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Phase transitions significantly differ between 2D and 3D sys-
tems, but the influence of dimensionality on the glass transi-
tion is unresolved. We use microscopy to study colloidal systems
as they approach their glass transitions at high concentrations
and find differences between two dimensions and three dimen-
sions. We find that, in two dimensions, particles can undergo
large displacements without changing their position relative to
their neighbors, in contrast with three dimensions. This is related
to Mermin–Wagner long-wavelength fluctuations that influence
phase transitions in two dimensions. However, when measuring
particle motion only relative to their neighbors, two dimensions
and three dimensions have similar behavior as the glass transi-
tion is approached, showing that the long-wavelength fluctua-
tions do not cause a fundamental distinction between 2D and 3D
glass transitions.
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I f a liquid can be cooled rapidly to avoid crystallization, it can
form into a glass: an amorphous solid. The underlying cause of

the glass transition is far from clear, although there are a variety
of theories (1–3). One recent method of understanding the glass
transition has been to simulate the glass transition in a variety of
dimensions (including four dimensions or higher) (4–8). Indeed,
the glass transition is often thought to be similar in two and three
dimensions (9, 10), and in simple simulation cases such as hard
particles, one might expect that dimensionality plays no role. As
a counterargument, 2D and 3D fluid mechanics are qualitatively
quite different (11). Likewise, melting is also known to be quali-
tatively different in two and three dimensions (12–15).

Recent simulations give evidence that the glass transition is
also quite different in two and three dimensions (4, 5). In partic-
ular, Flenner and Szamel (4) simulated several different glass-
forming systems in two and three dimensions and found that
the dynamics of these systems were fundamentally different in
two and three dimensions. They examined translational parti-
cle motion (motion relative to a particle’s initial position) and
bond-orientational motion (topological changes of neighboring
particles). They found that, in two dimensions, these two types
of motion became decoupled near the glass transition. In these
cases, particles could move appreciable distances but did so with
their neighbors, so that their local structure changed slowly. In
three dimensions, this was not the case; translational and bond-
orientational motions were coupled. They additionally observed
that the transient localization of particles well known in three
dimensions was absent in the 2D data. To quote Flenner and
Szamel, “these results strongly suggest that the glass transition in
two dimensions is different from in three dimensions.”

In this work, we use colloidal experiments to test dimension-
dependent dynamics approaching the glass transition. Colloidal
samples at high concentration have been established as model
glass formers (10, 16–19). We perform microscopy experiments
with two 2D bidisperse systems, one with quasihard interac-
tions, and the other with long-range dipolar interactions. Three-
dimensional data are obtained from previous experiments by

Narumi et al. (20), which studied a bidisperse mixture of hard
particles. Our results are in qualitative agreement with the simu-
lations of Flenner and Szamel.

We believe our observations are due to the Peierls instability
(21, 22), also called Mermin–Wagner fluctuations (23, 24). As
Peierls originally argued, there exist long-range thermal fluctua-
tions in positional ordering in 1D and 2D solids. Illing et al. (25)
and Klix et al. (26) recently noted that these arguments should
apply to disordered systems as well. One can measure particle
motion relative to the neighbors of that particle to remove the
influence of these long-wavelength fluctuations (27). Using this
method, we observe that the translational and structural relax-
ations are similar between two dimensions and three dimensions,
demonstrating that the underlying glass transitions are unaf-
fected by the Mermin–Wagner fluctuations.

