ¢ direction. Since 8
lies within the plane of the diagram, but ¢ is perpendicular to
this plane, the compression, or ‘‘clumping’’ of field lines is
retained in the two-dimensional slice, but the compensatory
stretching is discarded.

This projection effect is easily quantified for the linear
quadrupole. A portion of the quadrupole CFLD is shown in
Fig. 8(a); the behavior of the corresponding field lines in
three dimensions is illustrated schematically in Fig. 8(b).
Consider the field lines emanating from infinitesimal circular
endcaps of equal solid angle, (), near the north and south
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Fig. 8. Field lines initiated on the south and north poles of a positive charge
in a linear quadrupole terminate, respectively, on the north pole and an
equatorial ring of the negative charge. (a) In a two-dimensional slice of the
field the field lines are emitted in an angular range &6 and terminate in
angular ranges 8¢’ and 86”. (b) In three dimensions the field lines are
emitted from infinitesimal circular endcaps of solid angle 7(56)? and termi-
nate in regions of solid angle 7(5¢')* and 2m(58").

poles of the upper +1 charge. From the symmetry of the
charge distribution, field lines leaving the south pole must
terminate within a north polar endcap on the negative charge.
Similarly, field lines leaving the north pole must terminate
within a small ring just above the equator of the —2 charge.
Since, on the surface of their respective spheres, the field
strength produced by the —2 charge is twice that of the +1
charge, Gauss’ law requires that the terminating circular end-
cap and the terminating ring each occupy the solid angle
€)/2. The solid angles of each element are

outgoing endcaps: w(6 0)*=Q, (7
terminating endcap: m(86')2=0Q/2, 8)
terminating ring: 27(56")=(1/2, 9)

where all angles are expressed in radians. Solving these
equations, we find:

o¢" 66

In three dimensions, therefore, the angular width of the
equatorial ring may be much narrower than that of the end-
cap. The large (azimuthal) girth of the ring compensates for
this, ensuring that the terminating solid angles are identical.
Gauss’ law therefore ensures uniformity in three dimensions.
In the two-dimensional projection of Fig. 8(a), however, the
broad girth of the negative charge is invisible. Field lines
originate in the plane within an angular range 6, and termi-
nate in the plane, in angular ranges 8¢’ and 66”. In two
dimensions Eq. (10) shows that field lines landing near the
equatorial region arrive in a far narrower angular range than
the identical number of field lines landing near a pole. An
arbitrarily large amount of equatorial field line compression

Woif, Van Hook, and Weeks 718



is theoretically possible for sufficiently small 56, however in
practice, as Figs. 4 and 5 demonstrate, a limited amount of
equatorial clumping will be observed, the precise amount
being determined by N (which fixes 56) and 6.

In sum, equatorial clumping results from the inability of a
two-dimensional field line diagram to properly represent the
manner in which regions of solid angle are mapped from
positive to negative charges. While this mapping preserves
solid angles, it does not always preserve their shapes. Shape
variations are obscured in two-dimensional projection, re-
sulting in the field line nonuniformity that we call equatorial
clumping.

Equatorial clumping will be present in most field line dia-
grams, although it is sometimes a subtle effect that is only
made apparent by an angular density plot such as Fig. 5. A
handful of charge distributions, such as the ordinary dipole,
show no equatorial clumping due to their special symmetries.
In the dipole, the electric field is unchanged under the com-
bined operations of charge reversal and reflection across a
symmetry line (the perpendicular bisector of the line con-
necting the charges). This symmetry forces any field line
reaching the symmetry line from a positive charge to com-
plete its trip to the negative charge in mirror image fashion.
Since the emission pattern from the positive charge is per-
fectly uniform, the mirror image pattern of terminating field
lines on the negative charge will be equally uniform. This
argument fails for the linear quadrupole, even though it has
the identical symmetry under charge reversal and reflection,
since field lines do not cross the symmetry line in completing
their trip from a positive charge to a negative one. Rather
than mirroring the uniform emission pattern, the terminating
field lines below the symmetry line mirror the nonuniform
termination pattern above the symmetry line. Another charge
distribution with sufficient symmetry under the operations of
spatial reflection and charge reversal to avoid equatorial
clumping consists of the charges +1, —1, +1, and —1
placed on the consecutive corners of a square.” Arbitrary
charge distributions will generally lack the high degree of
symmetry necessary to eliminate equatorial clumping. The
reader is reminded that, even if equatorial clumping is ab-
sent, no consistent relationship exists between field strength
and field line density in a CFLD.

