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We study three problems which have been studied theoretically, but prob-
lems for which little or no experimental work has been done: anomalous diffusion
leading to enhanced mixing, dynamics of atmospheric blocking patterns, and two-
dimensional turbulence. Our experimental apparatus is a 1 m diameter rapidly
rotating annular tank filled with fluid. The Coriolis force constrains the fluid flow
inside the tank to be nearly two-dimensional.

The first problem studied is mixing in a simple flow. Usually, mixing is
describable by diffusion: dye in fluid spreads, with the typical size of the dye spot
growing as ~ (Dt)/? with diffusion constant D. We examine flows with jets carrying
tracer particles long distances. Ensembles of tracer particles grow in size as ~ t"
with h > 1/2 (D = o0). In our experiments, this anomalous diffusion is due to
Lévy flights: the mean square time spent in a jet before being trapped in a vortex
is infinite. This is the first direct experimental observation of Lévy flights. Our

experiments suggest that jet structures in general may lead to anomalous diffusion.
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We also study a model which determines circumstances which produce anomalous
diffusion.

The origin of atmospheric blocking in the Northern Hemisphere is our second
problem. Normally mid-latitude weather is determined by the zonal flow of the jet
stream, but several times each winter this flow is diverted poleward by a blocking
vortex, which lasts several weeks. Models have proposed that blocking patterns
are due to interactions of the zonal flow with the Rockies and Alps. We place
two ridges on the bottom of our tank; by forcing a zonal flow across the ridges we
observe blocking and zonal patterns. These are the first experimental observations
of such patterns. The experiments also find a broad parameter range for which
the flow intermittently switches between zonal and blocked, as is observed for the
atmosphere.

The interaction between two-dimensional (2D) and three-dimensional (3D)
turbulence is our third problem. Rotating 2D turbulence is especially relevant to
geophysical flows, but remains largely unexamined by experiments. The possibility

of studying the transition from 2D to 3D turbulence in our apparatus is examined.
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Chapter 1

Introduction

1.1 Motivation

This dissertation discusses three sets of experiments done in a rotating annulus ex-
periment. The apparatus is a large 86 cm diameter rotating annular tank filled with
100 L of fluid. Despite the large size, this tank can be rotated at speeds up to 4 Hz
(87 rad/s), thus allowing us to conduct unique, quasi-two-dimensional experiments:
for rapid rotation, the fluid is constrained to move in the plane perpendicular to the
rotation axis (see Sec. 1.2.2). We exploit this two-dimensionality to examine three

distinct problems.

1. Transport and Mizing: Mixing in the atmosphere and ocean is an important
question: mixing of ozone, heat, moisture have meteorological significance,
and quantities such as heat, salinity, and oil spills mix in the ocean. Because
of the two-dimensionality of the fluid motion, it is easy to visualize flow in the
annulus via a camera co-rotating above the experiment, allowing us to conduct

in-depth studies of mixing in a simplified laboratory system.

A novel long-term tracking technique has been developed by Pervez and Sol-

omon ([104]) for use with this experiment, allowing individual tracer particles



Figure 1.1: Trajectory of a tracer particle in the rotating annulus experiment, show-
ing seven vortices of the same sign sandwiched between two jets (in opposite direc-
tions). The particle moves randomly between vortices and the jets; see Chap. 4 for
more details. The beginning of the trajectory is marked with a square, the end with
a circle.

to be followed for long periods of time (typically up to ~3000 rotation periods
of the annulus, or ~100 vortex turnover times). This long-term tracking of in-
dividual tracers allows us to examine the mixing of various flows (see Fig. 1.1).
This is one of the first few experiments to examine many particle trajectories
for long times, and the first which directly observes Lévy flights: random walks
where tracer particles move azimuthally for random times before changing di-
rection, with an infinite mean square time between direction changes. This
work is described in Chap. 4, after calculation of theoretical results pertaining

to random walks in Chap. 3.

2. Flows over Topography: One to three times each winter, in the Northern

Hemisphere a flow pattern known as blocking occurs: a large vortex blocks



(@

s — b\éi
V4 L
) y 324 !

——— 3
3120 - 3
\
3060 30007 _
2540
2>
¢ : N
‘ ; % .
| & S\ |3
f
| % L) ¥ Y-
N :
> BTN s
) ) AL
Ve 4 / \
% < (\\& A
s
N p

i AN K

\ % <
. F _ 00 AW P

Figure 1.2: (a) Blocked flow in the atmosphere; the flow follows the contour lines.
See Fig. 5.1 for more details. Blocked flow advects cold Arctic air southward over
eastern North America or Europe, while decreasing precipitation in the continent’s
western part [118]. (b) A blocked flow in the rotating annulus experiment. Ridges
are placed in the bottom of the experiment, with peaks indicated by heavy dashed
lines and their profiles indicated by black curves above and below the annulus. For
details see Chap. 5. HELP: Fix shading of (a).

the normal jet stream flow, diverting it poleward [117, 118] (see Fig. 1.2(a)).
The diverted jet then carries cool Arctic air across the southwestern United
States, occasionally resulting in extreme weather conditions such as snowfall in
Texas. Blocking has other detrimental effects such as increasing the intensity
of storms along the eastern coast of the United States, and decreasing rain-
fall in certain parts of the world with harmful results for agriculture. These
blocking events typically last two weeks, and have been conjectured to result
from the interaction of the jet stream with mountain ranges (specifically the

Rockies and the Alps) [24].

Several atmospheric flow models have seen blocked flows [24, 72, 146]: specifi-
cally, the models assume (1) two-dimensional flow, (2) jet-stream-like forcing,

and (3) two symmetrically placed mountain ridges. The rapid rotation rate of



the experiment results in flows satisfying the first condition. By placing two
symmetric ridges in the bottom of the rotating annular tank, and forcing a jet
to flow around the annulus (and thus over the topographic ridges), we find a
flow which strongly resembles blocked flow (Fig. 1.2(b)). Because of the rapid
rotation of the experiment, observations of thousands of “days” of behavior
(annulus rotation periods) can be conducted in an hour, facilitating rapid ex-
ploration of parameter space. Our observations are discussed in Chap. 5; these
are the first experimental observations supporting the results of the models,

that is, that atmospheric blocking may have a topographic origin.

3. Two-Dimensional and Three-Dimensional Turbulence: For sufficiently rapid
rotation, the experimental flows are predominantly two-dimensional. However,
for low rotation rates flows will become three-dimensional [129]. Previous
experiments ([34, 57]) examined the transition from three-dimensional flow to
two-dimensional flow, but the parameters characterizing the transition varied
in space, and thus it was difficult to closely examine this transition. We
examine the dimensionality of the flow as a function of the forcing and rotation

rate of the experiment; these results are presented in Chap. 6.

A discussion of the equations governing rotating fluid flows is presented in
the following section, and Sec. 1.3 discusses previous work done with this exper-
imental apparatus. Other relevant work done by other researchers is discussed in

each chapter. The experimental apparatus and procedures are described in Chap. 2.

1.2 Quasi-geostrophic flow

This section gives a brief summary of important results pertaining to rotating flows.
Many introductory texts discuss the following topics and are the source of the fol-

lowing material [30, 31, 73, 102, 150].



1.2.1 Equations of motion

The Navier-Stokes equation for the fluid velocity field #@(7,t), in reference frame

rotating with rotation ﬁ, is given by

Di 1= ~ =~ &
Fzz_;varyv?a_zQxﬁ—Qx(me : (L.1)

for a fluid with density p and kinematic viscosity v, and where the operator D /Dt

is the substantive derivative [150], given by

D o .
2 _%4ia8v . 1.2
Di otV (1.2)

The left hand side of Eq. (1.1) is the advective term, and the terms on the right
hand side are due to the pressure (p), the viscous dissipation, the Coriolis force,
and the centripetal force. This equation is simplified by noting that the centripetal
term can be written as the gradient of a scalar, —Q x (Q x 7) = (1/2)V|Q%?],
and thus can be taken into the pressure term by considering an effective pressure,
p' = p+(1/2)|Q%r2|. This effective pressure will be used in all subsequent formulas,
with the prime dropped. Physically, the centripetal force is exactly balanced by a
component of the pressure field, which in turn has no other effect on the flow.

Equation (1.1) can be nondimensionalized using a characteristic length L,
characteristic velocity U, characteristic time L/U, characteristic pressure P, and
using for the rotation O =0z

U Di*  —P
2QL Dt+  2pULQ

v

2QL2V*217* —ixa (1.3)

Vip* +

where the asterisks indicate the nondimensional variables. Dropping the asterisks
from this point onward, we can write a simpler version of the Navier-Stokes equation

as
Du

P = o
RoD—t——Ro(W)V;IH-EkVu—zxu : (1.4)



using the nondimensional Rossby number Ro = U/(22L) and the nondimensional
Ekman number Ek = v/(20L?). Ro expresses the relative importance of the advec-
tion to the Coriolis force and Fk expresses the relative importance of the dissipation
to the Coriolis force. The nondimensional term in parenthesis modifying the pres-
sure term, P/pU?, must be of order Ro~!, as the pressure term balances the Coriolis
term in the limits of small Ro and Ek (see Eq. (1.7)) and Vp is O(1). Note that the
Rossby number and Ekman number can be combined to yield the nondimensional
Reynolds number, Re = Ro/Ek = UL/v, which is the traditional measure of how

turbulent the flow is.

Often the rotation rate (2 is replaced with the Coriolis parameter f = 2{2sin 6,
where € is the angle between () and @. This allows the cross product in Eq. (1.1)
to be written as 20 x @ = f2 x @, with 2 the local vertical direction (rather than
the direction of Q) On a spherical planet, 6 is the latitude. For large scale flows
on a planet, the Coriolis parameter is not a constant, but changes due to the -

dependence (see Sec. 1.2.6).

A continuity equation is also needed to describe the flow:

adp = o
E—FV-(pu)—O . (1.5)

If the fluid is incompressible (p is constant), this yields the simpler equation
V-i=0 . (1.6)

Flows with constant p are barotropic; the term barotropic applies to any flow with
p being a function of the pressure (i.e., p = p(P); surfaces of constant pressure
and constant density are equivalent). Baroclinic flows violate this condition, and
typically arise in situations where there is a buoyant force due to differential heating

of the fluid or stratified flows.



1.2.2 Geostrophic Limit

For geophysical flows, typically Ro is small and Ek is small; in the geostrophic limit
with Ro — 0 and Ek — 0, Eq. (1.1) becomes the geostrophic equation,
1o

20 x i =—-Vp (1.7)
P

(written in dimensional units). According to this equation, the flow is along lines
of constant pressure, rather than perpendicular to these lines (as would be the case
for non-rotating flow).

A very useful result can be derived by taking the curl of the geostrophic
equation, yielding V x (€ x @) = 0. Expanding this and using the incompressibility

(and continuity) V - @ = 0 gives the result
Q-V)yg=0 . (1.8)

Taking Q= QZ, this equation becomes 0i4/0z = 0. This result is known as the
Taylor-Proudman theorem. A useful consequence of this equation is that if the
z-component of the velocity is zero anywhere (such as at an impenetrable bottom
surface or at the lid of an annular tank), the z-component of the velocity is zero
everywhere. A second consequence of this equation is that the horizontal velocity
components are also z-independent. Thus, the fluid moves horizontally in coherent
columns.

Flows with small but nonzero Ro are quasi-geostrophic flows. Such flows
can have slightly relaxed constraints on their two-dimensionality. This allows for
interesting non-trivial flows. For example, a geostrophic flow over varying topog-
raphy without a free surface has the constraint that fluid columns must follow the
lines of constant height — otherwise they would be stretched or compressed in the
z-direction, violating the Taylor-Proudman theorem. In a quasi-geostrophic flow,
fluid columns can be stretched or compressed slightly by moving uphill or downhill.

The Taylor-Proudman constraint then provides a restoring force against these sorts



of fluid motions. Other effects are discussed at the end of Sec. 1.2.5. In general, the

smaller Ro becomes, the more nearly the flow becomes two-dimensional.

1.2.3 Ekman layers

For flows with rigid top and/or bottom boundaries, the Taylor-Proudman theorem
must be violated sufficiently close to these boundaries, in order to satisfy the no-
slip condition at the boundaries. The Taylor-Proudman theorem holds true in the
limit £k — 0, and it is this limit that breaks down near the boundaries, where
viscous dissipation serves to take the fluid from the bulk velocity to the boundary
velocity. This occurs within the Ekman boundary layer. These boundary layers have

a thickness given by Ek = v/(206%) ~ 1, or

§~\Jr)(29) . (1.9)

In our experiment, the parameters typically are v ~ 0.01 — 0.03 cm?/s and /27 ~

1 — 4 Hz (see Chap. 2), so d ~ /0.01/(167) — 1/0.03/(4w) = 0.14 — 0.5 mm.

These boundary layers have an effect on the bulk flow. They inject fluid into
low-pressure regions of the flow (regions of cyclonic flow, that is, vortices with the
same sense of rotation as {2 — see Eq. (1.7)), and withdraw fluid from high-pressure
regions (anticyclones). This results in a reduction of vorticity, w = (6 X U) -2 An
unforced flow being damped by this Ekman pumping is damped as i(t) ~ dpe /e
with 75 = ho/(2v/vQ) for a fluid with two Ekman layers (i.e., a fluid with a top and
bottom boundary) spaced hgy apart. 7g is termed the Ekman time. A typical time
scale for viscous damping of the bulk fluid is L?/v, which is often larger than T;
thus, Fkman damping is often more important for rotating flows than direct viscous

damping. For the experiment, hy = 20 cm, and 75 ~ 12 — 40 s.

We can recast the Ekman number in terms of the Ekman time and the



rotation period of the annulus, with
T2 v

Ek = annulus __ 2
2 = O,y

Tk
This definition differs from the previous one by the choice of hy/2 rather than L

(1.10)

for the length scale, and the factor of 872 ~ 79. This definition is used for Ek in
Chap. 5.

1.2.4 The Stream Function

For two-dimensional incompressible flows, the continuity equation (Eq. (1.6)) be-

comes
Ougz  Ouy
—+—=—=0 . 1.11
Oz + oy ( )
This constraint allows velocity field to be written in terms of derivatives of one scalar
field ¥ (z,y, t):
w, =0
Yoy Y oz

P(x,y,t) is known as the stream function, as it is constant along a streamline [150].

(1.12)

Equation (1.12) can also be written as

=3

d=2:x (Vi) . (1.13)

The existence of the stream function is valid for any two-dimensional incompress-
ible flow; its usefulness for rotating flows is due to the Taylor-Proudman theorem.
Equations (1.12) are equivalent to Hamilton’s equations of motion, with 1) being the
Hamiltonian and z and y being the phase space coordinates.
Another interesting equivalence can be noted by taking Zx [Eq. (1.7)],
1=

Zx (2Qz x @) = 2 x (—=Vp), (1.14)
p
producing (after dividing by 2Q)
i= 2 % (Vp) (1.15)
a= 2sz p) . :



By comparing this equation with Eq. (1.13), it can be seen that for geostrophic

flows,
1

— 1.1
20" (1.16)

qp =
This equivalence between the stream function and the pressure field is strictly true

only for purely geostrophic flows; in practice, for small but nonzero Ro this is still

a reasonable approximation.

1.2.5 DPotential vorticity

An important conserved quantity for quasi-geostrophic flows is potential vorticity,
q = (f + w)/h, where h is the fluid depth and w is the vorticity in the rotating
reference frame. The following derivation of the conservation of potential vorticity
is based on the derivation of Ref. [30] (Chap. 4).

Start with Eq. (1.1), taking v = 0 and using the Coriolis parameter f:

Di _ ai

. 1o R
- - i-Vi=-VP U . 1.1
D= + (@ V)u pV + fxi (1.17)

Take the curl of this equation, allowing the Coriolis parameter f to vary in = and y;

the pressure term will vanish as V x V = 0. This produces the following equation:
D >
Ft(f+w)+(v-u)(f+w)20 . (1.18)

Next consider a column of fluid with cross sectional area dA. This area will undergo

changes due to the flow; these changes are given by the equation

D =,
SidA=(V-ddd (1.19)

which can be understood as a horizontal divergence will increase the cross section;
a convergence decreases this area. By multiplying Eq. (1.18) by dA, Eq. (1.19) by
(f + w), and adding the results together, the result is

D D D
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This product, (f + w)dA, is the circulation of the fluid parcel for small dA, and
Eq. (1.20) expresses Kelvin’s theorem for a rotating, two-dimensional flow (conser-
vation of circulation [= [ dAw] for an inviscid fluid) [30].

Next we derive an equation governing changes in the height of the fluid,
h(z,y,t). Note that these changes may be either due to a free surface, or fixed
topography, or both. Assume that the bottom of the fluid is a fixed surface at z =0

for the moment. Writing out the equation for conservation of mass (Eq. (1.6)), we

get
Ougz  Ouy  Ou,
b el =0 . 1.21
oz + oy + 0z ( )
Integrating this equation over fél dz, we get
ou ou
(G2 + G2+ o= wlemo =0 (122

Previously we have neglected any vertical velocity component, but now we recognize
that a vertical velocity will occur due to the possibility of variations in h. Equation
(1.22) neglects any variations in u, and u, in the vertical direction, which would
result in a higher order correction to this equation. If the vertical velocity u, varies
linearly with height z, the horizontal divergence given by the first two terms will
cancel exactly with the last term, and u, and wu, will still be independent of z.
The vertical velocity at the bottom u,|,—¢ must be zero, as the bottom surface is
assumed to be fixed and flat. The vertical velocity at the top depends on the fluid
height,

wnloon = O 4 (- )h = Dh/DE . (1.23)

As the fluid height changes in time, u,|,—; must change with it, yielding the 0h /0t
term. As a column of fluid moves horizontally, it is stretched to conform to h(z,y,t),

producing the (@- V)h term. Rewriting Eq. (1.22) using this result produces
Dy (V-@)h =0 (1.24)
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Multiplying this equation by dA, multiplying Eq. (1.19) by h, and adding, produces

D D D
dAS h+h dA = S [hdA] =0 . (1.25)

This equation expresses the conservation of volume for a fluid column. Taking

Eq. (1.20) and dividing by Eq. (1.25) produces the desired result,

D(f“’)—@—o , (1.26)

Dt\ h /Dt
the equation expressing conservation of potential vorticity. For a slightly different
derivation, see Ref. [102]. A more careful derivation taking in account variations in
bottom topography produces the same result.

It is useful to consider the implications for a vortex column in a rotating
flow. A column of fluid with vorticity w (relative to the rotating reference frame)
which moves uphill (in the direction of decreasing h) must conserve its potential
vorticity. Thus cyclones (vortices with w having the same sign as f) slow down,
while anticyclones (w having opposite sign as f) spin up. Conversely, cyclones
moving downhill spin up and anticyclones moving downhill slow down.

In general, this result (Eq. (1.26)) is true only in the limit of negligible
dissipation (Ek — 0) and for barotropic flows [102]. When Ekman pumping is
occurring (Sec. 1.2.3), potential vorticity is dissipated as

Dq _ fig

__JfiE 1.2
Dt on2? (1.27)

with 0g the Ekman layer thickness [73].

1.2.6 Relation between topography and spherical geometry

Through the conservation of potential vorticity, a connection can be made between
flows in a spherical geometry (such as planetary-type flows) and flows in a rectan-

gular geometry with topography. For planetary flows, the variation of the Coriolis
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parameter f with latitude is important. If the scale of the flow in the north-south

direction is sufficiently small, f can be linearized about a typical value,
[ =2Qsind = 2Qsinfy — 60(2Q cosby) . (1.28)

Using local coordinates on the sphere with +% in the east direction, +¢ in the
north direction, and +2 in the local vertical direction, d6 = y/R where R is the
radius of the sphere. Now the Coriolis term can be written as f = fy — By with

B =2 cos By/R. Thus the potential vorticity becomes

_ fotw—Py
g= 0 TY—PY

- (1.29)

Now consider a separate case where f = fj is constant but with h varying

linearly in y, h(y) = ho + sy where s is the slope. The potential vorticity is

fotw  foll+w/fo) _ fo(l+w/fo)(1—sy/ho)

h(y)  ho(l+sy/ho) ho
N fol+w/fo—sy/h) _ fo+w—Py ’ (1.30)
ho ho

where now = sfy/hg. This result has the same form as Eq. (1.29), showing that
topography sloping in the y-direction can approximate the curvature of a spherical
geometry, to first order. Note that this result was derived by assuming that w/ fo

and sy/hg are small quantities, which is true if Ro and the slope s are both small.

This equivalence of the two ’s is termed the beta-plane approximation [102].
A similar result holds for a cylindrical geometry, with y (the poleward variable)
being replaced by r. Ideally, for the annular geometry used in the experiments (see
Chap. 2) g should vary linearly with r [138]. For simplicity, the experiments are
conducted with constant 3, and the results found in previous experiments agree

with predictions for the atmosphere (e.g. Ref. [131]).
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1.2.7 Free surface effects

The experimental setup described in Chap. 2 is filled with fluid up to a rigid lid, and
thus has no free surface. However, we briefly consider how the potential vorticity
conservation would be modified in situations with a free surface. This discussion is
based on Ref. [31].