Results
We analyze three different types of colloidal samples, all using
bidisperse mixtures to avoid crystallization. The first sample type
is a quasi-2D sample with hard particles (short range, purely
repulsive interactions), which we term “2DH.” The 2DH sam-
ple is made by allowing silica particles to sediment to a mono-
layer on a coverslip (28). Our 2DH system is analogous to a 2D
system of hard disks of the sort studied with simulations (9, 29).
The control parameter is the area fraction φ, with glassy sam-
ples found for φ≥ 0.79. The second sample type is also quasi-2D
but with softer particles, which we term “2DS.” The 2DS system
is composed of bidisperse poly-methyl-methacrylate (PMMA)
particles dispersed in oil, at an oil–aqueous interface (30). The
interactions in this system are dipolar in the far-field limit, and
the control parameter is the dimensionless interaction parame-
ter Γ2DS , related to the area fraction. Γ2DS is defined in Materi-
als and Methods, with glassy behavior found for Γ ≥ 530. For
the third sample type, “3D,” we use previously published 3D
data on a bidisperse sample of hard-sphere–like colloids (20).
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For these data, the control parameter is the volume fraction φ
with glasses found for φ≥ 0.58 (20). Details of the sample prepa-
ration and data acquisition for these three sample types are in
Materials and Methods. For each sample type, the glass transi-
tion is defined as the parameter (Γ or φ) above which the sample
mean-square displacement (MSD) does not equilibrate in exper-
imental timescales, ∼ 10 h for the 2D samples and ∼ 3 h for the
3D samples.

Flenner and Szamel found that, in two dimensions, particles
move large distances without significantly changing local struc-
ture (4). They noted that timescales for translational motion
and timescales for changes in local structure were coupled in
three dimensions, but not in two dimensions. The standard
way to define these timescales is through autocorrelation func-
tions. Following ref. 4, we compute the self-intermediate scat-
tering function FS (k ,∆t) to characterize translational motion,
and a bond-orientational correlation function C (∆t) to char-
acterize changes in local structural configuration (see Mate-
rials and Methods for details). These are plotted in Fig. 1
A–C and 1 D–F, respectively. At short timescales, particles have
barely moved, and so both of these correlation functions are
close to 1. At longer timescales, these functions decay, taking
longer timescales to do so at larger concentrations. The tradi-
tional relaxation timescale τα is defined from FS (τα) = 1/e =
0.37. For the bond-orientational correlation functions, we quan-
tify local arrangements of particles through ψ6 in two dimen-
sions and Q6 in three dimensions, both of which are sensitive
to hexagonal order (31). Decay of the autocorrelation functions
for these quantities (Fig. 1 D–F) reflects how particles move rel-
ative to one another, thus changing their local structure, whereas
decay of FS reflects motion relative to each particle’s initial
position.

Specifically, Flenner and Szamel found that FS (∆t) and
C (∆t) had qualitatively different decay forms in two dimensions,
but were similar in three dimensions (4). In particular, FS (∆t)
decayed significantly faster than C (∆t) for 2D simulations. This
means that, in two dimensions, particles could move significant
distances (of order their interparticle spacing) but did so in par-

A

D E F

B C

Fig. 1. Structural relaxation in two and three dimensions. (A–C) Self-
intermediate scattering functions characterizing translational motion, using
the wave vector k corresponding to the peak of the structure factor
(Materials and Methods). (D–F) Bond-orientational correlation functions.
The columns correspond to 2DH, 2DS, and 3D experiments. The parame-
ters for the experiments are as follows: φ2DH = 0.55, 0.65, 0.70, 0.74, 0.75,
0.76, 0.78, and 0.78; 2DS (Γ2DS = 60, 100, 100, 140, 180, 310, 300, and 460);
3D φ3D = 0.40, 0.42, 0.52, 0.53, 0.54, 0.54, and 0.58. These parameters incre-
ase from Left to Right in each panel; or equivalently, from Bottom to Top.

allel with their neighbors, so that their positions were changed
but not their local structure.

To compare translational and bond orientational correlation
functions of our data, we replot some of the data in Fig. 2
A–C. The translational correlation functions for different
parameters are solid curves with different colors. The bond-
orientational correlation functions are dashed curves, with same
color as corresponding translational correlation functions.

The 2D data of Fig. 2 A–B exhibit decoupling, whereas the 3D
data of C are coupled. For the latter case, coupling means that
the two functions decrease together, and their relative positions
do not change dramatically as the glass transition is approached.
Even for the most concentrated case, for which we do not observe
a final decay of either function, it still appears that the two
correlation functions are related and starting an initial decay
around the same timescale. In contrast, for both 2D cases (Fig. 2
A, B), FS and Cψ change in relation to one another as the glass
transition is approached. For 2DH (A), at the most liquid-like
concentration (black curves), C decays faster than FS (dashed
curve compared with the solid curve). As the glass transition is
approached, initially C decays faster, but then the decay of FS

overtakes C. A similar trend is seen for 2DS (B). For both 2DH
and 2DS, the decoupling is most strongly seen for the most con-
centrated samples (green curves), for which FS (∆t) decays on
experimental timescales but where Cψ(∆t) decays little on the
same timescales.