For collinear charge distributions such as the quadrupole,
equatorial clumping will occur when solid angle is mapped
between regions of dissimilar girth. In the dipole, polar re-
gions map to polar regions, and equatorial regions map to
equatorial ones. In the quadrupole, by contrast, polar regions
are mapped to both polar and equatorial regions. Even if a
mapping does occur between regions of equal girth, how-
ever, equatorial clumping may still be present, though mani-
fested in a different form. This is demonstrated in Fig. 9, a
linear quadrupole in which the —2 charge has been synthe-
sized from two —1 charges. While the ficld lines terminate
uniformly on each of the —1 charges, equatorial clumping is
still apparent in the nonuniform spacing of field lines in the
region between the negative charges. Since equatorial
clumping is not limited to terminating field lines, but can
occur in charge-free regions of space, the effect may even be
present in field line diagrams containing only positive
charges. In an arbitrary charge distribution, the mapping
analysis is more complex, and equatorial clumping is per-
haps a misnomer, since there is no meaningful identification
of polar and equatorial directions. We nevertheless retain this
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Fig. 9. CFLD for a charge distribution in which equatorial clumping is
manifested by the nonuniform spacing of field lines in a charge-free region
of space (between the two —1 charges), rather than at field line terminations.

terminology, as it conveys the essential point of a mapping
that is area-preserving, but not shape-preserving.

V. FALSE MONOPOLE MOMENT

Figure 10 illustrates an additional distortion that arises
from the representation of a three-dimensional field by a
two-dimensional slice. Although the charge distribution has
no net charge, 25% of the field lines diverge to infinity,
incorrectly suggesting that the distribution possesses a net
monopole moment.'®

To understand the appearance of a ‘‘false monopole mo-
ment’’ recall that the charge distribution lies within the plane
of the CFLD, making the plane a reflection symmetry plane
for the three-dimensional field line diagram. Because of this
symmetry, field lines that start within the plane can never
leave it. No such constraint is present on field lines initiated
outside the plane, which may freely travel through three
space. Where there is no net charge, as in Fig. 10, each field
line should terminate on a negative charge, rather than at
infinity. However some field lines initiated on the ‘“far”’ side
of each +1 charge cannot detour around the +1 charge hori-
zontally (within the plane) in order to reach the —4 charge,
but must go above or below the +1 charge. Field lines ini-

Y

g} e\
i

/H\
Fig. 10. CFLD for a charge distribution with no net charge. While each field
line should terminate on a negative charge within the distribution, 25% of

the field lines diverge to infinity, incorrectly suggesting that the distribution
possesses a net charge of +1.
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Fig. 11. Field line diagram for the charge distribution of Fig. 3, employing
a two-dimensional (1/r) electric field to prevent equatorial clumping.

tiated within the symmetry plane cannot take such a three-
dimensional detour and have no choice but to go to infinity.

Such diverging field lines are not created by the use of a
slice; the identical behavior can be seen in a three-
dimensional field line diagram if field lines are initiated
within the reflection symmetry plane. In three dimensions,
however, the probability of starting a field line precisely
within this plane is zero. On the one hand, the reflection
symmetry plane is the only plane appropriate for a CFLD,
because it is the only plane containing complete (i.e., planar)
field lines. On the other hand, the reflection symmetry plane
is a poor choice, because planar field lines exhibit atypical
field line behavior. It is this atypical behavior, the failure to
reach a terminating negative charge, that misinforms as to
the net charge present within a distribution.