We start with Eq. (1.26), noting now that h = hg + sy + 7, where s is
a bottom slope as discussed in the previous subsection, and 7n(z,y,t) is the free

surface variation (n/hg << 1). Equation (1.30) now is

= Jfo(1+w/fo —sy/ho —n/ho) _ (1.31)
ho

In general, the pressure can be written as p = pg + pgn, which along with Eq. (1.16)

can be solved for 7:

p= 20
g

Using this result in Eq. (1.30) allows us to write the potential vorticity as
fo(L +w/fo — sy/ho — 4/Rp?)

q= + constant
ho

_bo
v (1.32)

(1.33)

where

Vgho
fo

is the Rossby deformation radius. As the vorticity can be written as w = V24, it

RD = (134)

can be seen that the magnitude of the local vorticity term in Eq. (1.33) is O(L~2%)
and the magnitude of the free surface term is O(Rp21). Thus, for flows on length
scales L. > Rp, free surface variations are important, and for L. < Rp the free
surface can be neglected — the variation of 7 is slight enough to be treated as a
rigid surface. A slightly different interpretation is that Rp is the distance over which
the gravitational tendency to flatten the free surface is balanced by the tendency of
the Coriolis force to deform the surface [102] (see for example Eq. (1.32) relating h
and ). The ratio L/Rp is known as the Froude number. For cases without a free

surface (such as the experiment), we use Rp — oc.
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1.2.8 Axisymmetric flow in the experiment

A theoretical result of particular importance to this dissertation is the axisymmetric
flow generated at low forcing in the rotating annulus experiment. Consider a rotating
annular tank filled up to a rigid lid. Fluid is pumped into the tank axisymmetrically
through the bottom at radius rgource, and out of the tank axisymmetrically at radius
Tsink- 10 Ref. [31] D. del Castillo Negrete derives the flow that results from this type
of forcing. Fluid between the two radii moves in an axisymmetric jet, which is co-
rotating with the tank rotation if rgoyrce > 7sink, and counter-rotating otherwise.

Assume r5ource > Tsink; fluid between the forcing rings has a velocity

Ua(r) = uma.x'rsink/'r s (1.35)

/Q F
max = \/ — . 1.
Uma 14 27TTsink ( 36)

F' is the pump flux. Fluid elsewhere in the annulus has 4 = 0. This result is in

with

good agreement with experimental measurements [131]. Often a co-rotating jet is
termed an eastward jet, and a counter-rotating jet termed a westward jet; in this
dissertation we will use co- and counter- rotating jets for clarity.

In Chap. 5 we use vmax as the characteristic velocity scale U in order to

define Ro and Ek.

1.3 Previous experiments

The experimental apparatus described in Chap. 2 was originally constructed in
1986-8 by J. Sommeria, S. D. Meyers, and H. L. Swinney. The original inspiration
was provided by P. S. Marcus, who proposed that a large coherent vortex would
form under certain conditions, analogous to Jupiter’s Great Red Spot [77]. Thus

the first experiments done using the rotating annulus were investigations into vortex
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formation and dynamics for turbulent westward (counter-rotating) jets [78, 86, 136].
These experiments confirmed Marcus’s results, observing a large long-lived vortex

which could be visualized with red dye.

The next set of experiments examined co-rotating jets [6, 87, 137, 138]. These
jets tended to be narrower than the counter-rotating jets. The experiments found
that the jet had a strong gradient of potential vorticity inside, with potential vor-
ticity fairly uniform on either side of the jet. This potential vorticity gradient was a
powerful barrier to mixing, as would be expected as fluid columns should conserve
their potential vorticity (Sec. 1.2.5). Dye rapidly mixed outside of the jet, but was

extremely slow to mix across the jet.

These earlier experiments were all conducted with a large pump, that had
pump rates up to 350 cm?3/s. Next, T. H. Solomon, W. J. Holloway and H. L. Swin-
ney investigated the onset of instabilities at low pump rates [131], and thus a smaller
pump was installed that had a carefully controlled flow rate up to 50 cm®/s. At very
low pump rates, the axisymmetric jet profile discussed in Sec. 1.2.8 was observed.
Above each forcing ring was a shear layer between the axisymmetric jet and the
motionless fluid outside the jet. As the forcing was increased, these shear layers
became unstable to a vortex chain which propagated around the annulus at roughly
half the speed of the jet at that point (i.e., the average speed of the fluid in the jet
and the fluid outside the jet). The formation of the vortex chains later proved useful
for conducting the transport experiments discussed in Chap. 4. At still higher pump
rates, the vortex chain above the inner ring of holes would “lock” with the vortex
chain above the outer ring of holes. For the co-rotating case, the wavy jet between
the locked vortex chains was interpreted as a Rossby wave, a wave structure caused
by the presence of a fS-effect (Sec. 1.2.6; see Ref. [102] for a careful explanation of
Rossby waves). For the counter-rotating case, the interpretation was less clear, and

it is possible that the observed locking was only a coincidence of the two vortex
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chains rotating at similar rates [134].

During these onset experiments, a novel particle tracking system was devel-
oped by M. S. Pervez and T. H. Solomon [104]. This system is briefly discussed in
Sec. 2.2 and led to the investigation of transport and mixing discussed in Chap. 4;
the transport experiments in turn motivated the theoretical calculations discussed

in Chap. 3.
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Chapter 2

Experimental Apparatus and

Procedures

2.1 Rotating tank

The experiment consists of a large annulus, which rotates rapidly, filled completely
with fluid, and a pump and plumbing system which is used to generate flows inside
the annulus. The annulus has an inner radius r; = 10.8 cm, outer radius ro = 4r; =
43.2 cm, and a height linearly varying from 17.1 cm (at 1) to 20.3 cm (at 72); see
Fig. 2.1. The conical bottom slope (s = 0.1) provides for the -effect discussed in
Sec. 1.2.6, modeling the variations of the Coriolis force with latitude for a spherical
planet. The annulus is covered by a rigid Plexiglas lid which prevents fluid from

spilling when the experiment is rotated rapidly.

The inner wall of the annulus is constructed from aluminum (with Mag-
naplating HCR treatment to prevent corrosion), as well as the sloping bottom (also
Magnaplated). The outer walls and lid are constructed from Plexiglas, to allow for
flow visualization (see Sec. 2.2). The entire apparatus rotates rigidly (at speeds

ranging from Omega/2m = 0-4 Hz), rather than differential rotation as for Taylor-
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video camera
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d d d d

Figure 2.1: Schematic diagram of rotating annulus. r; = 10.8 cm, ro = 43.2 cm,
d = 8.1 cm, and h = 20.3 cm at ro. The bottom has a slope of 0.1. See text for
other details.
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Couette experiments. When the apparatus is rotating at a steady rate, the only
source of energy to drive flows in the tank is the pump, discussed below. Details of

the motor system driving the tank are in Ref. [88].

For the experiments discussed in this dissertation, two fluids are used. When
a high Reynolds number is desired, distilled water is used with kinematic viscosity
v = 0.009 cm?/s. Experiments conducted at lower Reynolds numbers use a mixture
of 38% glycerol (by weight) in water with kinematic viscosity v = 0.030 cm?/s.
Experiments are conducted at or near room temperature, and the viscosity of these
two fluids strongly depends on temperature. Temperature measurement and control

are discussed in Sec. 2.7.

Flows are generated in the annulus by pumping fluid into and out of the
annulus through small holes (0.26 mm diameter) in the bottom. The annulus floor
has three concentric rings of 120 holes each, at radii 18.9 c¢m, 27.0 cm, and 35.1 cm
(see Fig. 2.1). Underneath the aluminum annulus floor are 18 separate channels,
each controlled by one valve. Thus each channel allows flow through one 60° arc of 20
holes. By opening and closing valves, the flow can be individually controlled through
each 60° sector. From the pump, a hose carries the flow to a three-way divider; the
three hoses from the divider each go to a secondary divider, and from the secondary
dividers the nine hoses go to the valves beneath the annulus floor. The flow from
the annulus back to the pump repeats this plumbing in reverse with additional
dividers. The hoses are connected with Swagelok connectors. By connecting the
hoses appropriately and opening the appropriate valves, fluid can be pumped into
the experiment through 1-9 separate 60° sectors of holes, and out of the experiment

through 1-9 sectors.

In practice, we typically use two complete rings of forcing holes, and pump
uniformly through each ring. The hoses are connected so that the flow impedance

through the plumbing is uniform for each 60° sector: typically the six hoses for
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a forcing ring are taken two from each secondary flow divider. The additional
hose from each secondary flow divider is attached to a sector of the unused forcing
ring, and the valve is closed. By pumping fluid in uniformly at one radius and
out uniformly at a different radius, azimuthal flow can be generated as discussed
in Sec. 1.2.8. Future experiments may consider pumping fluid uniformly into the
annulus through two rings of holes, and out of the annulus through the third ring

of holes; the flow dividers will need to be redesigned for this configuration.

The experiments discussed in this dissertation were done with two different
pumps. Originally a small Micropump positive-displacement magnetically coupled
gear pump was installed. This pump produces carefully controlled flow rates ranging
from 1 to 52 cm?/s, and was used for the experiments discussed in Chap. 4. More
recently, a larger 800 W Tri-Rotor positive-displacement rotary piston pump (model
20DV) was installed. This pump has larger fluctuations in flow rate, and produced
flows up to 900 cm3/s in our table-top tests (the pump is rated for flows up to
1250 ¢cm?/s). In practice, pumping through the hoses and forcing holes reduces
the maximum flow rate to approximately 450 cm®/s. To achieve a flow rate of
450 cm3/s, the plumbing was upgraded to increase the diameter of most of the
hoses on the annulus, and replacing the smaller valves used with the Micropump
with larger valves. It is likely that still higher flow rates can be achieved with
additional plumbing modifications, although given the limitations of space beneath
the experiment, there is not much room for larger hoses. Because of the fluctuations
with the Tri-Rotor pump, a flow meter has been installed; this is discussed in Sec. 2.8.
This flow meter is a significant contribution to the flow impedance, and is the place
where the most improvements could be made to increase the maximum possible flow

(see Sec. 2.8).

The Tri-Rotor pump is powered by a PMI model U16M4 motor, connected

with a flexible-chain coupler to the pump. This motor is capable of speeds up to
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3000 RPM; the pump is designed for speeds up to 1800 RPM, so we have built a
circuit which controls the motor power limiting the maximum allowed motor speed.

A flow-reversing valve was used with the Micropump, installed immediately
downstream of the pump. We have chosen not to install such a valve with the
Tri-Rotor pump, as it would increase the impedance of the plumbing and lower
the maximum pump rate. The Tri-Rotor pump is capable of running backwards,
although the flow rate fluctuations are larger, and the flow meter (Sec. 2.8) is more
accurate in the “forward” direction. This pump is not designed to be reversed
for extended periods of time; to reverse the flow, it is necessary to rearrange the
plumbing.

Beneath the plumbing is a set of 16 slip rings, used to carry electrical signals
onto and off of the annulus. The electrical connections include power for the pump,
connections for the hot film probe system (Sec. 2.5), connections for the thermistor
(Sec 2.7), power for and signals from the flow meter (Sec. 2.8), and signals from the

pressure sensor (Sec. 2.9).

2.2 Particle tracking system

In order to visualize the flow, a Sony CCD video camera and a Olympus OM-1 SLR
35 mm camera are mounted on a rotating platform above the tank [88]. Usually
this platform has the same rotation rate as the experiment, although the rotation
rate can be adjusted independently to focus on traveling structures. Our primary
technique for flow visualization is particle tracking, discussed in this subsection.
Another technique which we have used is injecting fluorescent dye into the tank;
however, this is not used for the experiments discussed in this dissertation.

For particle tracking, small neutrally buoyant particles are added to the fluid.
We then use the video camera and an automated technique to track individual

particles for long times (up to 1000 s; see the discussion in Sec. 4.5). The long term
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particle tracking is useful for the mixing studies discussed in Chap. 4, while particles
have been tracked for much shorter durations to generate the stream functions shown
in Chap. 5 (see Sec. 2.4). Also, the tracer particles can be used to generate streak

photographs using the 35 mm camera.

Several methods have been used to produce these particles. The method
used for the experiments described in this dissertation uses Crayola (©) fluorescent
crayons (colors: sunglow, laser lemon, unmellow yellow, outrageous orange, and
atomic tangerine; sometimes these crayons are sold as “Neon” crayons rather than
“fAuorescent”). These colors were chosen as they fluoresce the brightest under black
lights. However, the illumination we use are halogen lamps (see below) rather than
black lights. Black lights were tried and the resulting fluorescence did not sufficiently
contrast with the background to be useful for flow visualization. The crayons used
have a density very close to 1.0 g/cm?, typically slightly larger. To make particles
neutrally buoyant in water, we melt and mix the crayons with a small amount of
paraffin wax (with a density slightly less than 1.0 g/cm?®). The melted mixture is al-
lowed to harden, and is then chopped and sieved to produce particles approximately

1 mm in diameter.

The resulting particles typically have a spread of densities close to 1.0 g/cm3.
We place the particles in a small jar filled with distilled water, which has been boiled
and allowed to cool in order to reduce the amount of dissolved gas in the water. The
jar is sealed and allowed to sit overnight, to further allow for gas bubbles trapped
on the particles to dissolve. The following day, the jar is shaken and allowed to sit
for 3-5 minutes. Using a pipet, particles which have neither sunk to the bottom
nor floated to the top are removed from the middle of the jar. They are placed in
a separate container which is then sealed and allowed to sit for another day. The

process is repeated with that container and the particles are added to the tank fluid.

For particles intended to be neutrally buoyant in the water-glycerol mixture,
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with a larger density, cement fixer dust is added to the melted wax mixture (which in
this case does not have paraffin wax added). The resulting particles generally have
a wide spread in densities and, using the techniques described above, it is possible
to select the particles with the correct density for the experimental fluid. Carnoba
wax has also been used occasionally to increase the density of particles, rather than

cement fixer dust.

The particles are illuminated from the side by eight 100 W halogen lamps,
through the Plexiglas walls of the annulus. Using a felt-tipped permanent marker

to make the bottom of the annulus black improves contrast.

A novel long-term particle tracking technique is used to find the particle
trajectories. For details of this method, see Ref. [104]. Briefly, the CCD video
camera rotates at the same rate as the annulus, above the experiment. The signal
from this camera goes to a Matrox frame-grabber card, which is able to compare the
image to a threshold, and write to a hard disk only the pixel coordinates brighter
than a threshold. This is done at speeds from 10-30 frames per second; typically we
use 10 or 15 frames per second. After the experiment is over, a program identifies
clusters of pixels in each frame, and then identifies particles which are close to each
other between frames as the same particle trajectory. Refinements are made to
improve accuracy when many particles are visible [104]. This method results in at
least several hundred particle trajectories, often over a thousand, depending on the
duration of the experiment and the number of particles in the fluid. Two atypical

particle trajectories are shown in Fig. 2.2.

One problem occurs with these particles: at high pump rates, particles are
suctioned into the sink forcing holes. On the underside of the annulus bottom,
netting is placed which catches the particles to prevent them from passing through
the pump. Thus the particles clump around the forcing holes. This restricts the

flow through the holes, and can change the flow rate. The active pump control
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Figure 2.2: Two atypical particle trajectories actually seen in the rotating annulus
experiment, tracked with the technique of Ref. [104]. Other more typical examples
appear in Chap. 4.

system discussed in Sec. 2.8 is used to compensate for this problem (by increasing
the power provided to the pump). However, an additional concern is that this
particle clogging problem is non-axisymmetric, and results in uneven forcing. The
magnitude of this problem is unknown. For most experiments with pump flux rates
above 100 cm?® /s, after 15-60 minutes, significant clogging has occurred. When this
is observed, the pump is temporarily reversed to force the particles out of the holes.
Quite often, several holes remain clogged despite the pump reversal. For experiments
where we desire to take long time series with the hot film probes (Sec. 2.5), we
completely remove the particles from the tank to avoid the clogging problems. This
is additionally useful as particles can bump against the hot film probes and change

how the probes are cooled by the flow.

In addition to the particles placed in the experiment, we place a light emitting
diode (LED) on the lid of the annulus, typically attaching it to a hot film probe
(Sec. 2.5). The LED is tracked just as the particles are tracked. This provides a

known location on the annulus which is useful for locating stationary features inside
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the annulus (topography used in Chap. 5, and the hot film probes themselves).
The LED also can provide information about the exact rotation rate of the annulus

relative to the camera; the two rotation rates are never perfectly matched.

2.3 Particles as passive tracers

It is important that the particles act as passive tracers and accurately follow the
flow. Much work has been done deriving equations of motion for spherical particles
in flows at low relative Reynolds numbers. Two good reviews are Refs. [90] and
[135], which are the primary sources for this section; see also Ref. [55]. This is still
an active field of research; the literature has a number of incorrect results (discussed
in [90]) and it is sometimes unclear which equations are best suited for a given
system. This section considers the various forces on particles in our experiment.
The following forces may be relevant: (a) the gravitational (buoyant) force; (b) the
centripetal force; (c) the viscous drag force; (d) fluid inertia; (e) lift (due to rotation
— the “Magnus” force); and (f) the pressure gradient [135].

The notation used in this section is in Table 2.1. The equation of motion for
a spherical, non-rotating particle is given by [39, 90]:

mp% = 6mapsv(iy —ip)  Stokes drag

Diiy .
+my Dr pressure, viscous stresses
1 D4 du,
+ §mf(D—utf — ﬂ) added mass

+ = =
+ 6a2pf\/7r1// (d/d:}iu_f ) dr Basset history
0 -7

+ (mp —m f)ﬁ buoyant, centripetal. (2.1)
The left hand side gives the acceleration of the particle; the right hand side terms
are the drag force, the force due to the pressure gradient and viscous stresses, the
inertia force of added mass (fluid dragged along with the moving sphere), the Basset

history term (viscous force due to unsteady relative acceleration), and the combined
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Table 2.1: Definition of symbols used in Sec. 2.3 [39].
Symbol  Meaning

a particle radius (= 0.05 cm for our experiment)

d/dt derivative with respect to time following the moving particle
Diiy/Dt  0uy/0t + (i - 6)11} evaluated at the particle position

F gravitational and centripetal acceleration, F= —g3 + rQ?¢
my mass of fluid displaced by particle

mp mass of particle = (47/3)a3p, = 0.01 g (for our experiment)
Up, f velocity of particle, fluid

Uterm terminal velocity of particle (Fp = Fp)

Pp,f density of particle, fluid

v kinematic viscosity of fluid

Fg magnitude of buoyant force (Eq. (2.2))

Fe magnitude of centripetal force (Eq. (2.4))

Fp magnitude of drag force (Eq. (2.3))

Fam magnitude of “added mass” force (Eq. (2.5)

)
)

Fpy magnitude of Basset history force (Eq. (2.6)

force of the buoyant and centripetal forces. Historically the terms on the right
hand side were considered independent forces; however, recent evidence suggests
that for any Re > 0, even Re << 1, these terms are not actually independent [90].
Fortunately this will not affect our discussion; for low Re this equation has been
found to be empirically correct [90]. Equation (2.1) was independently derived by
Basset, Boussinesq, and Oseen, and is sometimes referred to as the BBO equation
[90, 135]. Earlier related work was done by Poisson, Green, Clebsch, and Stokes
[90].

It is easiest to consider forces acting on a particle in the reference frame co-
moving with the fluid, that is, where D/Dt = 0. We wish to consider the magnitude
of each force, so we will drop vector notation in the following discussion. We start

by considering the buoyant force, which is a constant for each particle:
Fp = (my—mp)g . (2.2)
The mass of the particle m, depends on the density of the particle p,. We estimate
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pp by considering the settling time for particles. As discussed previously, particles
are selected for the experiment with a settling time larger than 5 min. We estimate
the terminal velocity of particles as ~2 cm/min = 0.033 cm/s (from observations of
particles in the experiment when it is not rotating). The drag force on a sphere is
given by [150]:

Fp = 6rvprauy, (2.3)

where u, is now the velocity of the particle relative to the fluid. (This equation is
only valid for Re < 1, that is, u, < v/2a = 0.1 cm/s. This is reasonable as the
terminal velocity is smaller than this; particles moving quickly enough for Re ~ 1
would be quickly damped by the drag force.) Solving Egs. (2.2) and (2.3), we find
lpp/py — 1| = 0.0006 (using water for the fluid). Thus, particles selected for neutral
buoyancy in water have densities ranging from 0.9994-1.0006 g/cm?. This may be
too generous; a more likely range is 0.9990-1.0010 g/cm3, with a terminal velocity of
Uterm = 0.056 cm/s. Using p, = 1.001 g/cm? allows us to estimate the magnitude of
the buoyant force as Fz = 5x 10™* dynes (1 dyne = 1075 N). Note that the buoyant
force acts in the vertical direction, while the flow is predominantly two-dimensional
and vertical particle motions are not measured; the buoyant force only affects how
long particles remain in the illuminated horizontal section of the annulus.

From the drag force a characteristic time can be extracted, given by 7qrag =
2a%/9v = 0.06 s (for particles with p, &~ py). Thus, particles rapidly reach their
terminal velocity; particles for which the velocity relative to the fluid u, > uterm are
quickly damped. This helps compensate for the forces discussed below by opposing
motion relative to the fluid.

The remaining forces depend on quantities which are unknown and variable;
we estimate the conditions necessary for each force to be O(Fpg). The centripetal

force is related to the buoyant force by

Q2
Fo = %FB . (2.4)
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At a typical rotation rate of Q@ = 3m rad/s, a particle at a radius r = 40 cm
experiences a centripetal force 3.6 times larger than the buoyant force. At higher
rotation rates () = 67 rad/s) Fo = 14Fp = 7.4x1073 dynes. Clearly the centripetal
acceleration is a significant force, and is the main reason we strive to use neutrally
buoyant particles (p, = py).

The drag force counteracts somewhat the action of the gravitational and
centripetal forces. We can consider a new terminal velocity uterm = 0.8 cm/s which
balances the worst case F = 7.4 x 1073 dynes. Typical experimental flow velocities
are from 1-20 cm/s; at low flow rates and high rotation rates werm is comparable to
the flow velocity, and thus the centripetal force can result in significant perturbations
to the flow. At lower rotation rates (2 = 3 rad/s; Q/2r = 1.5 Hz), the terminal
velocity is ugerm = 0.2 cm/s, which is reasonably small. Note that particles with
densities significantly different from water move even faster than these estimated
terminal velocities, and thus centrifuge to the edges of the annulus and are not
visible to the camera.