The slower decay of bond-orientational correlations relative to
translational correlations for our 2D data is in good qualitative
agreement with Flenner and Szamel’s observations (4). Upon
approaching the glass transition in two dimensions, particles are
constrained to move with their neighbors such that C decays less
than might be expected on timescales where FS has decayed
significantly. In three dimensions, however, on approaching the
glass transition, particles move in a less correlated fashion.
To quantify the correlated motion of neighboring particles, we
compute a two-particle correlation function (9, 32). This func-
tion correlates the vector displacements of pairs of nearest
neighbor particles (Materials and Methods). Fig. 3 shows these
correlations: 1 corresponds to complete correlation, and 0 is
completely uncorrelated. For both 2D samples (solid symbols),
the correlations increase for larger τα, as indicated by the fit
lines. This increased correlation reflects particles moving in par-
allel directions with their nearest neighbors. For the 3D data
(open squares in Fig. 3), the correlations are small and do not
grow as the glass transition is approached. Particle motion uncor-
related with neighboring particles decorrelates both positional
information and bond-orientational structure.

To qualitatively visualize the differences between dynamics in
two dimensions and three dimensions, the top row of Fig. 4 shows
displacement vectors for particles in the three samples near their
glass transitions. For both 2DH and 2DS samples, there are clus-
ters of particles moving in similar directions as seen by adjacent
displacement arrows pointing in a similar direction. This clus-
tering is less pronounced in three dimensions, consistent with
the small correlations between nearest neighbor motions in three
dimensions (Fig. 3).

As suggested in the Introduction, it is plausible that some
of the significant translational motion in the 2D samples is
due to Mermin–Wagner fluctuations, which act at long wave-
lengths (25, 33). To disentangle the potential influences of
long-wavelength fluctuations from relative motions, we subtract
collective motions by measuring “cage relative” particle motions
(27). The key idea is to measure displacements relative to the
average displacements of each particle’s nearest neighbors, that
is, relative to the cage of neighbors surrounding each parti-
cle. Previous work has shown that using cage-relative coor-
dinates reveals the dynamical signatures of phase transitions
for systems of monodisperse colloids (14). We compute these

Vivek et al. PNAS | February 21, 2017 | vol. 114 | no. 8 | 1851
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Fig. 2. Translational, bond-orientational, and bond-break correlation functions. (A–C) The solid curves are FS(∆t) (translational correlations) and the dashed
curves are C(∆t) (bond-orientational correlations) for the 2DH, 2DS, and 3D samples as labeled. The colors indicate different control parameters. For 2DH,
the colors black, red, blue, and green denote φ2DH = 0.55, 0.75, 0.78, and 0.78, respectively. For 2DS, the colors black, red, blue, and green denote Γ2DS = 60,
180, 310, and 460, respectively. For 3D, the colors black, red, blue, and green denote φ3D = 0.42, 0.52, 0.54, and 0.58, respectively. (D–F) The solid curves
with circles are FS−CR(∆t) (cage-relative translational correlations). The dashed curves are C(∆t), which are identical to those shown in (A–C). (G–I) The solid
curves with circles are FS−CR(∆t) (cage-relative translational correlations) and the dot-dashed curves are B(∆t) (bond-break correlations) for the 2DH, 2DS,
and 3D samples.

cage-relative displacements and then calculate the self-
intermediate scattering function FS−CR using these new dis-
placements. These are plotted as solid lines with circles in Fig. 2
D–F, with the dashed lines being the bond-orientational data
[which are unchanged as C (∆t) is always calculated relative
to neighbors]. In both 2DH and 2DS, FS−CR(∆t)>FS (∆t)
(the solid lines in Fig. 2 D, E are higher than the correspond-
ing solid lines in Fig. 2 A, B). This is expected given the argu-
ments above, that particles move with their neighbors, hence sub-
tracting nearest-neighbor motions results in reduction of particle
mobility. For the 3D data (Fig. 2F), the FS−CR(∆t) curves still
show coupling to CQ(∆t) similar to the original data shown in
Fig. 2C.