VI. AVOIDING PROJECTION EFFECTS

Since equatorial clumping and false monopole moments
result from taking a two-dimensional slice of a three-
dimensional vector field, both effects can be eliminated if the
use of a slice can somehow be avoided. One way to accom-
plish this, through the use of fully three-dimensional field
line diagrams, is discussed in Sec. VIII. A different approach
involves the use of a two-dimensional, rather than a three-
dimensional, electric field. Clearly no information is lost by
““projection”’ if a two-dimensional field line diagram is used
to visualize two-dimensional physics.

In two dimensions Gauss’ law takes the form:

§ (E'ﬁ dl)zzwqenclosed' (11)

Here 7 is the local normal to a closed curve, which is the
two-dimensional analog to a Gaussian surface. In Sec. IV it
was shown that the three-dimensional form of Gauss’ law, as
expressed in Egs. (7)—(9), prevented equatorial clumping in
three dimensions. In the identical derivation employing two-
dimensional physics, which would look to the mapping of
field lines between angular regions within the plane, rather
than regions of solid angle, Eq. (11) similarly prevents equa-
torial clumping in two dimensions.

Figures 11 and 12 illustrate the two-dimensional electric
field associated with the charge distribution used in Figs. 3
and 4. Equatorial clumping has been eliminated. Unfortu-
nately, the two-dimensional electric field associated with a
specified charge distribution differs substantially from the
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Fig. 12. Thirty-two-fold magnification of the negative charge in Fig. 11
emphasizing the uniform termination of field lines. Compare Fig. 4.

three-dimensional field associated with the same distribution
since the field strength varies as 1/, instead of 1/r2. The use
of a two-dimensional field eliminates equatorial clumping,
but it does not solve the problem originally posed.

Two-dimensional fields do, however, have at least two
potential applications. First, one may take the view that elec-
tric field line diagrams are being produced for point charges
that exist in a Flatland-like universe with only two spatial
dimensions.!! The pedagogic appeal of this view is that the
entirety of the field lies within the plane of the diagram, so
that no three-dimensional visualization, calculation, or vector
calculus is required. For example, Gauss’ law, in its two-
dimensional form, is easily applied to relatively complex
charge distributions. One disadvantage of two-dimensional
electrostatics is that electric potential has a logarithmic spa-
tial dependence, which makes it more difficult to interpret
and to represent graphically.

Alternatively, one can view the field as being generated by
infinite lines of charge perpendicular to the plane. The sym-
metry of such a distribution ensures that all field lines are
confined to planes perpendicular to the lines of charge, with
each plane exhibiting identical field behavior. Furthermore,
the field produced by an infinite line of charge varies in-
versely with the distance from the charge. A slice taken
through the three-dimensional electric field therefore reveals
purely two-dimensional field behavior, with no information
lost by projection. Figure 11 may therefore be interpreted as
the field line diagram produced by three point charges resid-
ing in two-space, or by three infinite lines of charge perpen-
dicular to the plane of the diagram.

The use of two-dimensional electric fields also avoids the
projection effect of false monopole moments. This is illus-
trated in Fig. 13, the two-dimensional counterpart to Fig. 10.

VII. BOUNDARY CLUMPING

Even if projection effects can be avoided, an entirely un-
related form of distortion may be present in a field line dia-
gram that makes it difficult to correctly extract local field
properties. To prevent projection effects from masking this
new form of distortion we use two-dimensional electric
fields in the figures for this section.

Figure 14 shows the field line diagram associated with a
simple collection of point charges. At the 10 o’clock and the
2 o’clock positions on the —3 charge a pair of terminating
field lines have an atypically large angular separation, imply-
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Fig. 13. Field line diagram for the charge distribution of Fig. 10, employing
a 1/r electric field to prevent the appearance of a false monopole moment.

ing a reduced local field strength. Some form of distortion
must be present here, since the field close to any charge is
perfectly uniform. We refer to this distortion as ‘‘boundary
clumping’’ because, as Fig. 14 illustrates, irregular spacing
appears at the boundaries between terminating ficld lines that
originate on different positive charges.