Next we consider the added mass force, given by

1 du,

Zm 2
5™ (2.5)

Fapy =

Fam = Fp when du,/dt = 2 cm/sQ; recall that u, is the relative particle motion.
dup/dt for a typical flow can be estimated as the acceleration due to F (which
occurs if u, = 0 temporarily and thus Fp = 0). The acceleration from the buoyant
force is Fg/m, ~ 1 cm/s?, and using Eq. (2.4) we see that at @ = 3 rad/s, the
maximum acceleration is 3.6 cm/s?. At = 6 rad/s, the maximum acceleration can
be 14 cm/s?. Thus, the added mass force can be fairly significant when the drag
force disappears. These estimates may overemphasize F4,s, as typically the drag
force is significant and acts to reduce the accelerations caused by F¢. By inspecting
Eqg. (2.1) it can be seen that the effect of the added mass force is to effectively

increase the mass of the particle, that is, it decreases the acceleration of the particle
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in response to the forces on the right hand side of Eq. (2.1). This is useful for helping
the particle track the flow; forces which would cause the particle not to follow the
flow act on a larger effective mass, that is, they must accelerate a small volume of
fluid around the particle as well as the particle itself.

Next we consider the Basset history force, named after Basset despite Boussi-
nesq’s derivation of this force 3 years prior to Basset [90]. This force is a viscous

force arising from unsteady relative acceleration [39]:

(dup/dT)dT

t—T

Fpp = 6a pf\/ﬁ/ (2.6)

where u, is the relative velocity of the particle. This force is from “the effect of
the deviation in flow pattern from steady state” [55], and is caused by the flow
readjusting to the particle motion when the particle is accelerated.

It is difficult to estimate the magnitude of this term due to the integral.
We make the assumption that the history is important only for a time T: the
integral only needs to be evaluated for times t —T' < 7 < t. We further assume that
dup/dr is constant (a dubious assumption). We then estimate that Fgy = Fp when
duy/dt ~ 0.094/+/T cm/s? (measuring T in seconds). A guess for T is 1 s, suggesting
that even small accelerations O(0.1 cm/s?) can result in a significant contribution
of Fgy to the total force. It is likely that this is an overly conservative estimate;
numerical work provides evidence that Fppy is typically small [39] compared to the
other forces. Fluctuations of du,/dt would result in a much smaller Fgy. Note
that by decreasing a (the radius of the particle) Fpy decreases quickly, especially
compared to the drag force; the larger the drag force is relative to the other forces,
the more the particle acts as a passive tracer.

The lift force acting on a rotating particle! is proportional to the velocity
gradient in the fluid normal to the direction of particle motion [135]. This force is

more important very close to walls [90], which is not an important consideration

'a particle rotating relative to the fluid, not necessarily a particle in a rotating experiment.
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for our experiment as often particles close to walls cannot be seen by the camera
due to reflections from the walls and parallax problems with the camera. The
nondimensional Taylor number Ta = Qa?/v is a measure of the importance of
particle rotation, where here Q is rotation relative to the fluid. For ¢ = 0.05 cm and
v = 0.01 cm?/s, Q must be O(r rad/s) for Ta ~ 1. Tt is unlikely our particles are
rotating this quickly relative to the fluid. It is not clear that lift forces need to be

considered for flows far from walls, where the velocity gradients are gentler [90].

The preceding discussion only provides estimates, and some of the numbers
are arbitrary. Several additional caveats are necessary. Equation (2.1) is only cor-
rect in the limit Re — 0, that is, the relative velocity u, is very small. For finite u,
this equation can be modified with empirically determined corrections [90], although
this only works for small Re. The empirical corrections increase Fp by a factor of
(1 4+ 0.15Re%%67), decrease Fanr, and increase Fpy; the latter two forces are modi-
fied by terms related to the nondimensional acceleration of the particle rather than
Re. Another important consideration is that almost all of the work done studying
particle transport has been for spherical particles. Studies considering simple el-
liptical particles suggest that non-spherical particles cannot be merely considered
as spherical particles with an equivalent radius, as has been done in the estimates
above. However, there are no methods yet to be used for non-spherical particles

[90].

An encouraging fact is that many numerical experiments strongly suggest
that neutrally buoyant particles are excellent tracers, even with a finite size [39, 121].
To further improve our particles, we should use smaller particles if possible, and
work to find particles that are closely density matched. Also, spherical particles
would make the above estimates more applicable, to increase our confidence that
the particles are passive tracers. It is also clear that when possible, experiments

should be conducted at a lower rotation rate, although of course this increases the
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Rossby and Ekman numbers and decreases the two-dimensionality of the flow. It is
likely that measurements at large Re will be for /27 up to 5 Hz, in which case the

centrifugal force will impose more stringent conditions on the density of particles.

2.4 Calculating Stream Functions

As discussed in Sec. 1.12, the velocity field of an incompressible two-dimensional
fluid flow can be represented by a stream function v (z,y,t). If the stream function
is known, then the velocity field is given by @(z,y,t) = V x (¢(z,y,t)2) (where 2
is the unit vector in the z direction). The contours of the stream function give an
indication of the flow pattern, and the spacing of the contours give an indication
of the strength of the flow: closely spaced contour lines correspond to stronger

velocities (similar to the lines in a two-dimensional electric field line diagram [162]).

We use the method of least squares to derive stream functions from exper-
imental data. The particle trajectories obtained using the method discussed in
Sec. 2.2 are analyzed to find velocities, which are then time-averaged before the

least-squares routine is used; this is discussed in more detail below.

2.4.1 Basis Functions

The basis functions were chosen to match the boundary conditions of the experiment,
an annular shape with inner (outer) radius 10.8 cm (43.2 cm). For some experiments,
the Plexiglas barrier was in place which restricted the flow to an inner radius of 18
cm. A tensor product basis was used, {¥mn(r,d)} = {Rn(r)} ® {®,(¢)}. The
zero-flux boundary condition is:

1_ do,

Up (Tin) = Up(Tout) = (;me) = 0. (2.7)

Tin or out
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To satisfy this condition, R,,(r) must be zero on the inner and outer boundaries, or

®(¢) must be a constant. An additional boundary condition is the no-slip condition:

dRn,
dr

= 0. (2.8)

tg(rin) = tg(rous) = —(®n ri or Tout
To satisfy the no-slip condition, the first derivative of R,, should also go to zero on
the boundary. We choose to relax the no-slip condition and demand basis functions
to only satisfy the zero-flux condition. Often the flow is considered in a reference
frame which rotates slowly relative to the tank frame of reference, and in such
a reference frame the no-slip condition is “violated” with respect to a stationary
wall. In such rotating reference frames the flow has a fixed non-zero velocity at the
boundaries, and to allow the stream function program to be as general as possible
it is useful to allow for slip boundary conditions. This works reasonably well; see

the discussion in Sec. 2.4.4.

Trigonometric basis functions are used. Specifically,

/l/)mnl = Rm(r)q)n,l(qs)’ (2'9)

with the radial basis functions given by

T —Tin

Ry, (r) = sin(mm( )) = sin(mC(r — rin)) (2.10)

Tout — Tin

(with C = 7/(rout — 7in)) and the azimuthal basis functions given by

Qpi-0(¢) = sin(ng)
®,1=1(¢) = cos(ng). (2.11)

The radial index m ranges from 1 to M, and the azimuthal index n ranges from 0 to
N (with the function ®¢ ¢ = 0 unused; ®o; = 1 is used). Thus there are (2N +1)M
total trigonometric basis functions.

Special consideration is needed for the case with n = 0, that is, when ®¢; =1

is the azimuthal basis function. In such cases the zero-flux condition (Eq. (2.7))
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holds for any function R(r). This situation can be considered as a one-dimensional
function R*(r) being approximated by a set of basis functions R,,(r). In fact, for
M — oo the set of trigonometric basis functions considered above (Eq. (2.10)) is
a complete set and can perfectly approximate R*(r). However, for finite M, it is
difficult to approximate a function R*(r) where R*(riy) # R*(rout), as for each
individual basis function Ry, (7in) = Ry (Tout) = 0, and it is only in the limit that an
infinite number of these basis functions are used that the endpoints can be nonzero?.

This is not merely a mathematical technicality but also an important problem

for approximating experimental stream functions. The condition ¥(rin) # ¥(rout)

means that there is net azimuthal flux carried around the annulus:

: drug(r, ¢o) = /:m dT(—M) = (Tin, $0) — P (Tout, o)

or
(2.12)

To

Net Flux = /
Tin in
where ¢q is arbitrary because of the incompressibility condition. In order to aid the

approximation, we add an additional basis function:
Yoo1 = Ro(r) =Cr . (2.13)

(The constant C makes the basis function dimensionless.) Thus any function R*(r)
can be rescaled by a linear transformation to a new function that is zero on the
endpoints, and such a function is typically easy to approximate using our original
set of basis functions (Eq. (2.10)). This linear rescaling is accomplished by adding
in this extra basis function which can be used in the least squares routine. (Note
that a basis function which is just a constant is not needed, as the stream function
is arbitrary to within a constant.)

Now there are (2N + 1)M + 1 basis functions which serve as a reasonable
approximation to the complete space of functions satisfying the zero-flux boundary

conditions on an annulus. Note that there may be better choices of basis functions

*Mathematically, lim,_,,__, limp/—co Ei\:zl ¢mBRm(r) = R*(Tend) for the two endpoints, with
the proper coefficients ¢, .
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in the radial direction which would simplify some of the mathematical operations
discussed below [20]; in particular, radial basis functions which are orthogonal to

each other would be useful.

2.4.2 Least Squares Analysis

The approximate solution is:

r t) = Z Cmnlwmnl(ra t) (214)

m,n,l

We want to minimize the integral:
109 o
/ dA[(u, — ——¢)2 + (ug + ¢)2] (2.15)

I:/AdA r O¢ or

with respect to the coefficients ¢ppy; [4 dA = f Jrl "out pdrdg. This produces:

Uexperiment — V X

ol 1 do 'l' d@nl
= dA|(— =R,y —= CrniBm
Gomr Sy Al R ) Z =g
dR,,, dR
(@ u¢4—§:cmm®nld )| =0 . (2.16)
mnl
Two useful integrals are:
2T
d¢q>n1,l1 CI)nz,lz = 7r5n1,"25l1,l2 (1 =+ 5“1,0) (2'17)
and
do do
¢ nh — 22 b = ﬂ-énl,nz(sll,lzn%7 (218)

0 dp  d¢
where d;;, is the Kronecker delta symbol, d;;, = 1 if j = k£ and 0 otherwise. Using

these two integrals Eq. (2.16) can be rewritten as:

1 dCI' e dR,
/ dA m/ l Up — d;n (I)n’l’u¢) —

Tout 2
chmn’l’ / rdr[ R, R, + (1 + Opr 0)

dR,, dR,, ]

2.1
dr dr (2.19)

If we define the following two constants:

Tout 1 1
Am1m2 = ~/1" TdT(;Rm1)(;Rm2)

in
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Tout  dR.. dR
B = mL T 2.2
mimz /rin rdr dr dr ’ (2.20)

then Eq. (2.16) can be further simplified as:

/A dA(%Rm: dfl;’” Uy — diﬁ"’ Do) = %j Connrtr (" Apmy + (1 + 620.0) Bunns )
(2.21)
This is a system of (2N +1)M + 1 equations for the (2N + 1) M + 1 unknowns ¢ y;.
The left hand side of this equation depends on the data u, and ug obtained from
the particle trajectories. To solve using Gaussian elimination would take O(8N3M?3)
operations. However, for fixed values of n and [, this can be regarded as M equations
for the M unknowns ¢, (with an additional equation and unknown for n = 0, for
the additional basis function 1991 = Cr), and thus the entire system of (2N +1)M+1
unknowns can be solved in O(2N M3) operations. The matrices Ay m, and Bu,m,
are precomputed to decrease the overall computation time.
Typically we use M = 9 and N = 17, resulting in 316 basis functions total.
These choices for M and N are somewhat arbitrary. Trials with more basis functions
did not appear to improve the results, while fewer basis functions did not produce
pictures that were convincing. In general the results were not very sensitive to the

number of basis functions.

2.4.3 Preprocessing of Data

Difficulty was encountered in evaluating the left hand side of Eq. (2.21). This
integral depends on the experimental data, which do not fully cover the annular
region of integration. The first method tried was to approximate this integral by
summing over all of the data and normalizing by the number of data points. This was
somewhat analogous to a Monte Carlo integration technique. However, this method
failed to work as well as desired. The distribution of data points in the integration

region was nonuniform, with sparse data near the inner and outer edges of the
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annulus due to lighting problems. While this produced stream function pictures
that looked qualitatively correct, the azimuthal velocity of the flow along the edges
was incorrect. Typically this velocity showed large fluctuations and was too large

by an order of magnitude in the approximate solution.

A second method would be to interpolate the data onto a uniform mesh that
covers the entire domain. This is difficult in some ways, as some locations have
very little data to interpolate from. We use this method as a pre-processing once
the velocity data are obtained. This unfortunately gives equal weight to regions
with few data and regions with lots of data. In some regions, it is possible that a
velocity datum is determined by only one trajectory, while other regions are covered
by many trajectories which are then averaged to find the velocity at each point on

the uniform mesh.

We then consider all of the integrals as sums over the data points. We origi-
nally considered replacing the right hand side of Eq. (2.21) by a calculation, rather
than using the analytical expressions. This would result in a large, full matrix, how-
ever, and would increase the amount of calculation necessary back to O(8N3M?3).
A compromise solution is to assume that the angular integrals can be calculated an-
alytically, while the radial integrals could be computed by summing over the data.
This is a reasonable compromise, as the data are fairly evenly distributed over the
angular direction; the nonuniform distribution is primarily in the radial direction.
This “compromise” method is the method that we use. For sparse data sets it would
be necessary to do the full computation if the data are nonuniform in the angular

direction; we do not compute any stream functions for sparse data sets.

A possible improvement to the program would be to use the velocity data to
interpolate locally to spline functions; then the integrations could be done analyti-

cally.

Note that due to a general lack of instantaneous data, instantaneous stream
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ug cm/s

f(rad)

Figure 2.3: Azimuthal velocity at outer wall (solid line) and inner wall (dashed line).
Due to insufficient data, the velocity does not go to a constant at the walls. These
data correspond to Fig. 5.3(b), the blocked flow. (The no-slip condition corresponds
to a velocity ug = 0 for these data.)

functions cannot be obtained. The stream functions shown in this dissertation
are exclusively time-averaged stream functions. An improved particle visualization
system could probably be used to find instantaneous or quasi-instantaneous stream

functions using the current stream function programs (see Appendix B).

2.4.4 No-slip boundary condition

In general the velocity of the approximated solution along the inner and outer walls is
moderately consistent with a no-slip boundary condition in the appropriate rotating
frame of reference. Figure 2.3 shows an example of the velocity found at the walls.
While the velocity is fluctuating, the fluctuations are smaller than the velocities in

the bulk ( ~10-20 cm/s).

It is possible to modify the least-squares program to enforce a no-slip bound-
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ary condition, without changing the basis functions. The easiest way to impose the
boundary condition is through the use of a penalty term added to I (Eq. (2.15))

[20]. Consider a new term I’ to be minimized:

2w . .
I'=I+A /0 d[(1ig (rin, @) — ™" (rin)) >+ (g (rout, #) — "> P(rour))’]. (2.22)

SIP are determined by the reference frame that the no-slip bound-

The velocities ugo_
ary condition must hold in, and the constant A gives the relative weight to be at-
tached to the no-slip boundary condition. @y = — /Or is the azimuthal velocity
determined from the approximate solution. Thus, by minimizing I' an attempt to
minimize the new integral term will help impose a no-slip boundary condition. By

increasing A, added importance will be given to satisfying this boundary condition,

at the expense of best satisfying the fit to the data in the bulk region.

2.5 Hot film probes

The particle tracking methods discussed in Sec. 2.2 are best for obtaining time av-
erages of the velocity field at all points in space. To measure the time dependence
of the velocity at a given point, we use hot film probes. Hot film probes are con-
structed by placing a thin film of conductive material over a quartz fiber, and then
coating the conductor with an insulator. The resistance of the conductor is strongly
temperature dependent. As fluid flows past the probe, it cools the resistor (with the
rate of cooling related to the velocity of the flow). By measuring the resistance of
the probe, the velocity of the fluid is obtained. The outer insulator coating prevents
electrolysis of the fluid.

We have several holes in the annulus lid to insert the probes. They are at the
same radii as the forcing holes (Sec. 2.1), at 18.9 cm, 27.0 cm, and 35.1 cm. We use
TSI model 1210-60W probes, a general purpose probe. These probes are designed

to measure one component of the velocity. We orient them to measure azimuthal
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velocities, as usually our forcing creates a strong azimuthal flow. Additionally,
for the turbulence experiments discussed in Chap. 6, we use X-array probes (TSI
models 1240-60W, 1243-60W). These allow measurement of two components of the
velocity, in the plane of the crossed probe fibers. The two different models are used
to measure flow in the horizontal plane (azimuthal and radial directions) and the
vertical plane (azimuthal and vertical directions). The resolution of these probes is

set by the wire length of the probe, which is 2 mm.

The probes require fairly high levels of power as their resistance is typically
~ 58 and the voltage applied to the probes is O(1 V). Originally we used a pair of
lock-in amplifiers (models PAR 121, PAR 124) to measure two separate probes. One
lock-in provides a 9 kHz signal. This is amplified and sent to the rotating annulus
through a pair of slip rings. The probes each form part of Wheatstone bridges,
which are powered by the amplified 9 kHz signal. The bridge outputs are returned
back through a pair of slip rings each, pass through a transformer, and back to the
lock-in amplifiers. The lock-in amplifiers are adjusted to be maximally sensitive to
fluctuations in the bridge signal. The lock-ins provide a voltage which is read by
a computer (see below). As the signals of interest are typically of low frequency
(less than 0.5 Hz), the lock-ins are used with a time constant of 1 s to reduce high

frequency noise.

A computer with a National Instruments AT-MIO-16 card is used to collect
the hot film probe data (both a 386 and a Pentium have been used). Muhammad Ali
Bawany has written a data acquisition program which reads the analog-to-digital

inputs of the NI card.

More recently we have replaced the lock-in amplifier system with a a system
allowing more than two hot film probes to be used. This change was motivated
by the desire to use the X-array probes, each with two sensors which need to be

measured. To use two X-array probes (or four regular probes) would require four
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probe probe probe probe

anemometer anemometer anemometer anemometer
) NI ATMI10-16
signal .
Anaog analog input
Multiplexer ® 5V
4-bit address ground
2 ‘ 2
4-bit counter X2 digital output
L o ‘ increment
+5V reset
ground

Figure 2.4: Schematic diagram of multiplexed hot film probe system. The NI
ATMIO-16 board is in a Pentium computer.

lock-in amplifiers, and an additional four slip rings for the additional Wheatstone
bridges. We have installed four constant temperature anemometers (TSI models
1053B and 1750) on the rotating annulus, which read the hot film probes. These
replace the lock-in amplifiers of the previous system. Power is provided to these
anemometers by a TSI model 1051-6 power supply. The anemometers provide a

voltage corresponding to the flow rate.

Eshel Faraggi has built a multiplexer circuit which multiplexes the analog
voltages from these anemometers (Fig. 2.4). Thus, as many as eight separate volt-
ages can be read through one slip ring (although four extra slip rings are need
to power and control the multiplexer). Currently this system is set up for four
anemometers, and the remaining multiplexer inputs could be used for other pur-
poses if necessary. Faraggi has extended Bawany’s original data acquisition program

to control the multiplexer.
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2.6 Ultrasound probe

Particle tracking reveals the time-averaged horizontal velocity field, and hot film
probes measure the velocity at particular points. In order to measure the vertical
velocity component along a line, we have installed an ultrasound Doppler probe.
This probe emits pulses of ultrasound and also receives the reflections of the ultra-
sound pulses from particles. The information from the reflections gives the velocities
and positions of the particles, relative to the probe. Our probe is attached to the
lid and aimed straight down at the bottom of the tank, and so measures the vertical
velocities of particles in a column of fluid beneath the probe. We are not using a
Doppler shift method ([141, 142, 143]); instead, our system uses the phases of the
reflected ultrasonic pulses to precisely locate the particles in order to determine the

velocity.

2.6.1 TUltrasound hardware

Ultrasound probes are typically made of piezoelectric material. Such material phys-
ically deforms when a voltage is applied. Thus, by applying a radio-frequency signal
(RF) the probe emits ultrasonic waves. Piezoelectric materials also generate a volt-
age when deformed by external forces, and so by turning off the RF voltage to the
probe, the probe acts as a receiver for any reflected ultrasound.

We use two probes. The first is a Matec model IM-1025-R probe, a cylindrical
probe with a diameter D = 0.8 cm and a resonant frequency of 10 MHz. The second
is a Matec model IP-0502-GP probe, a cylindrical probe with the same diameter and
a resonant frequency of 5 MHz. Typically we use the 5 MHz probe at its resonant
frequency. The attenuation of sound in water at 25° C is o = (46.0 x 10719)f2;
the power decreases as e~ ** at a distance = from the probe [2] (f is the frequency).
Thus, the power attenuation in dB for an ultrasonic pulse traveling to the bottom of

the tank and back to the probe (z = 40 cm) is given by 0.075f2? when f is measured
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in MHz. At 5 MHz, 1.9 dB of attenuation occurs (the power has decreased by a
factor of 1.5). At 10 MHz, the attenuation is 7.5 dB (the power has decreased by a
factor of 5.5).