To provide a complementary view, we consider another mea-
sure of structural changes, the cage correlation function (or
bond-breaking function) B(∆t). B(∆t) is the fraction of parti-
cles that have the same neighbors at times t and t+∆t , averaged
over t (34, 35).

These functions are plotted in Fig. 2 G–I as dash-dotted lines
and are compared with FS−CR. The black curves are the low-
est concentrations, which all have B(∆t)>FS−CR(∆t). This is
because, at lower concentrations, particles can translate a signifi-
cant amount without losing neighbors. However, at larger con-
centrations, B(∆t)∼FS−CR(k ,∆t) in all three types of sam-
ples. For all three experiments, the two correlation functions
look fairly similar at the three highest concentrations shown in
Fig. 2 G–I. In particular, the differences between the 2D and
3D data are much reduced compared with the original analysis
shown in A–C.

In fact, our strongest qualitative evidence for coupling comes
from comparison of the green curves in Fig. 2, which are the sam-
ples closest to the glass transition. In each case, the correlation
functions do not fully decay within our experimental observation

time. Nonetheless, it is apparent for the 2D data that the normal
self-intermediate scattering function is beginning a final decay
at a timescale for which the bond-orientational function has not

Fig. 3. Vector displacement correlations. The data are for 2DH (filled cir-
cles), 2DS (filled triangles), and 3D (open squares). The displacements are
calculated using a timescale ∆t such that FS(∆t) = 0.5. These are measured
for all pairs of particles separated by the nearest-neighbor spacing d. d is
determined from the large–large peak position in the pair correlation func-
tion g(r) at the highest concentrations, and has values d = 3.38, 6.5, and
3.10 µm for 2DH, 2DS, and 3D, respectively. [The location of the g(r) peak
depends slightly on φ for 2DH and 3D experiments, and more strongly on Γ

for the 2DS experiments; for consistency, we keep d fixed to these specific
values.] The lines are least-squares fits to the data. The data are plotted as a
function of τα/τα0 where τα0 is the relaxation timescale for the large par-
ticles in a dilute sample. The 2DH (closed circles), 2DS (closed triangles), and
3D (open squares) samples have τα0 = 5.4, 20, and 3.8 s, respectively.
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Fig. 4. Particle displacements. These images show displacement vectors of particles using a time interval ∆t chosen such that Fs(∆t) = 0.5. For the 3D
image, we use an xy cut at fixed z. All scale ticks are at 10-µm intervals, and all displacement vectors are multiplied by 2 for easier visualization. The circles
denote particle positions and sizes. Samples are φ2DH = 0.78, Γ2DS = 300, and φ3D = 0.54, from left to right, with corresponding ∆t = 4,290, 1,720, and
3,540 s. τα for these samples are 14,000, 3,800, and 7,600 s, respectively. Circles with no arrows are those with displacements less than 10% of symbol size.

yet begun to decay (Fig. 2 A, B). This is not the case for the 3D
data (C). In contrast, all three datasets exhibit similar behav-
ior at the largest timescales when comparing the cage-relative
FS−CR(k ,∆t) and B(∆t) (G–I).

We turn now to the question of transient localization, which
Flenner and Szamel found to be present in three dimensions
but not two dimensions. The trajectories of 3D particles showed
localized motions separated by abrupt jumps, whereas trajec-
tories of 2D particles did not have these two distinct types of
motion (4). In their data, this caused a plateau in the 3D MSD,
which was not seen in the 2D MSD. The plateau is due to parti-
cles being transiently trapped in cages formed by their neighbors,
with the plateau height set by the cage size (35).