In Fig. 15, boundary clumping has been eliminated by
altering the value of 6, in a symmetric fashion on the two
outermost positive charges. Since the 6,’s are free param-
eters in our calculation, it is apparent that boundary clump-
ing does not reflect any real property of the electric field.
Furthermore, while boundary clumping is affected by the
choice of each 6,, the effect is otherwise unrelated to hidden
field symmetries. This is demonstrated by Fig. 14, which
exhibits boundary clumping even though its field lines cor-
rectly reflect the symmetry of the charge distribution about
the line joining the —3 charge and the central +2 charge.

Boundary clumping is not limited to pairs of field lines
that terminate on negative charges. In Fig. 14 we also see
atypical spacing between two pairs of field lines at the top of
the diagram, field lines that originate on different positive
charges, and are in the process of diverging to infinity. As
Fig. 15 illustrates, when the starting angles are altered to
eliminate boundary clumping for field lines terminating on
the negative charge, the nonuniformity also disappears for
the field lines that diverge.

As with equatorial clumping, boundary clumping may
mislead not only as to local field strength, but as to charge
magnitude. This phenomenon is illustrated in Fig. 16, in
which two —1 charges absorb different numbers of field
lines (11 on the upper —1 charge, 13 on the lower) from the
two +1 charges that emit them. To understand this problem,
we observe that it will be difficult for the finite number of
field lines connecting a positive charge to a negative one to
properly reflect the angular range that should be mapped be-
tween the two charges, since the range can assume any value
from O to 2. In Fig. 16, for example, by choosing N=12,
the only mappings that can be correctly described are those
involving angular ranges that are multiples of 2#/12.
Mapped regions will not generally have sizes that are integer
multiples of 27/12; in this circumstance, boundary clumping
can cause the wrong number of field lines to land on negative
charges. For example, if the size of the angular region that
maps from a +1 charge to a —1 charge were equal to
8.5-271/12, then depending on 6, for the +1 charge, either 8
or 9 field lines could map from the positive to the negative
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Fig. 14. Field line diagram with 1/r field, illustrating ‘‘boundary clump-
ing,”” the nonuniform spacing of isolated pairs of field lines that originate on
different positive charges.

charge. If another +1 charge contributes the remaining an-
gular range of 3.5-27/12, then depending on 6, for that
charge, cither 3 or 4 field lines could map to the negative
charge. Since the starting angles for the +1 charges are com-
putationally arbitrary, any number of field lines from 11 to
13 can terminate on the negative charge, even though the
correct value is 12. In Fig. 16, this boundary clumping effect
makes the magnitude of the lower negative charge appear to
exceed that of the upper charge by a ratio of 13:11.

A fuller explication of boundary clumping, including an
algorithm that eliminates the effect from two-dimensional
field line diagrams, will be presented in a subsequent work.
For the moment we observe that boundary clumping may
arise in charge distributions containing at least three point
charges. Boundary clumping will therefore not be present in
the field line diagrams associated with simple monopole or
dipole distributions. The quadrupole, due to its high degree
of symmetry, also lacks this effect. Boundary clumping
should also be absent from charge distributions that include
one positive charge and any number of negative charges,
since a boundary, by definition, requires two distinct sources
of field lines.!?

Wi

L)

Fig. 15. Field line diagram for the distribution of Fig. 14, with the starting
angles, ), altered on the outermost positive charges to prevent boundary
clumping.
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Fig. 16. Field line diagram with 1/r field, with boundary clumping resulting
in an incorrect (unequal) number of field lines terminating on the two nega-

tive charges. Each +1 charge emits 12 field lines; the upper and lower —1
charges absorb, respectively, 11 and 13 field lines.

VIII. THREE-DIMENSIONAL FIELD LINE
DIAGRAMS

As previously noted, one approach to avoiding projection
effects is to represent three-dimensional (1/r2) electric fields
by three-dimensional field line diagrams. While our compu-
tational scheme is easily extended to three dimensions, there
are no perfectly satisfactory schemes for viewing the result-
ing field line diagrams. Both quasi-three-dimensional im-
ages, such as stereograms or holograms, and conventional
two-dimensional projections of the three-dimensional field
(which contain overlapping field lines) are likely to be visu-
ally ambiguous or overwhelming.