As the speed of sound in water is ¢ = 1.5 x 10° cm/s, the wavelength is
A =c¢/f = 0.03 cm, allowing for high spatial resolution. The divergence half-angle
from a circular source is ¢4 = sin~*(1.221/D) = 2.6° [27], so the volume measured is
a truncated cone extending from the probe, at the lid with diameter D = 0.8 cm, to
the bottom of the annulus, 18.7 cm below the probe, with diameter 0.9 cm. These
are only approximate numbers, as the field has a complicated shape in actuality

[27].

We use a Matec model GA-822 system to generate the RF pulses and to
amplify and measure the reflected signal. This system generates a specified number
of cycles of RF, typically 40, which is sent to the probe (duration 7wigtn = 40/f).
The RF signal is then quickly (within 1/f) switched off and the probe then acts
as a receiver. The reflections seen by the probe are amplified by the Matec sys-
tem. The reflected signal is then compared with the original RF signal, and also
the original signal phase shifted 90°. The two outputs are low-pass filters for the
reflected signal, extracting the amplitude of the signal in phase with the original
signal, and the amplitude of the signal 90° phase shifted. (Thus, the reflected signal
is proportional to v, cos(wt) 4+ vy cos(wt +90°).) The Matec system generates bursts
of ultrasound with a specified between-burst interval (see Fig. 2.5). Typically many
reflections are seen from one particle before it leaves the cone of ultrasound, and
by using information from subsequent reflections from one particle, the velocity of
that particle is determined (as discussed below). Typically the spacing between ul-
trasound bursts is 4000 cycles of the RF signal (Typacing = 4000/ f). The parameters

Twidth and Tspacing (Fig. 2.5) are set using a GPIB interface to the Matec system.
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Tspacing

Twidth

voltage

time

Figure 2.5: Schematic diagram showing definition of Tspacing and 7ywigth from Matec
box. Typically the frequency used is f = 5 MHz, fTspacing = 4000 = 800 ps, and
fTwidth = 40 = 8 us. The round-trip transit time for a pulse in the experiment is
260 us; a pulse width of 8 us corresponds to a pulse length of 1.2 cm.

2.6.2 Ultrasound software

The signals from the Matec system are measured by a WAAG II data acquisition
card from Markenrich Corporation, using a 486 computer. The data acquisition
program was originally written by Paul Umbanhowar, and was modified to improve
performance in the presence of noise. The WAAG card has two data acquisition
channels, measuring the 0° phase component (channel A) and the 90° phase com-
ponent (channel B).

We use a “buffer rod” provided by Matec (model BR-30) to test the ultra-
sound system. When a single burst of RF is sent into the buffer rod, the rod provides
several (~ 12) distinct reflections. These appear similar to reflections that would be
seen from twelve particles at different distances from the probe; as the buffer rod
does not ever change, the reflections always occur at the same location and thus
appear as non-moving particles. The buffer rod provides clean data to test our data
acquisition software.

Figure 2.6 shows reflections from the buffer rod. Raw data measured by

channel A is shown in Fig. 2.6(a). A series of ten reflection groups is read in by the
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WAAG card. A section of one reflection group is shown in Fig. 2.6(b): each pulse
is one reflection. The time ¢ each reflection is seen is related to the particle position

z by the speed of sound c:

r=ct/2 ; (2.23)

the ultrasound pulse travels twice the distance to the particle, as it travels to the

particle and then back to the probe, which is why the factor of 1/2 is needed.

The raw data from channels A and B is processed to determine the phase of
each reflected pulse. The amplitude is given by v = y/v2 + v, shown in Fig. 2.6(c).
This can be used to determine when a reflection has occurred (the amplitude will
be large). The phase is given by ¢ = Arctan(vy/v,). In practice, v, and v, vary
somewhat across the pulse (as can be seen in Fig. 2.6(b)), but ¢ is steady for the
duration of each reflected pulse (Fig. 2.6(d)). ¢ is not as steady at the beginning and
end of each reflected pulse, so to determine the phase of a given pulse, ¢ is averaged
over the pulse excluding the endpoints. As the pulse width (duration) generated
by the Matec system is fixed and set by the user, this information is used to scan
the amplitude signal (Fig. 2.6(c)) to find the beginning and end of each pulse. In
practice, we set a threshold of 0.4 V; a valid pulse has an amplitude above this
threshold for the duration of the pulse.

To find the velocity, the phases of each reflection from the same particle are
examined. Figure 2.7(a) shows the phase of ten reflections from the same pulse. The
phase is less well-determined compared with Fig. 2.6(d) as this is a real particle,
not the buffer rod. By averaging the phase within each reflection (disregarding
the endpoints of the pulse), and finding the least-squares fit to a line (Fig. 2.7(b)),
the velocity of the particle can be determined. The standard deviation of the phase
within each reflection is used as an uncertainty of the phase for that reflection, which
is then used for the least-squares fit. The least-squares fit provides an uncertainty

for the velocity as well as a x? statistic; these are used to determine whether or not
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Figure 2.6: Reflections from the Matec buffer rod. Ten bursts of ultrasound with
spacing Tspacing = 800 ps and width 7ywiqth = 8 ps are sent into the buffer rod; each
burst reflects multiple times. (In the annulus, the maximum round-trip travel time
is 260 us.) Normally each reflection corresponds to a particle; here the pulses are
internal reflections from the buffer rod. (a) The ten sets of reflections, used for a
velocity measurement. The voltage v, is proportional to the 0° phase component
of the reflected wave (for channel A, pictured). (b) A close-up view of the first
reflection group from (a). (¢) The amplitude of the reflected pulses from (b); the

amplitude is given by v = /v2 + v2. (d) The phase ¢ = Arctan(vy/v,) for each
reflected pulse from (b); the phase is only plotted for points with an amplitude
larger than 0.2 volts, an arbitrary cutoff.
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that measurement is valid [112]. The velocity w is given by

1d¢ A dé ¢
=== . - 4
YT 9dtor T dt anf (2:24)

For the particle shown in Fig. 2.7, u = 0.75 + 0.03 cm/s.

2.6.3 Choosing parameters

There are several somewhat arbitrary parameters: the pulse width 7y;iqtn, the pulse
spacing Tspacing, and the frequency f. Increasing Tyiqin allows for a more accurate
determination of the phase. However, particles within a distance of (¢7wigth) can be
confused. This distance is 1.2 cm for typical parameters f = 5 MHz and Ty;iqtn = 8us
(40 cycles of the RF signal). Estimating that particles should be at least 2.4 cm
apart for the ultrasound system to resolve them, approximately 7000 particles could
be put in the experiment without causing problems.

The pulse spacing Tspacing affects the velocity determination. As Tgpacing is
increased, slower velocities can be determined accurately as the particle has moved
farther between each ultrasound burst. However, the particle must remain in the
cone of ultrasound while the measurement occurs, placing a restriction on the hori-
zontal velocity based on Typacing. Typically we use ten reflections to determine the
velocity of a particle, so the particle must remain inside the measurement region for
at least 107gpacing- The measurement region is O(1 cm) wide, and so the horizontal
speed of the particle must be less than 1 cm/(107spacing) ~ 125 cm/s. This is a gen-
erous estimate as many particles do not cross through the widest point. As Tgpacing
is increased the horizontal speeds are further restricted.

The frequency can be varied independently of 7wiqtn and Tgpacing. Increasing
the frequency decreases the wavelength and thus improves the spatial resolution
(aiding in determining the velocity; see Eq. (2.24)). However, increasing the fre-

quency also increases the attenuation of the signal, as discussed above.
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Figure 2.7: (a) The phase measured in ten reflections from the same particle. The
pulses are spaced at 800 us, shown in (b), and are 8 us wide. A bar of length 8 us
is drawn to show the time scale for each pulse, but the inter-pulse spacing is not to
scale. (b) By averaging the phase from each pulse shown in (a), a least-squares fit
to the data can be used to find the velocity of the particle. The line has a slope
d¢/dt = —0.018°/us. The error bars are from the standard deviation of the phase
for each pulse.
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2.6.4 Clock signal box

An important consideration is the digitization rate of the WAAG card. The faster
the signals from the Matec box are digitized, the more points are available to be
used to determine the phase of a given pulse, thus decreasing errors. However, the
WAAG card is limited to 128 kB of memory. When using the built-in clock on the
WAAG card, the data acquisition rate can be no faster than 2 MHz (the only faster
clock available on the WAAG card is 20 MHz). With a fixed data acquisition rate
of 2 MHz, the number of points per pulse is Tyigtn /0.5 s.

Paul Umbanhowar has built a system which can be used to increase the data
acquisition rate. The principle of this box is illustrated in Fig. 2.8. The Matec
system generates a square wave at the frequency of the ultrasound. It also produces
a short pulse (on the pulse width monitor output) which signals the beginning of
the transmitted ultrasound burst. These two signals are sent into Umbanhowar’s
clock signal box. The output of the clock signal box is sent to the WAAG external
clock input. The clock signal box starts with the WAAG clock signal off. When
the Matec signals the beginning of an ultrasound burst, the clock signal box starts
counting clock cycles. After a set number, the clock signal box produces a fixed

number of clock pulses, after which it resets (see Fig. 2.8).

The WAAG card, when using the external clock, waits for the external clock
to go high before taking a data point. Thus, when the external clock is off (held low
by Umbanhowar’s clock signal box), the WAAG card does not acquire data. When
the clock signal box is passing through a clock signal, the WAAG card acquires
data. As the clock signal box is using the ultrasound frequency for its clock, the
data acquisition occurs at the faster rate f of the ultrasound (typically 5 MHz)
rather than the slower rate of the internal WAAG clock (2 MHz).

The purpose of turning the external clock on only for a short duration is

twofold. First, a smaller amount of data is acquired, which easily fits in the WAAG

49



Tspacing
Matec pulse J H

Matec clock
delay

WAAG clock

window

Figure 2.8: The clock signal box takes two inputs, the clock signal from the Matec
box (a square wave with the frequency of the ultrasound pulses) and the pulse signal
from the Matec box (a short pulse which occurs when the Matec box generates a
burst of ultrasound). The output is a modified clock signal which is sent to the
WAAG card (bottom time series). The modified clock signal starts a set number of
clock cycles after receiving the Matec pulse signal, and it lasts for a set duration.

128 kB memory. The memory restriction is the chief problem preventing a faster
clock from being used, and by turning the external clock off for large portions of
time, less data is acquired. Second, the clock signal box can be adjusted to only
generate a clock signal when useful data should be taken. The round-trip transit
time for an ultrasound burst in the experiment is 260 us; the typical pulse spacing
is Tspacing = 800 ps. Thus useful data is only available for a quarter of the time.
Also, for a brief time (~ 20 us) after the ultrasound burst is transmitted, the probe
reads erroneous data (which can be seen in Fig. 2.6(b-d)). By adjusting the two
parameters of the clock signal box, the delay time and the clock window width, data
can be acquired only when appropriate. Umbanhowar’s box contains DIP? switches
for adjustment of those two parameters. The software program can adapt to either

the external or internal clock being used for the WAAG card (see Appendix B).

In the future a frequency doubler could be added between the Matec clock

3DIP stands for dual-inline-package.
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output and Umbanhowar’s clock signal box. This would further improve the ability

of the software to determine the phase of a pulse.

2.6.5 Additional considerations

Note that our method relies on having particles inside the cone of ultrasound directly
beneath the probe, so a large number of particles are needed. As the distribution
of particles beneath the probe is random and fluctuates, this method is best for
time-averaged quantities, similar to the Doppler techniques discussed in Refs. [141,
142, 143].

We found that new slip rings needed to be installed, in order to carry RF
pulses to the annulus without picking up unacceptable amounts of noise. We in-
stalled IEC Corporation model IEL-BX slip rings above the annulus (12 rings, with
6 dedicated for carrying two RF signals on coaxial cable lines). These slip rings can
handle signals from DC-100 MHz with very little distortion or noise pickup.

We are still determining what tracer particles are best to use. The impor-
tant characteristic of a particle is an acoustic impedance mismatch with water. The
acoustic impedance of a material is given by (speed of sound) x (density) [70]. How-
ever, most materials with a density similar to water (needed for neutral buoyancy
concerns) also have a similar speed of sound, and thus are acoustically matched
rather than mismatched. Thus, an ideal tracer particle would be a shell composed
of a dense material surrounding a bubble of air, such as a hollow stainless steel
sphere [70]. We are currently looking for hollow ceramic or glass particles of the

correct density and size.

2.7 Temperature control

Temperature control is important for our experiment for two main reasons. First,

we wish to conduct barotropic experiments, that is, experiments without a buoy-

51



ancy force as would be caused by temperature gradients in the annulus. Second,
it is important to know the temperature as the viscosity of the fluid is strongly

temperature dependent.

There are several sources of heat. The pump generates a certain amount of
heat, and the motor which drives the pump generates additional heat. As all of the
fluid passes through the pump, this is a significant problem. A second source of heat
is the halogen lights used to illuminate the particles for flow visualization (Sec. 2.2).
Originally we used 300 W halogen bulbs; by switching to 100 W bulbs, the heating
was greatly reduced. Additionally, an infrared absorbent coating is placed over the
light fixtures which reduces the amount of heat passing through. The illumination
is still sufficient for the particle tracking technique discussed in Sec. 2.2. A third
source of heat is the 2 kW motor which drives the rotating tank; a fan could be

mounted on this motor to cool it.

We use a Thermometrics glass-encapsulated thermistor to monitor the tem-
perature of the fluid. The thermistor is inside a hose upstream of the flow meter,
through which all of the fluid passes. By monitoring this thermistor we can maintain
a constant temperature for the duration of an experiment. An air-conditioning vent
is attached to a hose which is aimed at the experiment; by adjusting the position of
this hose the temperature of the experiment can be controlled. Typically the hose
points at the underside of the experiment, and the distance to the experiment is ad-
justed by hand as necessary (the temperature changes on a time scale of 10 minutes,
although often an equilibrium between the heating and the air conditioning can be
reached, keeping the temperature stable for hours without any adjustments). Also,
by pre-heating the tank and fluid, the experiment can be conducted at a higher
temperature where the heating caused by the pump and halogen lights is balanced
by the cooling of the rapid rotation and ambient air temperature. The pre-heating

is accomplished with a small portable heater placed near the annulus, while slowly
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rotating the annulus and pumping the fluid. Typically we conduct experiments at
25.5 £0.5° C.

For the experiments discussed in Chap. 4, low flow rates are used and it is
important to ensure the fluid is well mixed to minimize thermal variations. For these
experiments, the tank was spun up to 1.5 Hz and back down several times, while
pumping at a high rate, in order to thoroughly mix the fluid. For the experiments
of Chaps. 5 and 6, higher flow rates are used and thus the fluid is well-mixed during
the experiment. For all experiments, it is important to know the temperature to

determine the viscosity of the fluid.

2.8 Flow meter

To measure the flow rate, a flow meter has been installed on the rotating annulus.
When the small Micropump was used, it provided calibrated, known flow rates. The
larger Tri-Rotor pump requires a flow meter, as it is uncalibrated and the flow rate
fluctuates. Also, the pump rate drifts occasionally, necessitating feedback to keep
the rate stable.

We use an EG & G Instruments flow meter, model FT-10AEYW-LEG-1.
This is a turbine flow meter designed to work at flow rates between 50 and 2400
cm?/s. The flow meter is installed immediately upstream of the pump, that is, the
flow goes through the flow meter and next into the pump; this placement improves
performance. Two flow straighteners are installed on either side of the flow meter (10
diameters length of pipe upstream, and 5 diameters downstream). The flow meter
is designed to function in one direction only, although it does provide a signal for
flow in either direction. Because of the design of the turbine, the flow straighteners,
and the placement upstream of the pump, the accuracy in the reverse direction is
unknown.

The flow meter works with a modulated carrier (RF) pickoff. An oscillator
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circuit is next to the turbine blades, and the oscillation frequency is modulated by
the turning turbine blades. An EG & G model CA51 signal conditioner converts
this modulated carrier signal to a pulse output. This signal conditioner is mounted

on the annulus near the flow meter.

The pulses from the EG & G signal conditioner pass through the slip rings
of the annulus, which adds noise to the pulses. The signal is then passed through a
circuit we built which reconditions the pulses before sending them to the National
Instruments data acquisition card. The data acquisition program used for the hot
film probes (Sec. 2.5) also samples the pulses to determine the flow rate. The
frequency of the pulses is proportional to the flow rate, and thus the uncertainty of
the flow rate measurement is proportional to the time used to sample the frequency.
We typically use a sampling time of 1 s, resulting in an uncertainty of 1 Hz in
measuring the pulse frequency, corresponding to an uncertainty of 0.4 cm?3/s in flow

rate (typical flow rates are 100-400 cm3/s).

When we first used the flow meter, we were excited to be able to directly
measure the flow rate, but the results were disappointing. Figure 2.9(a) shows data
from an early measurement. The flow rate has fluctuations with a typical standard
deviation of 4 cm3/s. Occasionally even larger fluctuations are seen. The large
fluctuations were determined to be caused by a misalignment of the pump motor
and the pump; occasionally this would cause the pump to stick for a fraction of
a second and the pump rate would exhibit a large change. The misalignment was
also responsible for the smaller fluctuations. In addition, over a long period of time
(several hundred seconds) often the flow rate would drift, sometimes by as much as
40 cm3/s. This was especially the case when particles were in the annulus; as they
clogged the holes (Sec. 2.2) the impedance of the plumbing rose, and the flow rate
dropped.

To prevent these problems, the pump was realigned and feedback was added.
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Figure 2.9: Flow rate measured (a) before active control and (b) after active control
(spring 1997). Note the difference in vertical scales. The fluctuations seen in (b) are
smaller due to better alignment of the pump shaft with the pump motor, and the
active control. The quantization of the measurement is due to the sampling time
(1 s for both (a) and (b)); see the text for details.
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M. A. Bawany modified the hot film data acquisition program to provide a voltage to
the pump motor controller, which sets the motor speed. The flow rate is measured
by the program (as discussed above), and the output voltage is adjusted slightly
to compensate for the discrepancies between the measured and desired flow rates.
There is a tradeoff based on the sampling time for measuring the frequency of
the pulses coming from the flow meter: as this time is increased, the flow rate is
determined more precisely, but the feedback occurs less often. A sampling time of
1-2 s appears adequate. The adjustment of the output voltage is not proportional
to the mismatch in flow rate. Instead, the output voltage is raised or lowered by a
constant amount, unless the difference between the measured and target flow rates
is less than 1 cm?/s, in which case no adjustment is made. This was chosen to avoid

problems of overcompensation, and to allow the motor changes to be smooth.

Figure 2.9(b) shows the improvement in the flow rate control with the pump
realigned and the active feedback. The fluctuations have a standard deviation of 0.5
cm?/s, 8 times smaller than the results shown in Fig. 2.9(a). The alignment is be-
lieved to have cured the high frequency fluctuations, and the feedback compensates
for lower frequency drift. Typically the feedback voltage is observed to change on a

time scale of 5 s or longer.

The data acquisition program has an additional feature which is unused for
the experiments described in this dissertation. By allowing the target voltage to
change in time, the active feedback can adjust the flow rate in the experiment over
time. This allows us to adiabatically change the pump flux with a fixed rate of

change while taking data. This is discussed further in Appendix B.

Note that the flow meter has an inner diameter of 7/16”. All of the flow from
the pump passes through the flow meter, and it is likely that the flow meter accounts
for a large portion of the impedance of the annulus plumbing system. The hoses

attached to the pump have an inner diameter of 1”. Originally the flow was reduced
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from 1” to 7/16” over a length of about 12”. After constructing a fitting reducing
the flow over a length of 2 1/2”, the maximum possible flow rate increased by 30%.
It is probable that purchasing a new flow meter with a larger inner diameter will
increase the flow rate even further, although room must be made to accommodate

the flow straighteners (whose length is proportional to their diameter).

2.9 Pressure sensor

We have installed a pressure sensor between the inlet and outlet holes of the tank.
This sensor was not used for measurements in this dissertation.

We use a Motorola model MPX2010 (case 352-02) sensor, a silicon piezore-
sistive pressure sensor. The voltage output is linearly proportional to the applied
pressure. This voltage can be measured by the data acquisition program used for
the hot film probes (Sec. 2.5), that is, the voltage is read by a National Instruments
data acquisition card. The pressure sensor is installed to measure the pressure dif-
ference between a valve going to an inlet ring, and a valve going to an outlet ring
(see Sec. 2.1).

We found that the pressure sensor measurements were extremely noisy, one

reason these measurements are not reported in this dissertation.

2.10 Achieving high rotation rates

As discussed in Sec. 1.2.2, rapid rotation forces the flow to be predominantly two-
dimensional. For the turbulence experiments discussed in Chap. 6, high rotation
rates are especially important. To achieve high rotation rates, the annulus walls
are constructed from 2.8 cm thick pieces of Plexiglas, and held under compression
with several steel bands. 24 vertical clamps are placed around the outer edge of

the annulus to help hold the lid in place and to further reinforce the outer walls.
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Additionally, the Plexiglas lid is 5 cm thick, to prevent warping which had occurred

at high rotation rates in thinner lids (2 cm).

We wish to estimate the maximum possible rotation rate before the steel
bands will break. A conservative estimate of the yield strain of steel is 1.4 x 108
N/m?; at this strain, steel deforms elastically but the stress and strain are no longer
linearly related. The steel bands are 3.8 cm wide and 0.1 cm thick; their cross section
is 0.38 cm?, smaller than the cross section of the bolts holding the bands together
(0.50 ¢cm?). Thus a tension of 5.3 x 10*> N could result in significant extension of a

band; we will use this force as a conservative estimate of the breaking force.