Motivated by the considerations above, we investigate the
cage-relative mean square displacements (CR-MSDs) (27). In
analogy with the cage-relative scattering function, we use the
cage-relative displacement ∆~rCR to define the CR-MSD. Fig. 5
shows the original MSD data (thin lines) and CR-MSD (lines
with circles). For all experiments, as the concentration increases,
the MSD drops, reflecting the slowing dynamics on approach-
ing the glass transition. In some cases, the CR-MSD is larger
than the MSD (for example, all of the curves in Fig. 5C). In
these situations, the motion of each particle is less correlated
with the motion of its neighbors, so the cage-relative analy-
sis effectively adds a random vector to each particle’s displace-
ment, thus increasing the MSD on average. However, for the
2D samples as they approach the glass transition, the oppo-
site occurs. Especially for the green curves in Fig. 5 A, B, the
data closest to the glass transition, it is clear that the cage-
relative analysis dramatically decreases the CR-MSD data rel-
ative to the original MSD. Although we show data close to
the glass transition, none of our data are from glasses. There
have been a number of experiments on other 2D colloidal sys-
tems such as soft particles (36) and attractive particles (37),
which observed a slowly rising MSD for glasses. Our results
suggest that the MSD rise seen in these prior experiments
may also disappear with cage-relative analysis, strengthening
the argument that these prior experiments studied truly glassy
samples.

To quantify transient localization, we measure the instanta-
neous logarithmic MSD slope γ from 〈∆r2〉∼∆tγ(∆t). γ= 1
corresponds to normal diffusion. We quantify the amount of
localization by the minimum value of this slope, γmin ; this is
the logarithmic slope at the inflection point of the MSD or CR-
MSD. Fig. 6A shows the CR data for the 2D samples (filled
symbols) and 3D (open squares) as a function of τα. Although
the 3D data reach lower values, the overall trend is similar
between two dimensions and three dimensions: the closer to the
glass transition, the more pronounced transient localization is.
Note that, in the work of Flenner and Szamel, they tested both

Newtonian dynamics and Brownian dynamics; the latter is more
appropriate for colloids. With Brownian dynamics in two dimen-
sions, they found slightly more pronounced MSD plateaus. It
is possible that the presence of Brownian dynamics in our

A

B

C

Fig. 5. MSDs and cage-relative MSDs. The data (A–C) are for the exper-
iments as indicated. The solid curves are MSDs 〈∆r2〉 calculated for all
particles, normalized by d as described in the legend to Fig. 3. The solid
curves with circles are cage-relative MSDs. The colors indicate different con-
trol parameters, as given in Fig. 2. For the 3D samples, the z direction is
neglected due to noise and also to facilitate the comparison with the 2D
experiments.

Vivek et al. PNAS | February 21, 2017 | vol. 114 | no. 8 | 1853



A

B

Fig. 6. Transient localization parameter. (A) γmin,CR is the minimum log-
arithmic slope of the cage-relative MSDs. (B) Difference γmin,CR− γmin

between the original MSD data and the cage-relative version. Negative val-
ues indicate the enhancement of measured transient localization using the
cage-relative analysis.

experiments also contributes to our observed similarities in tran-
sient localization between two dimensions and three dimensions.

Fig. 6B shows the slight enhancement of transient localization
caused by the cage-relative analysis. We plot the change in γmin

upon using the cage-relative analysis, and it is generally nega-
tive. The largest changes are seen in the 2DS data (solid trian-
gles), which is sensible as these are the data with the strongest
correlations with their neighbors.

Discussion
Our experiments show apparent differences in dynamics appro-
aching the 2D and 3D colloidal glass transition, in agreement
with the simulation results of Flenner and Szamel (4).

In two dimensions, we observe that particles move in paral-
lel with their neighbors, such that their local structure changes
less than if the motions were uncorrelated. Although it is clear
from prior work that in three dimensions particle motions have
some correlation with their neighbors (32), in our data the corre-
lations are more significant for the 2D samples. These are likely
related to Mermin–Wagner fluctuations/the Peierls instability in
two dimensions (21–26).