While it may be possible to resolve these practical issues,
a more fundamental problem with three-dimensional dia-
grams relates to the creation of a uniform emission pattern
on the spherical surface of a positive charge. In two dimen-
sions, a uniform emission pattern containing any number of
field lines is easily established by selecting an angular spac-
ing that fits evenly into 27 radians. On the surface of a
sphere, however, complete uniformity may only be achieved
in a few cases, and for particular numbers of field lines. As
with CFLDs, the result of incorrect field line spacing is that
visual inspection of the field line diagram will fail to reveal
the correct local field strength.

The problem of creating a uniform emission pattern is
identical to the problem of uniformly ‘‘tiling”’ the surface of
a sphere,” since one radial field line may be initiated at the
center of each tiling element. For example, a uniform emis-
sion pattern containing 12 field lines is obtained by inscrib-
ing the sphere of the charge inside a dodecahedron, which
contains 12 identical pentagonal faces. Uniformity in this
context means, in part, that if any pentagon (field line) is
rotated into the position of any other pentagon (field line),
the tiling (global pattern of field lines) remains unchanged.
This requirement, while necessary for uniformity, is clearly
not sufficient. Consider, for example, a number of field lines
equally spaced around the equator of a sphere. While the
global field line pattern is invariant under the appropriate
rotations around the polar axis, these equatorial field lines
are clearly not uniformly distributed over the entire surface
of the sphere. True surface uniformity requires that we also
take the dispersion between adjacent field lines into account.
The general formulation of this problem, which is beyond
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the scope of this work, is discussed in detail in Ref. 13. For
present purposes we observe that uniformity, in the strictest
sense, is only obtained by five tilings. These tilings employ
the five regular polyhedra, otherwise known as the Platonic
solids: the tetrahedron (four faces or field lines), the cube (6),
the octahedron (8), the dodecahedron (12) and the icosahe-
dron (20).

It is therefore impossible to create a completely uniform
emission pattern on a sphere with other than 4, 6, 8, 12, or 20
field lines. If a ‘‘non-Platonic’’ emission pattern is selected,
then, lacking uniformity of the emission pattern, there can be
no expectation of uniformity of the termination pattern on
negative charges. For some distributions Platonic emission
patterns are simply unavailable. For example, if N=4, a tet-
rahedral tiling generates the emission pattern for a +1
charge. If the charge distribution also contains a +4 charge,
however, there is no 16-faced Platonic solid available to gen-
erate its uniform emission pattern.

Even when Platonic emission patterns are available for
each positive charge, Platonic termination patterns will often
be impossible. For example, if an icosahedral emission pat-
tern is used for each +1 charge in a charge distribution con-
taining three +1 charges and a single —3 charge, the —3
charge cannot absorb these 60 lines uniformly, because there
is no Platonic solid containing 60 faces. The solution in this
particular case is to represent each +1 charge by a tetrahe-
dral emission pattern, so the —3 charge can absorb the 12
field lines in a dodecahedral fashion. Even here, improper
orientations of the emission patterns for the +1 charges
would lead to boundary clumping on the —3 charge.

An apparent solution to the problem of obtaining uniform
emission patterns from charges of different magnitudes is to
construct charge distributions, as nature does, solely from
charges of unity magnitude. A single choice of emission pat-
tern, say icosahedral, can then be used for each elementary
charge in the distribution. Unfortunately, while this elimi-
nates nonuniformity at the spherical surface of the positive
charges, the nonuniformity simply reappears in the adjacent
region of empty space, reminiscent of the similar result for
equatorial clumping illustrated in Fig. 9.