To find the pressure on the outer wall, we can assume the entire mass of
water is rotating at the outer radius 7 = 43.2 cm. The pressure is then Feentripetal /4
using A = 27rh = 0.55 m? for the area of the outer wall. Feentripetal = pVrQ? and
so the pressure is P = 3.1f2 kPa, where f is the rotation rate of the annulus in Hz.
For f =2 Hz, P = 124 kPa = 18 psi = 1.2 atm.; for f = 4Hz, P = 500 kPa = 72 psi
= 4.9 atm. Assuming this pressure is transmitted uniformly to the steel bands, this
pressure generates a tension in the steel bands. By drawing a free-body diagram for
a small arc of the band and then letting the arclength go to zero, the relationship
between the pressure on a band and the tension is found to be T' = Phr. For the
steel bands, h = 3.8 cm and r = 45 cm, producing T' = 53f2? N when f is measured
in Hz. Our estimate for the breaking tension is 5.3 x 10% N, so at f = 10 Hz the
bands could break.

Our estimate for the pressure on the outer wall overestimates the pressure
of the water; a more careful calculation found the pressure to be 1.9f2 kPa [88],
60% of our estimate. However, it is reasonable to assume the Plexiglas outer walls
themselves can exert additional pressure on the steel bands, and so using the higher

value for the pressure is reasonable.

An additional consideration at high rotation rates is the balancing of the
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annulus. Dynamic balancing of the annulus was done by Brian Murphy, a research
engineer at the UT Center for Electromechanics, who advised us on dynamic bal-
ancing techniques. His work is continued by Charles Baroud who has re-balanced
the annulus as new equipment has been added. Currently a Silicon Microstruc-
tures model SM7130-002 accelerometer is mounted on the I-beams supporting the
annulus, on the side near the center, to measure horizontal shaking of the supports.
By monitoring vibrations of the accelerometer, the imbalance of the tank can be
detected. To balance the tank, a small weight (~500 g) is added near the edge
of the annulus. The tank is spun, and the amplitude of the accelerometer vibra-
tions is measured; the important quantity is the amplitude of the Fourier spectrum
peak at the rotation frequency (see Fig. 2.10). By adjusting the angular position of
the weight, and then adjusting the amount of the weight, this Fourier peak can be

minimized, at which point the tank is dynamically balanced.

An additional test by Murphy examined the resonant frequency of the an-
nulus system. By tapping lightly on the annulus with a mallet, a ringing at ap-
proximately 7.0 Hz can be observed; the resonant frequency when tapped in the
orthogonal direction is 9.4 Hz. The annulus does not appear to have any resonant
frequencies below 7 Hz. To increase these resonant frequencies the system would

need to be made stiffer.
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Figure 2.10: Accelerometer data taken at /27 = 2 Hz. (a) Time series from the
accelerometer (when a 600 g weight is placed on the edge of the annulus, r = 45
cm). (b) Power spectrum corresponding to (a); the vertical axis is in arbitrary units.
(c) The power at 2 Hz for various positions of the weight. For (a) the weight is at
195°. By placing a weight near 45°, the vibrations of the annulus can be minimized
thus balancing the annulus. The data shown in (c) are useful for finding the best
position of a weight, but do not determine the best size of the weight. Data taken
by C. Baroud.
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Chapter 3

Theory of Random Walks

3.1 Introduction to Random Walks

A wide range of diffusive processes can be interpreted as random walks. For example,
the Brownian motion of a passive particle in a homogeneous fluid is described as a
sequence of steps generated by random collisions with fluid molecules. As Einstein

showed [38], an ensemble of such particles will spread out with a variance
2(t) = (#*(t)) — (x(t))” = 2Dt (3.1)
ag A A .

where D is the diffusion coefficient. The broad applicability of this simple result is
a consequence of the Central Limit Theorem (CLT): a collection of sums of a large
number of statistically independent events will be Gaussian distributed, provided
that the distribution of the individual event sizes is not too broad. As applied to
random walks, the CLT implies that whenever the mean time between steps and
the mean square step size (second moment of the step size distribution) are finite,
normal diffusion will result.

In general, anomalous diffusion (0? o ¢7, with y#1) in physical systems
is a consequence of correlations generated by spatial or temporal coherence, and

the associated breakdown of the assumptions of the CLT [13, 68, 92, 126]. It is
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often still possible to describe the transport in terms of a random walk, with broad
distributions of step sizes or waiting times accounting for the correlations in the
motion. For a distribution P(I) of step sizes [ given by P(l) o [7# with p < 3,
the second moment is divergent, and the CLT is no longer applicable. The long
excursions which result in a divergent second moment are called Lévy flights. The

presence of Lévy flights usually leads to superdiffusion, defined by 1 < v < 2.

An example of a normal random walk is shown in Fig. 1(a,b), and a superdif-
fusive random walk is shown in Fig. 1(c,d). In both cases, P(l) ~ [7# for large [;
for the normal random walk shown p = 3.8 > 3 and for the superdiffusive random
walk p = 2.2 < 3. For the normal random walk, after many steps, the displacement
is the average effect of all of the steps. For the anomalous case, the displacement is
dominated by a few rare steps. This is the signature of anomalous random walks:
the motion is always determined by a few steps, no matter how many steps have

been taken.

Quantitative connections between the behavior of the distribution functions
and the exponent v have been made by many authors for symmetric random walks
[46, 66, 67, 124, 125, 153, 155]; this work is discussed in Sec. 3.4. We extend this work
by considering asymmetric, or biased, one-dimensional random walks, where steps
in one direction occur with a higher probability than steps in the opposite direction.
This can occur in situations such as charged particles moving in an electric field, or
particles carried by an asymmetric flow. We will examine the case of flights with
finite velocity. (Some authors use the term Lévy walks for motions with constant
velocity and reserve flights for instantaneous jumps.) When the CLT applies, it is
always possible to shift to a reference frame where v,,. = 0, and the presence of
asymmetry only affects the diffusion coefficient, not the exponent (v = 1). When
the CLT is not applicable, we find that the asymptotic behavior for symmetric and

asymmetric random walks can be quite different.
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(@) (b)

Figure 3.1: Random walk leading to normal diffusion (a) after 1000 steps; (b) after
10000 steps; random walk (Lévy flight) leading to superdiffusion (c) after 1000 steps;
(d) after 10000 steps. For both random walks, the mean step size (I) = 1, and the
angle is chosen randomly for each step. A horizontal bar of length 50 is beneath
each walk. For (a) and (b), the step size distribution decays as P(I) ~ 138 for large
I, and for (c) and (d) P(I) ~ I~%?; see the text for further explanation.
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The model we present examines anomalous diffusion arising from 1D (one-
dimensional) random walks with discrete steps of constant velocity, separated by
pauses (sticks) of random duration. Asymmetric random walks of this form were
used to model the first experimental observations of anomalous diffusion (of elec-
trons in amorphous materials) [109, 123], and were studied theoretically for cases
with broad distributions of sticking times (but with narrow distributions for flight
lengths) [124]. We consider power law forms for both sticking and flight distribution
functions, and provide the first comprehensive analysis of the relationship between
~ and the sticking and flight distribution exponents for both symmetric and asym-
metric random walks. Additionally, we analyze the case where the flight distribution
has a different power law decay for leftward and rightward flights. This case has not
been considered before, and can be strikingly different from the cases with identical

power laws.

Several other mechanisms can lead to anomalous diffusion, e.g., when the
successive discrete steps of a random walk have strong correlations [13]. Also,
random walks occurring in a random environment can lead to ultra-slow diffusion
(0%(t) ~ (Int)®, o > 0) [82, 128]. Fractional Brownian motion, a generalization of
Brownian motion that leads to anomalous diffusion, was proposed by Mandelbrot
and Van Ness in 1968 [76]. Fractional Brownian motion is characterized by the dis-
placement AX () having the same distribution function as the scaled displacement
a~f A(at) for all a and a specific Holder exponent H (0 < H < 1); H = 1/2 is
the case of normal Brownian motion. As in regular Brownian motion, individual
steps cannot be resolved. A comprehensive review of other mechanisms leading to

anomalous diffusion can be found in Ref. [13]. We do not consider these mechanisms.
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3.2 Random Walks in Experiments

Experiments done in fluids provide many instances of random walks and anomalous
diffusion [16, 17, 19, 97, 113, 132, 133]. A collection of particles in a nonuniform flow
will disperse as a consequence of the shear in the velocity field as well as the effects
of molecular diffusion. In most situations, advection due to fluid motion is much
faster than molecular diffusion, and large scale structures, such as as eddies, jets,
or convection rolls, will dominate the transport [144]. This results in correlations in
particle velocities for large distances and/or times, and can lead to a failure of the
assumptions of the CLT. In fully-developed turbulence, for example, the presence of
eddies distributed over many spatial scales results in superdiffusion (02 o 7, > 1),
and in 1926 Richardson argued that the separation of two particles in the atmosphere
is described by o2 o 3 [120].

Extremely long time transport of passive tracer particles in fluid flow will
be normally diffusive due to Brownian motion [165]. However, for many important
flows this time scale is enormously large; for example, in oceanic flows typical length
scales are L =~ 10 km; for a diffusion constant D ~ 10™° c¢m?/s, the diffusive time
scale is 7y = L?/D =~ 10° yr, while time scales of interest are typically ~ 1 yr.

Subdiffusion has been observed in both linear and planar arrays of vortices
of alternating sign [16, 17, 19]. The results have been interpreted as a simple ran-
dom walk comprised of sticking and flight events [19]. Particles carried by capillary
waves were found to move superdiffusively [113, 114], linked to the fractional Brow-
nian motion of the particle trajectories. Tracers in the ocean showed evidence of
superdiffusion, although lack of statistics prevented study of underlying mechanisms
[96]. In addition, experiments studying mixing of polymer-like micelles found that
transport was superdiffusive, and well described by a Lévy flight model [14, 97],
although direct observation of flight motions was not possible. In addition to fluid

experiments, anomalous diffusion has been observed in photoconductivity of amor-
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phous materials [109, 123] and motion of low density lipoprotein receptors on the
surface of human skin fibroblasts [49]. Lévy flights also appear in an analysis of
sub-recoil laser cooling of atoms [4, 115], where the mean time for atoms to leave

an optical trap is infinite.

3.3 Higher dimensions

There is little difference between 1D, 2D, and 3D random walks, unless there are
correlations between the steps of the random walk. For any random walk, the

variance can be broken up into components:
02=(F-F)—<F)-<F):0§+GZ+U§ (3.2)

in three dimensions, for example.

Usually it is simplest to consider a one-dimensional random walk when de-
riving theoretical results. This is the approach taken for the work discussed in this
chapter. The results derived for a one-dimensional walk apply equally well to higher
dimensions when the steps of the random walk are taken in a random (symmetrically
chosen) angular direction. Difficulties arise when there are extreme asymmetries in
the motion. For example, if a random walker moves in 2D, and alternates between
Lévy flight steps in the z-direction (with y held constant) and short steps in the
y direction (with z held constant), the random walk will be superdiffusive in the
z direction and would be normally diffusive or even subdiffusive in the y direction.
The overall variance would be superdiffusive, as seen in Eq. (3.2), dominated by the
x contribution to the variance.

The random walk model presented in this chapter is a one-dimensional model.
In Chap. 4 we discuss our experimental investigations of transport in a rotating fluid
flow consisting of an circular chain of vortices bounded on one or both sides by a

jet. The motion of tracer particles in the flow is naturally described as a 1D random
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walk, alternating between motion in the jet corresponding to steps, and waiting
times between steps while the particles are trapped in the vortices. As the jets
are are asymmetric (one is near the outer wall of the annulus, one near the inner
wall), the resulting random walk has some asymmetries as well. The results will be

compared with the theoretical results in this chapter.

3.4 Previous Theoretical Work

For simple cases, the variance of an ensemble of random walkers grows linearly with

time, as given by Eq. (3.1), with the diffusion constant D being given by

_ @3-
D=

(3.3)
The moments of [ are based on Pp(l), the distribution of step sizes (or flight sizes,
as we will use), and 7' is the mean time between the start of successive flights. This
result depends only on the first two moments of the flight Probability Distribution
Function (PDF) and finite nonzero T', but no other details of the random walk. The

mean position of random walkers is

() = <jlﬂ—>t, (3.4)

which is zero for a symmetric (({) = 0) random walk [13]. These results are true in
the limit ¢ — oo; at short times the behavior depends on the details of the random
walk.

For PDF’s that decay sufficiently slowly, the Central Limit Theorem no longer
applies. If Pr(|l|) ~ |I|™ and u < 3, the second moment (I?) is infinite (u > 1 for
the distribution to be normalizable). A random walk for this type of PDF is a Lévy
flight, and it has been shown that [46, 66, 125, 153] the variance scales with time
o%(t) ~ t7 with

y= 2 l<p<2 (3.5)
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y= 4—pu 2<u<3 (3.6)
y= 1 w>3 . (3.7)

In addition, for = 2 the variance grows as ¢2/In ¢, and for p = 3 the variance grows
as tln t [153]. These results are valid when the random walker moves at constant
velocity, taking flights with a length distribution given by Pr(|l|), or equivalently,
a distribution of flight times having the same asymptotic power law behavior. In
addition, the time 7" must be finite. Superdiffusive transport, 1 < v < 2, occurs for
2 < p < 3. When v = 2, the transport is ballistic, that is, the exponent is the same
as that of a collection of particles moving in different directions in straight lines,
with no pauses or changes in direction.

To consider cases where the T' — 0o, we allow the random walker to pause
(stick) between steps, and introduce the sticking time distribution (also called “trap-
ping” distribution). Again, we assume the behavior at large times decays as a power
law: Pg ~ t“. When v < 2 (with v > 1 for normalization), the first moment of the
sticking PDF (t;) is infinite and the variance has the possibility of scaling subdiffu-
sively. Shlesinger investigated the case where random walkers were stuck for varying
times between random (symmetrically chosen) steps with finite mean square step

size (u > 3), finding [124]
y= 1 v>2 (3.8)
y= v-1 l<v<2 . (3.9)

Shlesinger [124] also considered random walks with asymmetric steps ({I) # 0) and
found the scaling of the mean, (z) ~ (I)t?, with

= 1 v>2 (3.10)
B= v-1 l<v<2, (3.11)
and the scaling of the variance, 02 ~ 7, with

y= 4—-v 2<v<3 (3.12)
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y= 2v-—2 l<v<2. (3.13)

In the asymmetric case, the possibility for superdiffusion exists with broad sticking
PDFs. For example, when v = 2.5, v =4 — 2.5 = 1.5. This will be discussed further
in Sec. 3.5. Asymmetric random walks of this type describe transport of electrons
in amorphous materials [109, 123], where the asymmetry is introduced by a bias

voltage.

The case with power law sticking PDFs combined with symmetric Lévy flights
was examined by Klafter and Zumofen, who found for flights with constant velocity

[67]

Y= 24+v—p v<2, 2<pu<3 (3.14)

y= 4—p v>2, 2<pu<3 (3.15)

where Eq. (3.15) is the same as Eq. (3.6). This formula allows for the behavior to

be subdiffusive (y < 1) for sufficiently small values of v (1 < v < p — 1).

Random walks with broad sticking and flight distributions can be found in
Hamiltonian systems. Sticking behavior is usually associated with island chains near
closed, ordered regions of phase space, while flights occur between island chains or
in chaotic jets [68, 84, 85, 126]. The distributions were found to be well described
by power laws for both sticking [84, 85, 106, 159, 166] and flights [45, 46, 166]. In
some cases, sticking events in a map representation are equivalent to flights in the
full phase space [45, 46, 65, 167]. Maps with power law sticking behavior [43, 84]
and flight behavior [44] appear to be common. Transport in Hamiltonian systems
can be either normal or anomalous, depending on the structure of the phase space

[1, 26, 105].
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3.5 A model for asymmetric random walks

In results such as Eqgs. (3.5)-(3.7) and (3.14), (3.15), the random walk was assumed
to be symmetric (Pr(l) = Pr(—[)). In the absence of left-right symmetry, many
of these results change. For example, if the flights are exclusively in one direction
(Pp(l) = 0 when I < 0), the sticking occurrences will appear as flights in the
opposite direction when viewed from a reference frame centered on (z(t)) (which
might not be moving at constant velocity; e.g., Table 3.4). In cases such as this
the divergence of the second moment of the sticking PDF can lead to superdiffusive
behavior (Eq. (3.12)), because the sticking events will be Lévy flights as seen in the
moving reference frame.

In this section we use a model based on a one-dimensional random walk to
predict the asymptotic scaling of the variance: as ¢t — oo, 0%(t) ~ 7. The goal is to
find the dependence of v on the parameters of the model, and to examine differences
between symmetric and asymmetric random walks.

Consider a particle that alternates between sticking events (remaining at the
same location for some period of time), and constant velocity flights (moving to
the left (—z) or the right (+z)). The velocity of the leftward flights is v;, and the
rightward v,. (If v; and v, have the same sign, the motion is in the same direction.
Thus if v; < 0 and v, > 0 the flights are in the “leftward” and “rightward” directions,
respectively.) The probability of a leftward flight is p;; rightward, p, = 1 — p;. The
particles originally start at the origin £ = 0, and at time ¢t = 0 start flight events
with probability p% or sticking events with probability p% = 1 — p9..

Both flight and sticking events are of random duration. The PDF for flights
in either direction is given by the function Pr(t), and the PDF for sticking events is
given by Ps(t). For the moment, we make no assumptions about the forms of these
PDFs. Our goal is to find the PDF X (z,t) of the particle positions for large times,
following the procedure used in Ref. [155] which is similar to that of Ref. [66]. From
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this PDF we can calculate the variance o%(t) = (z2(t)) — (z(t))?, and extract the
scaling exponent y. The moments of z are obtained from the Fourier transform of
X:

= (z") . (3.16)

"X (k,t) ‘ _
k=0

(@) ok

We construct X (k,t) from simpler PDF's related to the particle motion. Let

&(z,t) be the probability that a flight event has a distance of = and a duration of ¢:
&(z,t) = [prd(z — vpt) + pid(z — vit)|Pr(t) . (3.17)

The Dirac delta functions ensure that the flights are made with the correct constant
velocity. Define ¥(z,t) to be the probability that the particle has moved a distance

z in time £ in a single flight event, and possibly is still moving:
o
U(z,1) = [prb(z — v,t) + pid(z — vt)] / drPp(r) . (3.18)
t

Similarly for sticking events, ®(t) is the probability that the particle has been mo-

tionless for at least duration ¢ and possibly will remain motionless:

B(t) = /t Y drPs(r) . (3.19)

In addition, we define two functions related to X. Let Y (z,t¢) be the proba-
bility of just starting a sticking event at z,t and Z(z,t) be the probability of just
starting a flight event at z,t. Then

Y(et) = plo(z)d(t) + /_ °:o da' /0 2 e — 1) (3.20)

t
Z(wt) = pYox)s(t) + / at'Y (2, 1)Ps(t — ') . (3.21)

0
The delta functions represent the initial conditions at ¢t = 0. The integrals evaluate

the probability of being at the correct location earlier, and then having moved to

(or stayed at) the current location to begin the sticking or flight event. X (z,t) can
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be defined in terms of these new functions, and we get:
t
/ dt'®(t — )Y (z,t') +
0
00 t
/ da:'/ dt'V(z — o't —t)Z(', 1) . (3.22)
—00 0

X (z,t) is the probability of getting stuck at location z at an earlier time ¢’ multiplied
by probability of still being stuck there now (at time t), added to the probability
of starting a flight somewhere earlier (at z',¢') multiplied by probability of flying to
location z now.
The integral equations can be solved by Fourier transforming in space and
Laplace transforming in time. Thus:
X(kys) = ®(s)Y(k,s)+ (k 8)Z(k, s)
[ ] [ps + i (k, 5)]
£(k, 5)Ps
p% + p§ Ps(k, 8)]

- é(ka S)PS
where s; = s + ikv;, s, = s + ikv,. (Each of the four terms in square brackets

+ [peAGsr) + piAs)] [ (3:23)

[ ] corresponds to one of the terms in the previous line). The function A has been

introduced for convenience:
Ms)=s 11— Pp(s)) . (3.24)
Note that

&(k,s) = prPr(sy) + piPr(s) - (3.25)
At this point X (k, s) has been completely expressed in terms of the Laplace trans-
forms of the two elementary PDFs for flight and sticking events, ]5F(s) and 155(3).

Using Eq. (3.16), we obtain (z) and (22) by taking derivatives of X (k, s):

Uave(PF +pSP5)(1 - IsF)

(z) 20~ B (3.26)
(@?) = 22 (1 — Pp+sPp)(1 — PrPs) + vl Ps(Pr — 1)sPF |
« (Pl +P5Ps5) (3.27)
s3(1 — PpPg)?
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Table 3.1: List of common symbols used in Sec. 3.6.

Symbol Meaning

T mean time between the start of successive steps

tp,ts minimum time for short flight, sticking events (see
Egs. (3.28) and (3.29))

(te), (ts) first moment of flight, sticking PDFs

1 power law decay exponent for the flight PDFs (see
Eq. (3.28))

v power law decay exponent for the sticking PDFs (see
Eq. (3.29))

0% variance exponent: g2 ~ t7
P, PY  probability that first event is a flight event, sticking event
DLy Dr probability a flight is to the left (—z), right (+z)
vy, Uy velocity in left direction, right direction
v; < 0 for leftward motion, v, > 0 for rightward motion

where vave = Prvy + PV, Vrms = \/Prv? +plvl2, and P~Fl = 8]5F/83. It is easy to
verify that X(k = 0,s) = (z°) = 1 as required for normalization. If v,y is set
to zero, the expressions provide the behavior for a symmetric random walk. The
results in Egs. (3.26) and (3.27) are exact for any form of Pp(t) and Ps(t); no

approximations have been made.

3.6 Results: symmetric and asymmetric random walks

Table 3.1 contains a summary of the important notation used in this section. For a
random walk alternating between flight events and sticking events, T' = (t¢) + (ts)
when both moments are finite (p > 2,v > 2).