Our 2D samples are, of course, quasi-2D. Both are influenced
by nearby large 3D regions of fluid. The 2DH sample also has
hydrodynamic interactions between particles and the nearby bot-
tom of the sample chamber. We find that 2DS samples are more
affected by long-wavelength fluctuations than 2DH, which could
be due to the difference in interactions (24, 38). It is certainly
plausible that softer interactions allow for more fluctuations in
the nearest-neighbor distance, whereas for dense samples with
hard interactions, fluctuations are by necessity smaller (as par-
ticles cannot move too close together before they repel) (25).
Recent simulation work has shown differences in correlation
lengths for disks with soft and hard interaction potentials dur-
ing 2D melting (39). Nonetheless, the agreement between the
two 2D datasets is striking, especially given the different particle

interaction potentials; namely, as distinct from the 3D samples,
both 2D samples show large Mermin–Wagner fluctuations.

Another important experimental factor is the system size:
approximately 105− 106 for both 2D systems and 109 for the 3D
system. It is likely that for even larger 2D systems, the Mermin–
Wagner fluctuations would be more pronounced (4, 33, 40).

Klix et al. (26) recently argued that Mermin–Wagner fluc-
tuations should be present in glassy systems. Probably the
most interesting aspect of our study is the suggestion that
indeed 2D Mermin–Wagner fluctuations are present in our
amorphous samples. Mermin–Wagner fluctuations convention-
ally result from elasticity associated with the development of an
order parameter. The origin of elasticity in glassy systems is less
well understood. Although we have not proven that our observed
long-wavelength fluctuations are indeed Mermin–Wagner fluc-
tuations, one could vary the system size in future investigations
to examine how the difference between conventional and cage-
relative measurements depends on system size. In conclusion,
with our efforts and other recent work, there is a compelling col-
lection of evidence that 2D and 3D glass transitions are funda-
mentally the same: there is strong qualitative agreement between
our observations studying three colloidal systems, the colloidal
experiments and simulations of Illing et al. (25), and the soft-
particle simulations of Shiba et al. (33). The similarities between
the conclusions, despite the differences in methods and dynam-
ics, suggest the results are independent of the details. All of these
observations show that the 2D glass transition is similar to the 3D
glass transition, but with the added influence of Mermin–Wagner
fluctuations in two dimensions.

Materials and Methods
For 2DH experiments, we confine bidisperse nonfunctionalized silica parti-
cles (diameters, σS = 2.53 and σL = 3.38 µm; Bangs Laboratories; SS05N) to a
monolayer by gravity. Before taking data, the sample is quenched by shak-
ing and letting particles sediment on the coverslip. The coverslip is made
hydrophobic by treatment with Alfa Aesar Glassclad 18 to prevent particle
adhesion. All particles are observed to move during the experiment; none
adhere to the glass. We do not add salt. The sedimentation lengths for both
small (lg/σS = 0.019) and large particles (lg/σL = 0.006) are small enough
to ensure fast sedimentation and formation of a quasi-2D monolayer; that
is, thermal energy is not enough to overcome the gravitational potential
energy of the particles (10). We verify that, in all experiments, only one layer
of particles is present (ensured by keeping the overall particle concentration
below the level that requires a second layer to form). We use bright-field
microscopy and a CCD camera to record movies of particles diffusing. This
system is analogous to 2D hard disks. The only caveat is that the centers of
the large and small particles are not at the same height, so adjacent large
and small particles do not contact each other at their midplane (41).

For 2DS, the experimental system is composed of bidisperse PMMA col-
loids of diameters 1.1 and 2.6 µm. The particles are at the interface between
oil and a glycerol/water mixture. The aqueous phase consists of 10 mM
NaCl, 70 wt% glycerol solution, whereas the oil phase consists of a 50–30–
20 (vol/vol) mixture of cyclohexyl bromide, hexane, and dodecane. Interac-
tions between particles are dipolar in the far-field limit. A dimensionless
interaction parameter (18) is used to characterize the system:

Γ2DS =
(πn)3/2

8πεkBT
(ξpB + (1− ξ)pA)2 [1]

where ε= 4.2ε0. The electric dipole moments are pA and pB = 2,300 and 590
e ·µm, respectively. ξ≈ 0.57−0.83 is the number fraction of small particles,
and n is the areal density, measured from a Voronoi tessellation.