It would thus seem that there is a small but non-negligible
set of charge distributions which can be properly represented
with three-dimensional diagrams that use the five Platonic
solids to represent the point charges. This assumes, however,
that a uniform, Platonic emission pattern on positive charges
results in a uniform, Platonic termination pattern on negative
charges. Unfortunately, this is not the case except in a hand-
ful of special cases such as the dipole and linear quadrupole
(and then only for a certain orientation of the emission pat-
terns). The mapping of a region of solid angle (such as a
““face’” of a Platonic solid) from one charge to another,
while area-preserving (up to a factor of |g./q_|), is not
shape-preserving; thus, the centers of Platonic solids on posi-
tive charges do not necessarily map to centers of faces of
Platonic solids on negative charges. Gauss’ law guarantees
that a large number of field lines emitted uniformly from
positive charges will land uniformly on negative charges; it
does not guarantee that individual field lines originating from
one particular point in space will terminate at another speci-
fied location. Figure 17, a stereogram of a three-dimensional
field line diagram for a simple quadrupole, shows a rare case
where Platonic emission and termination patterns can be pro-
duced. Each +1 charge emits six field lines uniformly from a
cube, and the —2 charge absorbs all 12 lines uniformly on a
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Fig. 17. Stereogram of a three-dimensional field line diagram for a linear
quadrupole. Each field line begins in the center of one face of a cube, and
terminates in the center of one face of the dodecahedron, confirming the
perfect uniformity of the emission and termination patterns. The three-
dimensional effect is achieved by relaxing one’s eyes until the two images
produce a combined central image, and then focusing on that image. Alter-
nately, a central image is obtained by ‘‘crossing’’ one’s eyes. The stereo-
gram is best viewed from a distance of 6 to 10 in.

dodecahedron. We have not attempted to enumerate the class
of charge distributions for which uniform emission and ter-
mination patterns on Platonic solids are possible, but we be-
lieve the class is small, containing at most a few distribu-
tions.

A different approach to solving the tiling problem is to
relax our requirement of strict uniformity for the emission
pattern. The spherical surface of each positive charge can
then be covered with an almost arbitrary number of field
lines that correspond to regions of equal solid angle, if not
identical shape.'* For example, field lines can be uniformly
spaced in ¢ and cos(O). The region of solid angle associated
with each field line will vary in shape with ©, however this
effect can be reduced by increasing N, which increases the
global density of field lines.

Boundary clumping may also be present in three-
dimensional field line diagrams. As in the two-dimensional
case, if field lines terminate on a negative charge from more
than one source, the spacing of field lines at the resulting
boundaries may incorrectly reflect the local electric field
strength. In three dimensions, however, the field lines termi-
nating on a negative charge from a specified positive charge
define a region of surface area (a ‘‘patch’”) on the charge’s
spherical surface. An imprecise fit between adjacent patches
may result in atypical spacing between a large number of
field lines, and not just isolated pairs of lines. Since uniform
termination patterns are rarely possible, boundary clumping
can rarely be eliminated from three-dimensional diagrams.
Figure 17 shows such a rare case, in which boundary clump-
ing was avoided, and a perfect Platonic termination pattern
achieved, by carefully selecting the three-dimensional orien-
tation of the Platonic emission patterns.

IX. CONCLUSION

Electric field lines, while unphysical, have been thought to
serve a useful role in field visualization.'> There is a certain
appeal to ‘‘reading’ local electric field strength from a
CFLD by visually estimating the local field line density. Un-
fortunately, CFLDs suffer from the projection effects of
equatorial clumping and false monopole moment, as well as
boundary clumping. Since these effects preclude the accurate
visual estimation of field strength, CFLDs are of little utility
for three-dimensional fields.

The failure of conventional field line diagrams has moti-
vated us to explore the use of unconventional field line dia-
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grams, such as diagrams representing two-dimensional fields
and fully three-dimensional diagrams. While projection ef-
fects may be avoided, other problems remain, such as bound-
ary clumping and the production of uniform three-
dimensional tilings. It should be noted that each of the
problems that we have considered is avoided by simply using
graphical methods that do not employ continuous lines of
force. For example, both the local direction and the local
magnitude of a two-dimensional slice of an electric field can
be accurately, although less aesthetically, represented by
placing individual field vectors at the vertices of a square
grid.
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<“No observable electromagnetic phenomenon can exist which involves
two points in space, and which depends upon there being a continuous line
of force joining the points. Such a phenomenon could contradict our pos-
tulate of the complete sufficiency of the local vector fields for describing
local phenomena.”” Joseph Slepian, ‘‘Lines of Force in Electric and Mag-
netic Fields,”” Am. J. Phys. 19, 88 (1951).