At this point we assume specific forms for the PDF's, and use them to expand
Egs. (3.26) and (3.27). The probability distribution function (PDF) for flights in

either direction is given by the function Pg(t):

Pr(t)= 0 t<tp
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AtF t>tp (3.28)

where tp is a cutoff at short times to allow the function to be normalizable; the
normalization constant is A = (u — l)tﬁfl. Similarly, the sticking PDF is given by

the function Pg(t):

PS(t): 0 t<tg

Bt t>tg (3.29)

with B = (v — 1)tg_1. The scaling exponent y of the variance only depends on
the asymptotic behavior of the sticking and flight PDFs (the exponents p and v),
although some results that follow will depend slightly on the exact behavior at short
times; this will be clarified later. This particular short time behavior was chosen for
convenience in comparison with experimental results (see Sec. 4).

The asymptotic behavior of (z(¢)) and (x?(t)) at large ¢ (small s) can be
obtained from an expansion of Eqgs. (3.26) and (3.27) in powers of s. The Laplace
transforms of Pp(t) and Ps(t) (Egs. (3.28) and (3.29)) are

Pp(s) = As*7'T(1 — p,stp) (3.30)

Ps(s) = Bs" 'T'(1—v,sts) . (3.31)

Expanding the incomplete Gamma function for small arguments yields:

Pr(s) = —T(2—p)th ts# 41— (t)s
1 1
+5<t3)32 - 5(@’)33 . (3.32)

with a similar result for Ps(s). The expression in terms of the moments of the PDFs
is correct only for these particular PDF’s.

We begin with the symmetric case, vave = 0, so that (z) = 0 and the vari-
ance 02(t) = (z*(t)). The asymptotic behavior is found by putting the expansions

into Eq. (3.27) and keeping only the leading term. The results, summarized in

74



Table 3.2: Anomalous diffusion results for symmetric random walks. The variance
scales asymptotically as 02(t) ~ Ct"02, . (Vims = (pvf + prvZ)'/?), with coefficient
C and exponent v listed below for different values of the flight PDF exponent y and
the sticking PDF exponent v. v is correct for any PDF with the same asymptotic
scaling, while the values shown for C are correct only for the specific form of the
PDFs with the cutoff times ¢ and ts (Eqgs. (3.28) and (3.29)). Terms such as (t)

and (ts) are the moments of the flight and sticking PDF's, respectively.

Conditions Exponent v Coefficient C
t2
p>3 v>2 1 (<tf§‘|{zts>)

2 4 : e
2<pu<ld v> —H ((4—u)(3—u) )(<tf)+(ts))
l<p<2 v>p 2 2—p

3 1 2 v—1 sty ) ()t
w> <v< 14 (F(g_,,)r(,/)x f) S

2T (3— —-1,1—
I/<,U<3 ].<I/<2 2+1/—/,L (W)t% t‘lsu

Fig. 3.2(a) and Table 3.2, are in the form o2(t) = C(vmms)?t”. Figure 3.2(a) shows
the asymptotic diffusive behavior in the form of a phase diagram, with the different
shadings representing the ballistic, superdiffusive, normal, and subdiffusive regimes.
The transitions from one phase to another that occur as the exponents of the PDF’s

are varied are sharply defined only in the infinite time limit.

The results for the exponent 7 are in agreement with the earlier work dis-
cussed in Sec. 3.4. In addition we calculate the coefficients of the power law terms

which are also presented in Table 3.2.

The behavior displayed in Fig. 3.2(a) can be understood in terms of the
underlying behavior of the random walker. In all cases the variance is directly
proportional to (vrms)? = plvl2 + prv2, and this is the only dependence on p; or p,
and v; or v, (assuming vave = prvy + vy = 0). For the case of normal diffusion,

p>3andv >2 y=1and C = (t?«) / ({tg) + (ts)). Writing (t2)v2 ¢ = (I?) and

75



‘ <4>=o00 ‘ <tf2>:00‘

4
3 -—
2
<tS > =00
2 -—
30K <t> =00
:::::::'0000000000'::00
1+ T x ‘ T —
1 2 3. 4
2
(b) ‘ <tf>=oc ‘ <tf>=ooA
—
<> =
y=4-v s 7=
super-diffusive
—

Figure 3.2: Phase diagrams for variance of (a) symmetric and (b) asymmetric (or
biased) random walks. p and v are the exponents controlling the asymptotic power
law decay of the flight and sticking PDFs, respectively: Pp(tf) ~ t; " and Ps(ts) ~
t;Y, as t — oo. For each region, bordered by the solid lines, the relationship
between the variance exponent vy [02(t) ~ t7] and p and v is shown. The shadings
indicate areas where the behavior is normally diffusive (y = 1), subdiffusive (y < 1),
superdiffusive (y > 1), and ballistic (y = 2).
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(ts) + (t¢) = T reproduces the result for Brownian motion, Egs. (3.1) and (3.3).
When the flight PDF exponent p becomes less than three, (I2) diverges and the
behavior becomes superdiffusive. When (|/|) diverges as well, we have the limiting
case of ballistic motion. (In this case, (t7) and therefore T" also has diverged, thus
the flight motion dominates the transport completely, leading to ballistic motion.)
Likewise, when the sticking PDF exponent v becomes less than 2, T' becomes infinite
because of the divergence of (t;), leading to subdiffusive behavior as the transport
is inhibited. For both y < 3 and v < 2, competition between the Lévy flights
and the sticking leads to behavior that can be either subdiffusive or superdiffusive,

depending on which process is stronger (see Fig. 3.2(a)).

For the case when vaye # 0, we first compute the asymptotic behavior of
the mean (z) ~ Kv,.t? using Eq. (3.26). The results are presented in Table 3.3.
Again, these results can be interpreted through the underlying PDFs. In all cases
the mean is proportional to vaye, which contains all of the relevant information about
the asymmetry. When p > 2 and v > 2, () is finite and the mean grows linearly
with time, at a rate given by Kvaye = (I)/T. When (l) becomes infinite (u < 2), T
also diverges and the ratio (I) /T is equivalent to vaye. As predicted in Sec. 3.1, when
the sticking PDF has an infinite first moment, behavior becomes more complicated,

with the result that the mean grows slower than linearly in time.

The results for the variance in the asymmetric case are presented in Table 3.4
and Fig. 3.2(b). The phase boundaries are significantly different from the symmetric
case. The result in the region of normal diffusion (u > 3,v > 3) is once again
equivalent to Egs. (3.1) and (3.3), with (I?) having a more complicated form because
of the asymmetry. When either u or v is between 2 and 3, the resulting superdiffusion
can be thought of as arising from a Lévy flight mechanism. For 2 < p < 3, the flights
are Lévy flights; for 2 < v < 3, when shifting to a reference frame moving at constant

velocity (equal to (t¢)/((ts) + (ts)); see Table 3.3), sticking events appear as Lévy
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Table 3.3: Scaling of the mean position for asymmetric random walks (vayve = prvy +
pop # 0), (z) ~ Kuvaet?. B is correct for any PDF with the same asymptotic
scaling, while the values shown for K are correct only for the specific form of the
PDFs (Egs. (3.28) and (3.29)). u is the exponent for the decay of the flight PDF,
and v for the sticking PDF.

Conditions B Coefficient K
()
w> 2 v>2 1 T+
l<pu<2 v>yp 1 1
,U>2 l<r<<?2 v—1 (W)(tf)té_u

r(2— 1,1
l<pu<?2 l<v<py l14+v-—yp (W)t% tg”

flights moving “backwards” with the speed of the moving reference frame. Ballistic
motion occurs in the same region as the symmetric case, for similar reasons. When
1 < v < 2, motion can be either super- or subdiffusive. For larger values of v in
this range, motion is dominated by the “backwards” Lévy flight mechanism. For
smaller values, () grows too slowly (see Table 3.3), and the divergence of T' leads

to subdiffusion.

3.7 Strongly Asymmetric Random Walks

In this section we consider strongly asymmetric random walks. We allow the flight
PDF to be different for leftward and rightward flights, in addition to the two sources
of asymmetry considered previously (different probability for leftward and rightward
flights, different velocities for leftward and rightward flights). Specifically, we assume

that leftward and rightward flights have a different power law decay exponent.
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Table 3.4: Anomalous diffusion results for asymmetric random walks (vaye = pror +
pvp £ 0) 02 ~ Ct7, with the coefficients C' and exponent «y given in the table. T
is defined to be (ts) + (tf). p is the exponent for the decay of the flight PDF, and
v for the sticking PDF. « is correct for all PDFs with the same asymptotic scaling,
while the values shown for C are correct only for the specific form of the PDF's
(Egs. (3.28) and (3.29)).

Conditions ¥ Coefficient C
772 AR ] )
0>3 U >3 1 [(tf) (<t5)+<t§r)3) 2(t)* (ts) [0, +
t2
% U?ms - @Uz%ve]
T+{ts et
2<pu<3 v > 4—p m[vgms_%vgve]( )
57 (tg)2
u>v 2<v<3 4-v (4_u)2(3—u)( : Tgf> )V3ve
l<pu<?2 v>u 2 (2—/1)(’1)?1115—’02‘,6)
2(v)-T(2v— —2v
p>4—v 1<v<2 -2 (om0 v

2I'(3—p)

v<p<d-v 1<v<2 24v—u (rgaepis)t 't

rms
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3.7.1 Model

Again we consider a random walker alternating between sticking (remaining at the
same location for some length of time) and constant velocity flights. The flights
consist of two types: flights of velocity v;, with a distribution function Ppg;(t), and
flights of velocity v,, with a distribution Pg,(t). The [ and r subscripts are meant
to be suggestive of leftward and rightward flights, but the direction of the flights are
determined by the signs of v; and v,; if v; and v, have the same sign, the flights are
in the same direction. When ending a sticking event, the probability of a leftward
flight is p;, and the probability of a rightward flight is p, = 1 — p;. The random
walker begins at the origin = 0, and at time ¢ = 0 begins a flight (with probability
p%) or a sticking event (with probability p% = 1 — p%). The duration of sticking
events is given by the PDF Pg(t).

For the moment, we make no assumptions about the forms of the flight and
sticking PDFs. Our goal is to find the PDF X (z,t) of the random walker position
for large times, following the same procedure used in the previous section.

We reconstruct X (k,t) for the case of distinct leftward and rightward flight
PDFs. We need &(z,t), the probability that a flight event has a distance of z and a

duration of ¢:
&(z,t) = pré(xz — vpt) Prr(t) + pid(x — vit) Pry(t) . (3.33)

Following exactly the method used in the previous section, we find the Fourier-

Laplace transform (in space and time respectively) of X (r,t) to be:

i B 0 1 0 &k s

X(k,s) = [3_1(1 - PS(S))] [fi E(Zif)(;;(l:)]

P + 9§ Ps(s) ] (3.34)
1—&(k,s)Ps(s)

where the function A has been introduced for convenience:

+ [prxr + plS\l][

M (8) = pp(s + ikv,) L1 — Ppy(s + ikv,)) (3.35)
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and similarly for X;(s). Noting that

g(ka S) = pTﬁFr(s + ikvr) +pl]3Fl(s + 7;kml) ) (336)
X has been completely expressed in terms of the three elementary PDFs, Pg(s),
Ppy(s), and Pp,(s).

Using Eq. (3.16), we obtain () and (z2) by taking derivatives of X (k, s):
(p% + Py Ps)[Zr + Z)]

() = > = (3.37)

s%(1 —&Ps)

(%) = [(1—E&Ps)(Y, +Y}) — sPs(Zr + Z)(prvr Pry + porPry)]
2(])0 + po 155)
St (3.38)
where

~,.(3) = prvf(l — Pp, + SP}I?,,..), (3.39)
Z(s) = prop(1— Ppp), (3.40)

and similarly for Yi(s) and Z(s). If Pgi(t) = Pr.(t), these results reduce to
Egs. (3.26) and (3.27). The results in Egs. (3.26) and (3.27) are exact for any

form of Pg;,(t) and Ps(t); no approximations have been made.

3.7.2 Results

The asymptotic behavior of (x(¢)) and (z%(t)) as t — oo (s — 0) can be obtained
from an expansion of Egs. (3.37) and (3.38) in powers of s. This depends on Py, (s)
and Pg, which in turn depend on the particular form of P(t) for these functions.
After expanding for small s, the leading terms can be inverse Laplace transformed
to find the behavior for large ¢.

We choose flight and sticking PDFs to be of the same form as those used
previously (Egs. (3.28 and (3.29)). All PDFs have the form:

P,(t)= 0 t < to

Apl™ t2>1g (3.41)
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where « is either 7, u, or v for Pr,, Pr;, and Pg respectively, and ¢, is a cutoff at
short times to allow the function to be normalizable; the normalization constant is
Ay = (a — 1)t27 1. As before, the cutoff times t,,?,, and ¢, may be different. The
scaling exponent 7y of the variance only depends on the asymptotic behavior of the
sticking and flight PDF's (the exponents 7, i, and /), although again the coefficient of
t7 will depend slightly on the exact behavior at short times. The Laplace transforms
of the PDFs P,(t) (Eqg. (3.41)) have the same form as Eq. (3.30), allowing us to use

the expansion given in Eq. (3.32) again.

We start by computing the behavior of the mean (z) ~ K% using Eq. (3.37).
The results are presented in Table 3.5. These results can be understood in relation-
ship to the underlying PDFs. When all PDF exponents are larger than 2, the mean
grows proportional to (I) /T, that is, the mean step displacement divided by the time
between step. When a flight exponent is less than 2, the mean flight time is infinite.
In this situation, for an ensemble of random walkers, for any time ¢ the typical ran-
dom walker is still undergoing its first flight, so the mean position for the ensemble
of walkers grows as v,, the velocity of those walkers (assuming p < 1; otherwise the
relevant velocity is v;). When the sticking PDF has an infinite first moment (v < 2),
the mean position grows slower than linearly in time, with the growth dependent on
the flight behavior; on average, random walkers are undergoing their first sticking

event, and the growth of the mean is dependent on the rare walkers not sticking.

Similarly, we expand Eq. (3.38) using Eq. (3.32) to find (z?), and ultimately
to find o2(t) = (z2) — (z)2. The results are shown in Fig. 3.3(a) and Table 3.6.
The results depend only on the smallest two PDF decay exponents, but are almost
completely symmetric between flight and sticking behavior. The variance growth
exponent 7y in particular is determined by the smallest exponent, and in some cases
the second smallest exponent. Note that the transitions from one phase to another

that occur as the exponents of the PDF’s are varied are sharply defined only in the
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Table 3.5: Scaling of the mean position for strongly asymmetric random walks.
(z) ~ KtP. B is correct for any PDF with the same asymptotic scaling, while the
values shown for K are correct only for the specific form of the PDFs (Eq. (3.41)).
Without loss of generality, we assume that y is the smaller of the two flight decay
exponents. v is the decay exponent for the sticking PDF. In the expressions for K,
(1) = proi{te) +prop(ter) and T = pi(tpp) + pr(trr) + (ts). These results are similar
to those given in Table 3.3.

Conditions B Coefficient K
> 2 V> 2 1 /T
l<pu<2 v>yu 1 Uy
l _
,U>2 l<rv<<?2 v—1 (W)t}j'j

,T(2— 1
l<p<2 1l<v<py l14+v-—yp (%)pﬁﬁ Lyl v

infinite time limit.

As is the case for the mean (z) discussed above, the behavior can be under-
stood through the PDFs. Let a3 be the smallest of the PDF decay exponents. If
a1 > 3 then all three PDF's have finite first and second moments, and the Central
Limit Theorem must apply. In this case the growth is normally diffusive, that is,
v =1 1If 2 < a; < 3, the second moment for that PDF is infinite; this is the
situation where flights are Lévy flights. The mean position scales as (z) ~ t, and
the growth in the variance results from spreading about this mean position. As ex-
pected for situations with Lévy flights, the growth is superdiffusive. If the smallest
exponent is the sticking exponent (that is, if @; = v), the sticking events appear to
be Lévy flights in the reference frame co-moving with the mean position (x), and
this accounts for the superdiffusive growth of the variance.

For the case when 1 < a; < 2, the first moment for the corresponding PDF is
infinite. On average, all random walkers are undergoing their first flight (or sticking)

event corresponding to this PDF. Thus, the growth in the variance comes from the
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Figure 3.3: (a) Phase diagram for the variance for strongly asymmetric random
walks. a1 and ag are the exponents controlling the asymptotic power law decay
of the PDFs: P,(t) ~ t @ for t — oo. Of the three PDFs controlling the behav-
ior (flights to the left, flights to the right, sticking), @; and as are the lowest two
exponents, although by symmetry of the results for this graph it does not matter
which exponent is the smallest. For each region, bordered by the solid lines, the
relationship between the variance exponent y [02(t) ~ #7] and a7 and ao is shown.
The shadings indicate areas where the behavior is normally diffusive (y = 1), subd-
iffusive (y < 1), and superdiffusive (7 > 1). (b) A copy of Fig. 3.2(b) for comparison
(asymmetric random walks). The axes for (b) are analogous to the axes for (a).
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Table 3.6: Anomalous diffusion results for strongly asymmetric random walks: 02 ~
Ct7, with the coefficients C' and exponent <y given in the table. In the table, the
a;’s represent the sorted decay exponents of the PDFs (a; < a2 < «a3). The
variable p; represents (p;, pr, 1) if o; corresponds with (7, u, V) respectively; similarly
v; represents (v, vy,0). 7; is defined in terms of the cutoff times (see Eq. (3.41)):
Ti = (tpy, trp, ts) if a; corresponds with (n, u, v) respectively. T' = 23:1 p;(t;) and
L, = 2?21 pj(vi —v;)(t;). (Note that this definition for T' is equivalent to the one
given in Table 3.1.) « is correct for all PDFs with the same asymptotic scaling,
while the values shown for C are correct only for the specific form of the PDFs
(Eq. (3.41)).

Conditions ¥ Coefficient C
a; >3 1 2(t;)*(1)°T > + Xl pi(t]) T L7
2<a; <3 4— e (4_(112%_&2) (p”;;_l)
01 <2  m>d-or 200-2  (madhICu Rt
a; <2 a<4d—a1 2+a1 —ay (F(Z—;S(I?(;ifx)l—ag))pyrgf:i (v1 —v9)?

P17,
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rare random walkers which finish those events. If the second smallest PDF exponent
a is sufficiently small, v depends on both a1 and «s as shown in Fig. 3.2.

The results for the exponent -y are similar to those shown in Fig. 3.2(b), with
the exception of the ballistic area for u < 2 in Fig. 3.2(b). The ballistic motion for
the case with u = 7 results as on average, random walkers are undergoing their first
flight, but the flight can either be leftward or rightward; for the strongly asymmetric
case (u # n) one direction dominates. With y = 7, random walkers going left diverge
from those going right; with u # 7, random walkers spend most of their time going
in the same direction, and thus the divergence no longer occurs. Thus, for y # n
and either 1 < p < 2or 1 < n < 2, the growth is no longer ballistic, and can in fact
be subdiffusive (see Fig. 3.3(a)).

The results can be easily extended to random walks with multiple types of
flights, by slightly modifying the coefficients listed in the Tables: all sums over the
three types of events (leftward flights, rightward flights, sticking events) are modified
to account for the additional flight types.

3.8 Discussion

3.8.1 Exponential PDFs

Exponential PDFs, either sticking or flight, are common in physical situations. In
this case, all moments are finite, and the PDF can be treated as a power law with
u — oo or v — oo. If both flight and sticking PDFs have exponential tails, the
Central Limit Theorem applies, and the behavior is normally diffusive.

For random walks with exponential sticking PDFs, there is no difference
between symmetric and asymmetric random walks in the asymptotic transport be-
havior, and the results of Eqs. (3.5)-(3.7) (e.g., v =4 — p when 1 < p < 2) apply.

Random walks without sticking events can be treated the same way (all moments

86



are finite and equal to zero) and again Eqs. (3.5)-(3.7) describe the behavior as a
function of u. The mean of asymmetric random walks when the sticking PDF is

exponential grows linearly in time ((r) ~ vayet) for all values of u.

Exponential flight PDFs can lead to different behavior, depending on the
symmetry. If 2 < v < 3, asymmetric random walks are superdiffusive while sym-
metric walks are normally diffusive, as seen in the preceding subsection. The case
where “flights” are actually steps of constant length, as has been considered previ-
ously [13], is equivalent to exponential flight PDFs — again, the important aspect
is that all moments of the flight PDF are finite, and again, asymptotic behavior

depends on the presence or absence of symmetry.

Using a decay exponent of oo for exponential PDF's allows a comparison to
be made with the Hamiltonian model of Ref. [33]. This model describes a 2D flow
consisting of a chain of vortices in a shear flow. Tracer particles alternate between
being trapped in vortices and moving in jets. In several cases, flight times in the
jets and sticking times in the vortices are well-described by power law PDFs. In
particular, this Hamiltonian model yields different PDF's for leftward and rightward

flights, and thus the results can be compared with our model.

Reference [33] considers three cases in detail, and finds for the exponents
(,7m,v) the values (00, 00,2.9) (case a); (3.26,00,2.4) (case b); and (o0, 1.89,2.0)
(case ¢) (where an exponent equal to oo represents non-power law decay). The
values of «y for cases (a), (b), and (c), respectively, are 1.42, 1.53, and 1.80, while the
corresponding predictions of our analyses are 1.10, 1.60, and 1.89. The agreement is
good for cases (b) and (c) but not for (a). This suggests that perhaps the trajectories
in the Hamiltonian model have hidden correlations, that is, that the motions in the
jets and vortices are correlated. It is also possible that the asymptotic time limit
hasn’t been reached for case (a). For both cases (a) and (c), the exponent 8 in

(x) ~ tP is unity, in agreement with the predictions of our model. A value of
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could not be determined for case (b).