The 3D sample data were obtained from a previous experiment by
Narumi et al. (20). In the 3D experiments, PMMA colloids were stabilized
sterically by a thin layer of poly-12-hydroxy-stearic acid. A binary mixture
with diameters σL = 3.10 µM and σS = 2.36 µm were used. The number
ratio of small particles to large particles was 1.56.

The imaging regions encompass roughly 400, 1,500, and 2,000 particles
for 2DH, 2DS, and 3D samples, respectively, at their highest concentrations.
The total system sizes are much larger, approximately 105− 106 for both
2D systems and 109 for the 3D system. We postprocessed 2DH and 2DS
movies using particle-tracking algorithms (42) to extract particle positions
from individual frames. The 3D data were previously tracked using the same
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algorithm. Our uncertainty in particle position is 0.1 µm for the 2DH exper-
iment, 0.5 µm for the 2DS experiment, and 0.2 µm (x, y) and 0.3 µm (z) for
the 3D experiment (20).

The α relaxation timescales are computed from self-intermediate scat-
tering functions: FS(k, ∆t) = 〈exp(i~k ·∆~r)〉t , where ∆~r =~r(t + ∆t) − ~r(t).
The wave vector k corresponds to the peak of the structure factor
S(~k) = 〈N−1|

∑N
i=1 exp(i~k · ~ri(t))|2〉, where ~ri(t) denotes particle positions at

time t and the average is over all times. Corresponding to 2DH, 2DS, and 3D,
k = 2.2, 1.0, and 2.6 µm−1, obtained using the average k across all samples
of a particular type.

Several other functions we compute require identifying nearest neigh-
bors, which we do using the Voronoi tessellation (17).

We define cage-relative translational correlation function as follows:
FS−CR(k, ∆t) = 〈exp(i~k ·∆~rCR)〉t , where ∆~rCR =~r(t+∆t)−~r(t)− 1

N

∑
j[~rj(t+

∆t)− ~rj(t)], j denotes nearest neighbors of the particle at initial time t, and
the sum is over all neighbors. The cage-relative MSD is defined using the
same displacements ∆~rCR.

To measure bond-orientational correlations in two dimensions (4), we
define Ψn

6 (t) =
∑

m(Nn
b)−1

m ei6θm , where m are the nearest neighbors of par-
ticle n and θm is the angle made by particle m with defined axis. From
this, the bond-orientational correlation function can be found as CΨ(∆t) =

〈
∑

n [Ψn
6 (t)]∗Ψn

6 (t + ∆t)〉t/〈
∑

n |Ψ
n
6 (t)|2〉t .

In three dimensions, we define Qi
lm(t) = (Ni

b)
−1∑

jqlm[θij(t), φij(t)],
where qlm(θ, φ) are spherical harmonics (4, 31) and the sum is over
neighbors of particle i. Next, we define the correlation function
Ql(t1, t2) = 4π/(2l + 1)

∑
i

∑l
m=−l Qi

lm(t2)[Qi
lm(t1)]

∗
. We calculate CQ(∆t) =

〈Q6(t, t + ∆t)〉t/〈Q6(t, t)〉t corresponding to l = 6, given that l = 6 is sensi-
tive to hexagonal order known to be present even in disordered samples.

The two-particle vector correlations are determined from a spatial-
temporal correlation function defined as Svec(R, ∆t) = 〈 ~∆ri

~∆rj〉pair/〈(
~∆r2)〉

(9, 32). The average is over all particles with initial separation R ≈ d, and
over the initial time t. For the initial separation R, we use R = 3.38 ± 0.2,
R = 6.5±0.4, and R = 3.1±0.2 µm for the 2DH, 2DS, and 3D data. To deter-
mine the displacements ∆~r, we use the timescale ∆t such that FS(∆t) = 0.5.
This is chosen to be a shorter timescale than τα, as particle displacements are
typically maximally spatially heterogeneous at a shorter timescale (17, 35).
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