2Some texts demonstrate that field strength is quadratically related to field
line density in the CFLD of an isolated point charge. Since these discus-
sions are limited to the monopole, the reader may be left with the impres-
sion that the quadratic relationship, or some consistent relationship, holds
in the case of more complex charge distributions.

3Besides the inherent problems of CFLDs, such as limited spatial resolu-
tion, many of the CFLDs found in elementary texts are incorrectly drawn.
See Leo Kristjansson, ‘‘On the drawing of lines of force and equipoten-
tials,”” Phys. Teacher 23, 202-206 (1985).

“The field lines for a dipole are determined analytically in Ref. 3, pp.
205-206.

SElectric Field Plotter (Physics Academic Software), which employs an
algorithm similar to the one described in Sec. I, produces CFLDs that
exhibit equatorial clumping. More commonly, electric field plotters, such
as EM Field (Physics Academic Software), only draw field lines through
user-specified points in space, and therefore do not attempt to convey field
strength through two-dimensional field line density.

®There has been some confusion regarding the relationship between the
magnitude of a point charge and the number of field lines it emits or
absorbs in a two-dimensional field line diagram. Dennis E. Kelly, ‘‘Com-
puting E-field Lines,”” Phys. Teacher 18, 463 (1980); Mario lona, ‘‘Num-
ber of Lines of Force,”” Phys. Teacher 19, 354 (1981); Dennis E. Kelly,
“A Common Misconception,”” Phys. Teacher 19, 463 (1981). The rela-
tionship must be a linear one. Consider two +1 charges, each emitting N
field lines. When observed at a distance much larger than the separation
between the charges, the total electric field must resemble that of a single
+2 charge. Since 2N field lines are seen to originate from a charge of
apparently doubled magnitude, the relationship between charge and num-
ber of field lines must be linear. This result holds in both two and three
dimensions. The contrary result of Kelly and Iona, which would have the
+2 charge emit \/fN field lines, results from an incorrect comparison of
uniform field line spacing in solid angle (in three dimensions) to uniform
angular spacing within the plane.

79 is the polar angle in the plane of the CFLD measured counterclockwise
down from the y axis. ¢ is the azimuthal angle in the xz plane. This
coordinate system is most convenient for discussing collinear charge dis-
tributions along the y axis.

8The sign-reversed (-2, +4, ~2) quadrupole provides further evidence
that equatorial clumping misrepresents local field strength. Sign reversal,
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whose only impact on the electric field is a global reversal of its direction,
should not alter the relative spacing of field lines in a CFLD. Since the
sign-reversed version of Fig. 6 must show uniform spacing of the outgoing
field lines on the +4 charge, equatorial clumping does not show the in-
variance under charge reversal that would be expected of a true field
property.

9Phillip M. Rinard, Delbert Brandley, and Keith Pennebaker, ‘‘Plotting
Field Intensity and Equipotential Lines,”” Am. J. Phys. 42, 792-793
(1974).

OWhile charge distributions lacking a monopole moment possess divergent
field lines, such as the =0 and 6= 7 lines in the dipole, such lines are few
in number and can be avoided by the proper choice of 6,. By contrast, the
number of divergent lines associated with a false monopole moment is
proportional to N, and is unaffected by the choice of 6,. In several figures,
including the dipole CFLD of Fig. 1(a), gaps on negative charges were
avoided by setting 6, to a value very close to 0, producing an apparently
divergent field line that eventually reappears at the opposite end of the
diagram and terminates on a negative charge.

HEdwin A. Abbot, Flatland: A Romance of Many Dimensions by a Square
(Seeley & Co., London, 1884). For a more technical discussion of two-
dimensional science, see A. K. Dewdney, The Planiverse: Computer Con-
tact with a Two-dimensional World (Poseidon, New York, 1984). While
this article was in press, the authors were made aware of the recent note of
T. E. Freeman, ‘‘One-, two-, or three-dimensional fields?,”” Am. J. Phys.