3.8.2 Correlated Random Walks

Our results have been derived for independent steps and pauses. For cases where
the steps are correlated, the results can be different (for example, if all of the steps
are in the same direction for a given random walker, or if all pauses are the same
length). In some cases, random walks with short-range correlations can be treated
as random walks with uncorrelated steps on a longer time scale. In this way the
results for the asymptotic behavior can still apply. This approach is discussed in

Ref. [13].

3.8.3 Higher order terms

The asymptotic behavior of (x) and (z2) depends only on the leading terms in the
expansion of Egs. (3.26), (3.27), (3.37), and (3.38). In order to study the approach
to the asymptotic limit, it is necessary to calculate higher order terms. In Appendix
A, we use Eq. (3.32) for the expansion of the Laplace transform of the PDFs to
produce the second order terms, which are tabulated there. The variance will scale
in time, generally, as 02(t) ~ Ct” + C't” with 7' < . The asymptotic behavior,
given in the previous sections, will always be given by the largest exponent.

As discussed in Chap. 4, crossover times must be considered in deducing the

2

anomalous diffusion exponent from data. If the variance o~ is given by:

) =at? + b7, y>4 (3.42)

then the slope on a log-log plot is given by d(In ¢2)/d(In t):

Yty /e
SlOpe(t) - 1 + (b/a)t,yl_,y 9

(3.43)

which as ¢ — 0 has the value 4/ and as ¢ — oo has the value v, as expected. If

~ — ' is small, the time to crossover to the asymptotic behavior is very large. For
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Figure 3.4: Graph of slope of the function Ct” + C't? for v = 1.40, v/ = 1.05,
corresponding to the predictions of the model for y = 1.95,v = 1.35 (measured
from the experiment; see Chap. 4). The constants are C = 0.055 and C' = —0.10
(from Table A.4, with p; = 0, p, = 1, v2 , = v2,, = 0.0058 rad/s, tr = 22 s, t5 = 10

rms ave
s, and Pg = PY = 0.5; again, these values are taken from the experiment). There is

a broad region with changing slope. (Figure from Ref. [155].)

example, in Fig. 3.4, with b/a = —1.82, v = 1.40 and 4 = 1.05, it takes 400 s for
the measured exponent to get below 1.5, within 0.1 of the correct asymptotic value.
(When b/a is negative, as in Fig. 3.4, there is a divergence of the slope when the

denominator vanishes in Eq. (3.43).)

3.8.4 Conclusions

For most random walks, the Central Limit Theorem applies and the variance grows
as 02(t) ~ 17,y = 1. We have investigated cases where the random walk alternates
between flight (movement) and sticking (motionless) behavior, and where the flights
consist of two distinct types. When the Central Limit Theorem no longer applies,
the variance can grow either superdiffusively or subdiffusively, depending on the
exact behavior of the random walk. If the random walkers spend part of their time in
either flight or sticking behavior with (¢2) = oo for that type of behavior, anomalous

diffusion usually occurs (with one exception shown in Fig. 3.2(a).) We find that
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adding asymmetries to the random walk can have strong qualitative changes to
the behavior. In particular, when the first moment of any of the flight or sticking
PDF's is infinite, the variance can grow either subdiffusively, superdiffusively, or even

ballistically, depending on the decay rate of each PDF.
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Chapter 4

Random Walks in Experiments

4.1 Motivation

The mixing of passive impurities in fluid flows depends critically on the structure
and time dependence of the velocity field. In the absence of a flow, Brownian motion
of individual tracer particles results in molecular diffusion. If the fluid is moving,
advection of tracer particles by the flow results in significant enhancements in the
transport rates.

In this chapter we present experimental measurements of Lévy flights and
superdiffusive transport in a two-dimensional flow in a rotating annulus [132, 133,
154, 155]. Transport in a two-dimensional flow can be analyzed from a Hamiltonian
perspective [3]. Given a stream function 1 (z,y,t), the equations describing particle

motion in the flow are given by
dz/dt = -0 /0y, dy/dt = O/ 0z, (4.1)

which are Hamilton’s equations of motion with 1 as the Hamiltonian and z and
y as the conjugate coordinates. The path of a passive tracer in a two-dimensional
flow is, therefore, the phase space trajectory of a Hamiltonian system. If v is

time-independent, the equations of motion are fully integrable and trajectories lie
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Figure 4.1: (a) Phase space portrait for an ideal time-independent (integrable) sys-
tem; all trajectories are closed curves. (b) Poincaré section for a time-dependent
(non-integrable) system; some trajectories lie on closed curves (“KAM tori”), but
there are large regions (the chaotic sea) with chaotic trajectories, represented by
the dotted areas. For the fluid flow in the annulus, the phase space is real space.
(Figure from Ref. [133].)

on closed curves. In time-independent cellular flows, for example, particles within
a vortex (a cell) ideally remain trapped indefinitely; see Fig. 4.1(a). In reality
[17, 130, 165], molecular diffusion allows tracers eventually to escape from the vor-
tices, although the time scale for the escape can be quite long compared to the

characteristic times for the dynamics (e.g., vortex turnover time).

If the flow is time-dependent, the Hamiltonian phase space (real space for
fluid mixing) can be divided into ordered and disordered regions; see Fig. 4.1(b).
Tracer particles in the disordered regions follow chaotic trajectories. This behavior
is termed Lagrangian chaos or chaotic advection [3, 98]. The resultant particle
trajectories are often far more complicated than might be expected for a laminar
flow. In the absence of molecular diffusion, the curves (invariant surfaces) dividing
the ordered and disordered regions act as impenetrable barriers that tracer particles

cannot cross.

The motion of tracer particles within the disordered regions is affected by

the invariant surfaces (KAM tori) or their remnants (Cantori). Particles that pass
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close to an invariant surface remain in the vicinity of that surface for a long (but
finite) time [84, 166]. The persistence of trajectories near closed surfaces results in
long-time sticking of particles. Similarly, if a flow contains jet regions and Cantori,
long-range and long-time excursions called flights are possible. As discussed in
the previous chapter (Sec. 3.4), flights and sticking behavior are both common in

Hamiltonian systems.

4.2 Flows Studied

For these experiments, a 6 cm tall Plexiglas annulus with inner (outer) radius of
10.8 (19.4) cm is inserted into the tank to act as a barrier; this barrier, by the
Taylor-Proudman theorem, divides the flow into inner and outer regions. The flows
are studied in the outer region. In all cases, the flows have a sharp velocity gradient
above the edge of the Plexiglas barrier. This shear layer is a Stewartson boundary
layer, so it does not become unstable. Two fluids are used for these flows, a water-
glycerol mixture (38% glycerol by weight) with a kinematic viscosity v = 0.03 cm?/s,
and water with v = 0.009 cm?/s.

Flows are produced in the annulus by pumping the fluid into and out of the
tank through the 0.26 cm diameter holes in the bottom. The holes are arranged
in three concentric rings of 120 holes each at radii 18.9, 27.0, and 35.1 cm, as
discussed in Chapter 2. We study transport in flows generated with six different
forcing techniques. The time-dependence of some of the flows are similar, so in this
dissertation we label some of the flows by their structure (number of vortices). The

six flows are:

1. Time-independent flow with six vortices. The pumping rate is 45 cm®/s, and
the water-glycerol mixture is used. The tank rotation rate is 1.5 Hz. The inner
(outer) ring of holes acts as a source (sink) through with fluid is pumped into

(from) the tank. The resulting radial forcing flow couples with the Coriolis
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effect to produce a strong azimuthal jet that rotates (relative to the tank)
in the direction opposite the rotation of the tank. The counter-rotating jet
results in a shear layer above the outer ring of holes, which is unstable to the
formation of a chain of vortices that precesses around the tank [131] (see for
example Fig. 4.3). A similar vortex chain would form above the inner ring of
holes, but the Plexiglas barrier suppresses this shear instability (and this is

the reason for the barrier — to simplify the resulting flow).

For the time-independent flow, six vortices were present. In the reference frame
co-rotating with the vortex chain, the flow is time-independent (Fig. 4.2(a)).

This flow should not have chaotic mixing; tracers should follow the streamlines.

. Seven-vortezr flow with quasi-periodic time dependence (Fig. 4.3). The pump-
ing rate is 45 cm?/s, and the water-glycerol mixture is used; the difference
between this flow and the time-independent flow is the initial condition used,
which for this flow resulted in the presence of seven vortices. To generate the
seven-vortex flow instead of the time-independent flow, the pump was quickly
turned to its final value immediately after the final rotation rate of the annulus
was reached, but before the bulk fluid had spun up to this rotation rate. For
the time-independent flow, the bulk fluid was allowed to come to rest relative

to the tank before the pump was turned on.

In the reference frame co-rotating with the vortex chain, this flow is time-
periodic; in the reference frame of the tank, the motion of the vortices around
the annulus results in quasi-periodic time dependence (Fig. 4.2(b)). This flow

is termed “modulated wave flow” in Ref. [154].

. Siz-vorter flow with quasi-periodic time dependence. This flow is generated
with the same techniques as the time-independent flow, with one difference:

the radial forcing has a non-axisymmetric perturbation. The forcing flow
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Figure 4.2: Velocity time series and power spectral density P(f) obtained from
hot film probe measurements of the azimuthal velocity component at r = 35.1 cm:
(a) time-independent flow; (b) seven-vortez flow with periodic time dependence in
the reference frame co-rotating with the vortex chain (see Fig. 4.3); (c) siz-vortex
flow with periodic time dependence in the vortex chain reference frame; (d) five-
vortex flow with chaotic time dependence; (e) four-vortex flow with chaotic time
dependence (see Fig. 4.4); (f) weakly turbulent flow (see Fig. 4.5). These data are
taken in the tank frame of reference, as opposed to the co-moving frame of reference
used for the particle pictures in this chapter.
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Figure 4.3: The seven-vorter flow is revealed by the trajectories of 20 particles
tracked for 300 s in a reference frame co-rotating with the vortices. In this refer-
ence frame, the vortex chain is sandwiched between two azimuthal jets. This flow
has periodic time dependence in this reference frame. The inner and outer circles
represent the annulus boundaries, and the grey circle indicates the location of the
Plexiglas barrier. (Figure from Ref. [154].)

96



through one 60° sector of source and sink holes is restricted to less than half
that for the rest of the forcing holes. Thus the vortex chain is perturbed as it
moves past this constricted sector, with the period of the perturbation being

the time for a vortex to precess around the annulus (70.0 s).

In the reference frame of the vortex chain, the flow is time-periodic. In the
reference frame of the tank, the flow is also time-periodic (Fig. 4.2(c)), as
the perturbation is stationary with respect to the tank. In all other reference
frames, the flow is quasi-periodic in time. This flow is termed “time-periodic

flow” in Refs. [133, 154].

. Five-vortex flow with chaotic time dependence. This flow is similar to the six-
vortex flow, except that the flux through the perturbing sector is completely
shut off. There are still well-defined vortices in this flow, but the number of

vortices alternates between five and six over long periods of time.

This flow has chaotic time-dependence, as can be seen from the hot film probe
measurements (Fig. 4.2(d)). The word chaotic in this case denotes Eulerian
chaos, that is, a chaotic velocity field, as distinct from Lagrangian chaos of the
particle trajectories (defined in Sec. 4.1). This flow is termed “chaotic flow”
in Refs. [133, 154]. We do not actually know this flow is chaotic in the sense
of positive lyapunov exponents; the noise floor shown in Fig. 4.2(d) is higher

than the previous flows, a signature of chaos.

. Four-vortez flow with chaotic time dependence (see Fig. 4.4). The pump flux
is 52 cm® /s, water is used rather than water-glycerol, and the rotation rate is
1.0 Hz rather than 1.5 Hz. Rather than the inner and outer forcing rings, this
flow uses the inner and middle forcing rings (r = 18.9 c¢cm and 27.0 c¢m), to
allow the vortices to be larger, and prevent an inner jet from forming, as can

be seen in Fig. 4.4.
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Figure 4.4: The four-vortex flow is revealed by the trajectories of 12 particles tracked
for 100 s in a reference frame co-rotating with the vortices. The inner and outer
circles represent the annulus boundaries, and the grey circle indicates the location
of the Plexiglas barrier. (Figure from Ref. [155].)
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At this high pumping rate, the motion of the vortices is chaotic, as shown
in the velocity power spectrum shown in Fig. 4.2(e). As for the five-vortex
flow, this is Eulerian chaos. This flow was termed “chaotic flow” in Ref. [155].
(Again, the chaos of this flow has not been rigorously confirmed, but the power
spectrum is reasonable evidence of the chaos of the flow, as are the qualitative

observations of the vortex motion.)

6. Weakly turbulent flow (see Fig. 4.5). This flow was generated using water and
a special forcing configuration. Only the outer ring holes were used (r = 35.1
cm). The ring is divided into 60° sectors, alternating between sources and
sinks. The resulting flow consists of vortices of both signs, and there are no
persistent jets or other structures. The pump flux is 45 cm?3/s, but all of this
flux goes through only one ring of forcing holes rather than two. The rotation
rate was 1.5 Hz. Note that the previous flows are all laminar; this is the only

velocity field that is turbulent.

The velocity power spectrum consists of broadband noise and no dominant
spectral components; see Fig. 4.2(f). This flow is termed “turbulent flow” in

Ref. [133] and “weakly turbulent flow” in Ref. [154].

The flows are summarized in Table 4.1.

4.3 Analysis techniques

After a typical experimental run of 4 hours, we have tracked typically 5-10 tra-
jectories with duration greater than 20 minutes, 30 with 10-20 minutes duration,
and several hundred with 2-10 minutes duration. Statistics for the longer times are
improved by repeating the experiments with the same control parameters (but see

discussion in Sec. 4.5).
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Figure 4.5: Two trajectories show the lack of long-lived coherent structures in the
weakly turbulent flow. The beginning and end of one trajectory is marked with
circles, the other with squares; both particles start at the far right. The inner and
outer circles represent the annulus boundaries, and the grey circle indicates the
location of the Plexiglas barrier. (Figure based on Ref. [154].) The particles are
shown in the reference frame of the annulus.
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Table 4.1: Summary of the flows investigated in this chapter, with kinematic viscos-
ity v, pump flux F, and dimensionless numbers Ro, Ek, and Re (calculated using
U = 3 cm/s as the typical velocity for all flows). The rotation rate Q = 1.5 Hz for
all flows (except the four-vortex flow as noted). Time dependence listed is in the
reference frame co-rotating with the vortex chain.

Flow name v (cm?/s) F (cm3/s) Rox 10> Ekx10° Re
Time-independent  0.03 45 4.0 4.0 400
(with six vortices)

Seven-vortex?® 0.03 45 4.0 4.0 400
(time-periodic)

Six-vortex? 0.03 45 4.0 4.0 400
(time-periodic)

Five-vortex® 0.03 45 4.0 4.0 400
(Eulerian chaos)

Four-vortex? 0.009 52 12 2.0 1000
(Eulerian chaos)

Weakly turbulent® 0.009 45 16 1.2 1100

“different initial conditions.
bazimuthally asymmetric forcing perturbation.

“azimuthally asymmetric forcing perturbation, even stronger than for the six-vortex flow.
dusing middle forcing ring, rather than outer; Q = 1.0 Hz rather than 1.5 Hz.

special forcing used, see text.

e
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The transport is analyzed as a one-dimensional process in the azimuthal

direction 6. The variance is calculated by the relations
o*(t) = ((A0(t,T) - (A0(t,7))?) (4.2)
Ab(t,7) = 6(r+t)—0(r) |,

where the ensemble average is over 7 for individual trajectories and over the different
trajectories in the run. This procedure treats each tracer as though starting from the
same angle at the same time. This method is accurate for times greater than typical
vortex turnover times (typically 10-20 s) but results in a variance that grows as t2
for short times. Only those trajectories that display both sticking and flight events
are used in the calculation of the variance. The first and last events (sticking or
flight) are removed to avoid any biasing. (That is, when a particle is first observed,
it is in the middle of an event; we consider the trajectory only after this event has
finished, so that all particles are considered at the beginning of a flight or sticking
event, rather than in the middle of an event.) Different analysis techniques were
examined to insure that the results are not strongly dependent on the biasing effects.

Sticking and flight time probability distribution functions (PDFs) are deter-
mined from local extrema of 6(t); see, e.g., Fig. 4.8. A flight is identified by an
angular deviation Af > Oyortex (angular width of a single vortex) between succes-
sive extrema, and the sticking events are the intervals between flights. The PDF's
are normalized histograms of these events. Care must be taken when constructing

these PDF's from the data. Our procedure is:
1. Take the logarithm (base 10) of all times.
2. Make a histogram of the logarithm of the times.

3. Convert from the histogram to probability by taking the number of counts in
each histogram bin, and dividing by the width (in seconds) of the bin; each

bin has a different width as the bins are spaced evenly in logarithm-time.
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4. Normalize the resulting distribution function such that the integral is 1 (as
required for a probability distribution function); again, the normalization must

take into account the variable width of each bin.

5. Plot the resulting PDF on log-log or log-linear scales. At this point, the PDF
is correct as plotted. These techniques have been checked with artificially

constructed data sets with known power law forms.

The PDFs are adjusted to correct for biases toward shorter sticking/flight
times, due to the finite duration of the measured trajectories. The adjustment is
determined by generating long, artificial trajectories numerically with known, ideal
power law sticking and flight time distributions. These long trajectories are then
chopped randomly into smaller sections with a distribution of durations comparable
to those in the experiment. PDFs determined from these chopped trajectories are
also biased toward smaller times. The adjustment is determined by comparing the
PDFs from the chopped trajectories to the ideal PDFs (both from numerical data);
the exponents characterizing the PDFs for the chopped time series are about 0.3
larger than for the original long time series. Note that all reported exponents in
this chapter are the corrected values; the values measured directly from the PDF's

are reported in footnotes for each PDF figure.

4.4 Results

4.4.1 Time-independent flow: no chaotic mixing

Ideally, particle trajectories in a time-independent flow fall on closed streamlines
and there is no chaotic advection. While molecular diffusion of the tracer particles
is completely negligible on the time scale of the experiments, slight imperfections
due to noise (mainly from variations in the pumping, although see discussion in

Sec. 4.5), Ekman pumping, and finite-size particle effects can have a noticeable effect
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on the trajectories (as discussed in Sec. 2.3). Such imperfections are inevitable in
an experiment, even when Fourier spectra indicate that the velocity field is time-
independent, as is the case for the flow in Fig. 4.6. The imperfections allow tracers to
wander between neighboring streamlines, apparently filling the interior of a vortex;
see Fig. 4.6(a). The imperfections occasionally lead to the escape of a tracer particle
near a separatrix, but we find that in practice tracers remain trapped for long
periods of time. Trapping times of 800 s (approximately 40 vortex turnover times)
are common; see Fig. 4.6(a). Similarly, tracers that start in a jet remain in the jet

for long times; see Fig. 4.6(b).

The azimuthal coordinate 6(¢) for a particle in a vortex oscillates about
a constant value, while for a particle in a jet with constant velocity, (¢) grows
linearly with time, as shown in Fig. 4.6(c). In the absence of noise, the variance of

a distribution of particles grows as ¢? (ballistic separation) [89].

4.4.2 Time-periodic flows: power law flights

Chaotic advection is observed in the seven- and six-vortex flows, the two flows with
periodic time dependence in the reference frame co-rotating with the vortex chain.
Particles frequently make transitions to and from vortices. This is seen in Fig. 4.7.
Instead of being trapped indefinitely, particles have sticking events interspersed with

flights in the jet regions.

This intermittent sticking/flight behavior is apparent in plots of 6(t), as
shown in Fig. 4.8. The observed sticking times and flight times range from ~10 s
to ~600 s. The lower boundary of ~10 s is half a vortex turnover time. The vortex
turnover time, ~23 s, can be measured from Fig. 4.9, a graph showing the time
a particle takes to move halfway around a vortex plotted against the angle moved
through (with respect to the center of the annulus, in the reference frame moving

with the vortex chain). This graph was obtained by taking the difference in time and
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Figure 4.6: (a) and (b) Tracer particle trajectories in the time-independent flow,
viewed in a reference frame co-rotating with the vortex chain. (c) The azimuthal
displacement as a function of time for the particles in (a) and (b); the starting angle
0(t = 0) is arbitrary. The inner and outer circles represent the annulus boundaries,
and the grey circle denotes the Plexiglas barrier. (Figure based on Ref. [133].)
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Figure 4.7: Chaotic particle trajectories in the six-vortex flow (time-periodic in the
reference frame of the vortex chain). Long sticking events can be seen in each case,
and flights of length greater than one rotation about the annulus can be seen in
(c), (d). Hyperbolic fixed points, near which the particle motion is particularly
sensitive to transitions between flights and sticking events, are evident in all of the
trajectories. The particle motion is viewed from a reference frame that is co-rotating
with the vortex chain, and the beginning of each trajectory is marked by a triangle,
the end by a circle. (Note that this is incorrectly labeled in Ref. [133], as can be seen
by comparing Fig. 6(a) and Fig. 7(a) in that article. It is also incorrectly labeled in
Ref. [132]; compare Fig. 1(b) and Fig. 2(b).) These trajectories are correspond to the
six-vortex flow, but are typical in appearance for the seven-vortex and five-vortex
flows. (Figure based on Ref. [133].)
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angle between successive pairs of maxima and minima in 6(¢) for a sticking event;
see Fig. 4.8. Small angles correspond to particles near the center of the vortex.
The average time for all of the particles shown in Fig. 4.9 is 11.7 s, giving a vortex
turnover time of 23.4 s. The five-vortex and six-vortex flows have similar vortex

turnover times, ~20 s.