63, 273-274 (1995). Freeman shows a field line diagram with a false
monopole moment and correctly observes that the distortion would disap-
pear in a two-dimensional universe.

12Boundary clumping can be avoided in a distribution with one negative and
several positive charges by reversing the sign of each charge. A form of
boundary clumping can be seen in charge distributions containing a single
positive charge, but the problem originates solely from numerical errors
that are easily avoided.

3The problem of distributing points uniformly on a sphere is discussed in
the Internet document sphere.faq, produced by Dave Rusin. The document
is located at:  http://www.math.niu.edu:80/~rusin/papers/spheres/
sphere.faq. Uniform tilings are not achieved on golf balls or geodesic
domes which either employ multiple tiling elements or contain defects at
the north pole or at the equatorial ‘‘weld’’ line.

!Reference 13 describes methods of obtaining nearly uniform distributions
of an arbitrary number of points on the surface of a sphere.

151 field line diagrams are seen as primarily serving visualization and peda-
gogic purposes (rather than serving as a practical research/design tool) it
may be time to reevaluate their pedagogic worth, Tornkvist ef al. suggest
that, independent of any imperfections that may be present in CFLDS,
students often misinterpret these diagrams. S. Tornkvist, A. Petterson, and
G. Transtromer, ‘‘Confusion by representation: On students’ comprehen-
sion of the electric field concept,”” Am. J. Phys. 61, 335-338 (1993).

Resonant Faraday rotation as a probe of atomic dispersion
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The Faraday effect (the rotation of the plane of polarization of light as it propagates through a
sample parallel to a static magnetic field) is readily detected in room-temperature rubidium vapor by
a diode-laser experiment near the D, resonance line at 780 nm, and the theoretical treatment of this
effect provides an unusually clear insight into the relation between absorption and dispersion in the
interaction of light with matter. © 1996 American Association of Physics Teachers.

L. INTRODUCTION

Impelled by a belief in the unity of the forces of nature,
Michael Faraday sought, and in 1845 provided, the first phe-
nomenological evidence for a connection between light and
magnetism when he discovered the effect that still bears his
name. He found that plane-polarized light, propagating
through matter parallel to a static magnetic field, underwent
a systematic rotation of its plane of polarization. The effect,
though unambiguous, is typically not large, with rotation per
unit distance per unit field of order 10 rad/m T (~0.03
arcmin/cm Oe) in ordinary glass samples in the midvisible;
this ‘‘Verdet constant’’ is itself a function of wavelength,
typically growing dramatically toward the blue end of the
visible spectrum. Not until the atomic-electron hypothesis
toward the end of the 19th century was it possible to provide
a more detailed model for Faraday rotation; Becquerel pre-
dicted a Verdet constant related to the dispersion dn/d\ of
the material. A modern picture of Faraday rotation emerges
from the quantum-mechanical response of an atom to a mag-
netic field; in this picture the atomic absorption and disper-
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sion are both affected by the field, and in this sense the
Faraday effect is to dispersion what the Zeeman effect is to
absorption (or emission).

Given the small magnitude of Faraday rotation in bulk
condensed matter, it might seem impossible to detect the
effect for a much more dilute gas sample. It is the connection
between absorption and dispersion that contradicts this ex-
pectation; both effects are subject to enormous enhancements
near atomic resonances. This paper will work out the theory
of Faraday rotation for light interacting with a simple model
system, and will derive the behavior of the Verdet constant
both far from, and very near, an atomic resonance. The cal-
culation, in turn, is motivated by the possibility of observing
resonant Faraday rotation in an atomic vapor, in this case by
the interaction of 780 nm diode-laser radiation with a room-
temperature sample of rubidium vapor. The notable and de-
tailed agreement between observed rotation signals, and
those computed from a theory involving atomic dispersion,
demonstrates the reality of dispersion, and its intimate con-
nection with absorption. Since the absorption and fluores-
cence of rubidium vapor under diode-laser excitation is an
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