In Fig. 4.8 it can be seen that the slopes of the flight segments are approxi-
mately constant, indicating that the azimuthal velocity, w = df/dt, remains steady
during the flights, except when the tracer passes near a hyperbolic point, where
both w and the radial component of velocity can decrease nearly to zero. This is
also shown by Fig. 4.10, which shows the distance each flight moves against the time
for the flight, showing a linear dependence as expected for constant velocity flights.
The constant velocity of flights indicate that the results of Chapter 3 are applica-
ble. Figure 4.8 also shows there is an asymmetry between positive and negative
displacements, due to a higher probability for co-rotating than for counter-rotating
flights. This asymmetry in the flights is likely due to the curvature of the system,
which results in longer and more curved separatrices outside the vortex chain than
inside (see Fig. 4.8) and a larger exchange rate between the vortices and the outer
jet [32]. In addition, Fig. 4.10 shows the velocity of flights in the outer jet is larger

than that in the inner jet.

To find the PDFs for the flight and sticking events, the trajectories of 1300
particles were analyzed for the seven-vortex flow, and 1700 particles for the six-
vortex flow. The cleanest data (of all six flows) were obtained for the quasi-periodic
seven-vortex flow, and the results are shown in Fig. 4.11. The flight PDF shows
clear power law decay, Pp(t) ~ t~* with! y = 3.240.2. The PDFs for flights in the
+6 and —@ directions were compared and found to have similar decay exponents.

The sticking PDF has a curvature indicating asymptotic behavior steeper than a

Lafter the correction for finite trajectory duration, discussed in Sec. 4.3
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Figure 4.8: Azimuthal displacement 6(¢) as a function of time for the particle tra-
jectories in Fig. 4.7. The oscillations of the tracer particle trajectories correspond to
motion around a vortex, and the diagonal lines correspond to flights. The starting
angle 0(t = 0) is arbitrary. These trajectories are correspond to the six-vortex flow,

but are typical in appearance for the seven-vortex and five-vortex flows. (Figure
from Ref. [133].)
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Figure 4.9: Time to move halfway around a vortex plotted against angular displace-
ment (measured relative to the center of the annulus, not the center of the vortex).
The scattered points are the measured points for the seven-vortex flow, and the solid
line is drawn through the regions of highest density. The plot extends the full width
of a vortex, 2w /7 = 0.898 rad. The points near the top of the plot (6t > 25 s) re-
flect the slowing down the particles experience near hyperbolic points. The left-right
asymmetry is presumably due to differences in the vortex shape between the outside
(excursions with 66 > 0) and the inside of the vortex. (Figure from Ref. [154].)
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Figure 4.10: Flight length A@ versus flight duration At. The approximately linear
relationship shows that flights have roughly constant velocity. The horizontal bands
differ in spacing by 7/3, which is the angular spacing between vortices (for the six-
vortex flow shown). The spread of times within each horizontal band is due to the
slowing down of particles which pass close by the hyperbolic point. The velocity in
the 46 direction (outer jet) is 0.078 rad/s, that in the opposite direction is -0.047
rad/s. This figure is for the six-vortex flow, although similar results are obtained
for the other flows. (Figure from Ref. [154].)
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power law (but does not appear exponential).

The results of Chapter 3 can be applied to the seven-vortex flow. Figures 4.8
and 4.10 show that particle trajectories should be treated as an asymmetric random
walk, although for the flight exponent ;1 > 3 and a rapidly decaying sticking PDF
(v — o0) the distinction between a symmetric and asymmetric random walk is
unimportant. For this flow, the Central Limit Theorem predicts normal diffusion
(0%(t) ~ 7 with v = 1). We compute the variance as discussed in Sec. 4.3, with
the results shown in Fig. 4.12. The slope of the variance plot is shown in the inset,
and suggests that the variance grows superdiffusively. For short times (¢ < 10 s),
the variance grows ballistically, v = 2. This is because of the vortex turnover time:
for times less than ~10 s, particles in flight are undistinguished from those stuck in
a vortex [144]. Particles all appear to be moving with a constant velocity (different
for each particle), some in opposite directions, and thus the variance must grow
ballistically.

For longer times, v cannot be determined accurately, most likely due to a
lack of trajectories with long durations. It is clear that for our data -y does not
ever approach 1, the value expected for normal diffusion. The discrepancy may
possibly be understood by the Berry-Esséen theorem, which strictly only applies
to a symmetric random walk with a finite third moment, which is not the case for
these data [41, 127]. This theorem predicts that the time for random walk to reach

normally diffusive behavior scales as

b (<12)3/2

where the moments are for the flight length PDF. For a power law decay P(l) ~ [7#
with o < 4, (|I|?) is infinite. While the Berry-Esséen theorem does not apply directly
to our results, it is suggestive that the convergence to normally diffusive behavior

may be very slow for the seven-vortex flow.
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Figure 4.11: Seven-vortex flow: (a,c) flight and (b,d) sticking probability distribu-
tion functions, shown on (a,b) log-log axes and (c,d) log-linear axes. The error bars
show the statistical uncertainty (\/N )- The flight PDF shows power law decay,
Pp ~ t7#; the line drawn in (a) is a least squares fit to the decaying data yielding®
p = 3.2 £ 0.2. The sticking PDF does not show a clear power law decay nor an
exponential decay; the straight line (drawn for comparison) in (b) has a slope of
-2.55, with the slope obtained from a least squares fit to the last 8 points in the
tail. (Figure based on Ref. [154].)

“The uncorrected value of p is 3.4 £ 0.2; see Sec. 4.3 for details of the correction.
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Figure 4.12: Variance o2(t) for the ensemble of tracer particles for the seven-vortex
flow (solid line). The slope, shown in the inset, indicates that the variance grows
superdiffusively. (Figure based on Ref. [154].)

The flight and sticking PDFs for the six-vortex flow are shown in Fig. 4.4.2.
Again, the flight PDF shows clear power law decay, with a slope of u = 2.5 £ 0.2
after the correction for finite duration of trajectories (Sec. 4.3). The PDFs for
leftward and rightward flights separately had similar decay exponents (within their
uncertainties). The sticking PDF clearly decays faster than a power law, although
it is unclear if the decay is exponential. Note that this interpretation is different
from Refs. [132, 133], where it is stated that the sticking-time PDF appears to show
power law decay. The PDF's in those articles were constructed with constant-width
bins, rather than variable width bins (see Sec. 4.3), which resulted in misleading

results.

Again, the results can be compared with the analysis from Chapter 3. The
six-vortex flow particles are undergoing an asymmetric random walk with y = 2.5

and v — 00, suggesting that the variance should grow as 0?(t) ~ ¢t withy =4—p =
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Figure 4.13: Six-vortex flow: (a,c) flight and (b,d) sticking probability distribution
functions, shown on (a,b) log-log axes and (c,d) log-linear axes. The error bars
The flight PDF shows power law decay,
Pr ~ t™#; the line drawn in (a) is a least squares fit to the decaying data yielding®
p = 2.5 £ 0.2. The sticking PDF does not show a clear power law decay nor an
exponential decay. Note that these PDFs are slightly different from those shown
in Refs. [132, 133] due to the improvement in binning technique (Sec. 4.3). (Figure
based on Ref. [132].)

show the statistical uncertainty (v N).

“The uncorrected value of p is 2.8 & 0.2; see Sec. 4.3 for details of the correction.
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Figure 4.14: Variance o?(t) for the ensemble of tracer particles for the six-vortex
flow (solid line). The slope, shown in the inset, indicates that the variance grows
superdiffusively, with v = 1.65 £ 0.15. (Figure based on Ref. [132].)

1.5, that is, superdiffusively (see Fig. 3.2(b)). Figure 4.14 shows that for ¢t > 20 s,
the variance grows with v = 1.65 £ 0.15. Given the uncertainty of p (£0.2), the
predicted and measured values for v are in accord. As noted above for the seven-
vortex flow, the variance grows ballistically for times shorter than a vortex turnover

time.

While both the seven-vortex flow and the six-vortex flow have periodic time
dependence, it is not surprising that the mixing results are different. The seven-
vortex flow has naturally arising time-dependence, while the six-vortex flow is per-
turbed periodically by an artificial change in the forcing (as described in Sec. 4.2).
In the vortex reference frame, the instability of the seven-vortex flow has a frequency
of 0.00033 Hz and a mode number of 3 (measured from particle tracking). The me-
chanical perturbation of the six-vortex flow appears with a frequency of 0.014 Hz

(in the vortex reference frame) and is mode number 1.
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Figure 4.15: Chaotic particle trajectories in the four-vortex flow (chaotic time de-
pendence). Nearly all of the flight behavior is in the outer jet; a brief flight in the
inside can be seen in (a). The chaotic motion of the four vortices can be seen in
(b), where the particle spends most of its time in the same vortex which moves
erratically. The beginning of each trajectory is marked by a circle, the end by a
triangle. (Figure from Ref. [155].)

4.4.3 Chaotic flows

The two chaotic flows, the five-vortex flow and the four-vortex flow, also exhibited
chaotic mixing. Similar to the seven- and six-vortex flows, the difference between
the two chaotic flows is the nature of the forcing: the chaotic time dependence of
the five-vortex flow is due to the mechanical perturbation, while the chaotic time
dependence of the four-vortex flow arises due to natural instabilities.

The trajectories for the five-vortex flow appear similar to those shown in
Fig. 4.7, while typical trajectories of the four-vortex flow are shown in Fig. 4.15.
The four vortices are not stationary but move erratically. (The pictures shown are
taken in a frame of reference co-rotating with the average speed of the vortex chain,

but there is substantial variation in the instantaneous speed of each vortex.)

Figure 4.16 shows the angular position of the particles as a function of time
in the four-vortex flow. The oscillatory behaviors correspond to motion when the
particle is “sticking” in a vortex, and the longer diagonal lines are flights in the outer

jet. Flights are distinguished from sticking motions by examining the azimuthal
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distance traveled before reversing direction: particles travel in a vortex for at most
7 /2 radians before changing directions, while a particle that leaves one vortex and
enters the next (the minimum flight distance) will move at least 7/2 radians. Unlike
the other flows, for the four-vortex flow there is no strong inner jet and particles
do not travel long distances on the inner side of the vortex chain. Approximately
10% of the flights seen in the four-vortex flow are short hops on the inner side of
the vortex chain, from one vortex to an adjacent vortex; these hops take less than

40 s, and do not contribute to the long-time statistics.

To compile the flight and sticking PDFs, 1100 particles were examined for the
five-vortex flow and 210 particles were examined for the four-vortex flow. (The four-
vortex flow had difficulties in tracking particles for long times; particles disappeared
from the visible area rapidly. Because of this lack of data, we checked the accuracy
of the PDFs by considering smaller portions of the total data, forming PDFs, and
finding the resultant PDFs to be similar to the PDF's formed using all of the data.)

The flight and sticking PDFs for the five-vortex flow are shown in Fig. 4.17.
Neither PDF shows power law decay, nor do they show convincing exponential decay.
Note that this interpretation is different from that given in Ref. [133]. As discussed

in Sec. 4.4.2, this is presumably due to an improvement in the analysis technique.

Given the uncertainty of the decay rate of the flight and sticking PDFs, com-
parison with the results of Chapter 3 is difficult. The most reasonable interpretation
of Fig. 4.17 would be y — 00, v — o0, yielding v = 1 by the Central Limit Theorem.
The growth of the variance measured from the experiment is shown in Fig. 4.18,

and shows superdiffusive growth with v = 1.55 £ 0.15.

The PDFs for the four-vortex flow are shown in Fig. 4.19. This is the only
flow for which both flight and sticking PDFs show power law decay. The decay
exponents, adjusted for finite trajectory duration, are y = 2.0 £ 0.2 (flight) and
v = 1.3 £ 0.2 (sticking). It is remarkable that these PDFs have a power law form
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Figure 4.16: Angular displacement 6(¢) as a function of time for the trajectories
shown in Fig. 4.15. Diagonal lines indicate flights, while the small oscillations corre-
spond to particle motion within a vortex. Despite the chaotic motion of the vortices,
a clear distinction can be made between flight behavior and sticking behavior. (Fig-
ure from Ref. [155].)
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Figure 4.17: Five-vortex flow: (a,c) flight and (b,d) sticking probability distribution
functions, shown on (a,b) log-log axes and (c,d) log-linear axes. The error bars show
the statistical uncertainty (v/N). The flight PDF appears to decay faster than a
power law; the line drawn for comparison has a slope of -2.2, and is a least squares
fit to the data for ¢ > 30 s. The sticking PDF does not show a clear power law
decay nor an exponential decay, although the data in (d) look possibly linear; a
least squares fit line is shown. Note that these PDFs are slightly different from
those shown in Ref. [133] due to the improvement in binning technique (Sec. 4.3).
(Figure based on Ref. [133].)
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Figure 4.18: Variance o2(t) for the ensemble of tracer particles for the five-vortex
flow (solid line). The slope, shown in the inset, indicates that the variance grows
superdiffusively with v = 1.55 £ 0.15. (Figure based on Ref. [133].)

despite the presence of Eulerian chaos. Although the vortices are moving erratically
with respect to each other, particle motion still displays the effects of long-time

correlations.

The long term transport can be deduced from Chapter 3 for the four-vortex
flow. Taking v = 1.3 and p = 2.0, the variance should grow as t” withy = 24+v—pu =
1.3. The experimentally determined variance for this flow is shown in Fig. 4.20. It is
difficult to track particles for long enough times in this flow to gather the statistics
necessary to determine the variance accurately; hence quantitative comparison with
the results of Chapter 3 is difficult. However, the behavior is appears superdiffusive
with an exponent y between 1.5 and 2.0. At longer times, the exponent drops below

1.5, and the prediction is for £ — oo, so the experimental results appear reasonable.

The failure of the variance to reach its asymptotic behavior despite the large

number of long time trajectories can be understood from an analysis of crossover
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Figure 4.19: Four-vortex flow: (a,c) flight and (b,d) sticking probability distribution
functions, shown on (a,b) log-log axes and (c,d) log-linear axes. The error bars
show the statistical uncertainty (v/N). The flight PDF decays as a power law,
Pp(t) ~ t™H*, with® g = 2.0 £ 0.2. The sticking PDF also appears to decay as a
power law, with a decay exponent of® v = 1.3 +0.2. The error bars for these PDFs
are much larger than for Figs. 4.11, 4.4.2, and 4.17 as this flow had much less data.
(Figure based on Ref. [155].)

“The uncorrected value of p is 2.3 + 0.2; see Sec. 4.3 for details of the correction.
*The uncorrected value of v is 1.4 + 0.2; see Sec. 4.3.
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Figure 4.20: Variance o?(t) for the ensemble of tracer particles for the four-vortex
flow (solid line). The slope, shown in the inset, indicates that the variance grows
superdiffusively. (Figure based on Ref. [155].)

times in the model. The time necessary to approach the asymptotic state can be
calculated by retaining lower order terms in the expansion for o (see Appendix A for
details). Using the values of y = 1.9, = 1.3, and cutoff times tp =22 s, tg = 10 s,
yields o ~ 0.055¢%% — 0.10¢!-1. A plot of this function on a log-log scale (Fig. 3.4)
does not reach a slope of 1.5 until 400 s, and our data only extend to ~500 s. This
slow convergence to asymptotic behavior is a generic feature of Lévy processes and
complicates analysis in many experimental situations and numerical simulations.
(See discussion in Sec. 4.5.)

Figure 4.21 shows that the mean particle position (z) grows approximately
linearly with time for most of the range. For longer times, (z) appears to start
growing faster than linearly in time. For times less than a vortex turnover time,
linear growth is expected, as all particles are moving with constant velocity (whether

in a vortex or in the jet). For longer times, the model predicts (for 4 = 2.0 and
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Figure 4.21: Mean particle position for four-vortex flow, (6(¢)) (solid line). (Figure
from Ref. [155].)

v = 1.3) that (z) ~ t%3; if the sticking PDF has an exponential tail, (z) ~ t. It is
probable that the asymptotic scaling is not reached due to lack of statistics at long

times (see discussion in Sec. 3.8.3).

4.4.4 'Weakly turbulent flow: no long flights

The large Reynolds number and the absence of azimuthal jets leads to a behavior in
the turbulent regime that contrasts markedly with that in the laminar and chaotic
regimes. Tracers in the turbulent flow wander erratically, and there are no well-
defined flights (which are dependent on jet regions) or sticking events: compare
plots of trajectories in the turbulent flow, Fig. 4.5, with those for the six- and four-
vortex flows, Figs. 4.7 and 4.15, and compare plots of azimuthal displacement 6(t)

in Fig. 4.22 with Figs. 4.8 and 4.16.

There are no flights or sticking events in the turbulent flow, but by treating
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Figure 4.22: Angular displacement 6(t) as a function of time for the trajectories
shown in Fig. 4.5. The upper trace is for the particle marked with circles. (Figure
from Ref. [154].)

the trajectories as random walks, we can define a step as the time between two
successive extrema in 6(t). We find that the probability distribution function is
exponential, P(t) = Ae "7, with A = 0.158 and 7 = 15.2 s (see Fig. 4.23), in
contrast to the power law PDF's observed for flights in the time-periodic and chaotic

regimes.

The slope 7 of a log-log plot of the variance o?(t) (Fig. 4.24) drops steadily
from 2 and appears to approach the value expected for normal diffusion (y = 1) at
long times; however, we cannot follow particles for long enough times to determine
the asymptotic behavior. This is in agreement with the Central Limit Theorem,
which predicts v = 1 for an exponentially decaying flight PDF. This also agrees
with a result derived in 1921 by Taylor [144]. Taylor showed that for very short
time scales, a turbulent flow should have ballistic mixing (¢%(t) ~ ¢2). This ballistic

behavior lasts until particle motions become uncorrelated; for our weakly turbulent
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Figure 4.23: Probability distribution for azimuthal displacement in the turbulent
flow. The distribution is exponential with a decay time of 15.2 s. (Figure from
Ref. [133].)

flow, this time scale appears to be about 6 s.

A diffusion coefficient can be found for the turbulent flow by fitting the
variance data, yielding D = 0.010 £ 0.003 rad?/s. The data was fit for t > 10 s
and ¢ > 100 s, both giving a similar value. By using » = 30 cm as the typical
radius for the vortices, the diffusion coefficient can be written as Dyea = 9 cm?/s.
For particles diffusing purely due to Brownian motion, the Einstein relation for the
diffusion coefficient is D = RT/6wnaN with R the universal gas constant, 7 the
dynamic viscosity, a the particle radius, and N Avagadro’s number [13]. For our
tracer particles, the diffusion coefficient due to Brownian motion is D = 4.4 x 1012,

a factor of 1012 smaller.

125



<(9-<9>)2>

0 200 400

-4 Lol Lo [

10 ? 10
t(s)

10

Figure 4.24: Variance o2 (t) for the ensemble of tracer particles for the weakly turbu-
lent flow (solid line). The slope, shown in the inset, suggests the long term behavior
may be normally diffusive. (Figure based on Ref. [133].)

4.5 Discussion

We have found superdiffusion in a variety of flows. The data from the six regimes
are summarized in Table 4.2. Except for the five-vortex flow, all experiments with
jets had power law flight behavior. The variance grows super-diffusively for all flows
with nontrivial time dependence, except the weakly turbulent flow which appears
to tend to normal diffusion for very long times, as expected.

A significant concern for interpreting the results is the convergence to asymp-
totic behavior. The PDF's are fairly easy to measure, as they appear to begin a power
law decay for times ¢ > 30 s. The lack of long trajectories slightly affects the decay
observed for ¢t > 200 s, although this is correctable as discussed in Sec. 4.3. However,
the asymptotic behavior of the variance is harder to determine with our data. As
discussed in Sec. 3.8.3, the predictions for the variance are only correct as t — oo;
for finite ¢, the variance is composed of several terms. Competition between these

terms controls the approach to the asymptotic behavior. As shown in Fig. 3.4, these
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Table 4.2: Exponents v and u characterizing the power law decay of probability
distribution functions for the sticking and flight times, respectively, and the exponent
v for the power law time dependence of the variance of the azimuthal displacement
(measured and predicted). A — entry indicates the exponent is undefined.

Flow name W v Yexpt Ytheory
Time-independent — — 2 2
(with six vortices)

Seven-vortex 32+02 7 ~ 1.5 1
(time-periodic)

Six-vortex 25+0.2 o0 1.65+£0.15 1.5
(time-periodic)

Five-vortex ? ? 1.55 +£0.15 17
(Eulerian chaos)

Four-vortex 20+02 13+02 ~1.5 1.3

(Eulerian chaos)

Weakly turbulent oo — ~ 1.2 1

higher order terms can cause the variance to grow faster than its asymptotic growth

(v to appear larger at short times).

This slow convergence rate would be less of a problem if the particles in
our experiments were observable for longer times. For the results in this chapter,
typically 1000-1700 particles were observed. However, only 200-600 particles per
flow had a duration longer than 200 s, and only 40-190 had a duration longer than
500 s. For the four-vortex flow, these numbers drop to 210 particles total, with only
28 particles having a duration longer than 200 s. Thus, for the variance graphs, the

asymptotic behavior is being determined by only a few particles.

There are several reasons that particles are not observable for long periods
of time. The most significant reason is probably Ekman pumping. Particles are
illuminated only in a narrow horizontal region (see Sec. 2.2), and Ekman pumping

provides a small vertical velocity which can move particles into and out of this
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illuminated slice. Additionally, the camera cannot see particles when they are too
close to the outer wall of the annulus, as the outer wall reflects light upwards and
particles cannot be distinguished from this background. Thus particles which reach
the outside of the annulus are lost, although they may be tracked as a new particle
if the particle returns to the visible region. A third problem is that the tracking
program itself sometimes, for no known reason, loses a particle temporarily and
then retracks it as a new particle. Some work has been done trying to catch these
errors by post-processing the tracked data, although it must be done by hand. A
final concern is the non-neutral-buoyancy of the particles, as discussed in Sec. 2.3;
centrifugal effects could cause particles to drift out of the illuminated region.

If there are any correlations linking the particle behavior to their longevity
in the visible region, this could further affect results. For example, if particles stuck
in vortices have a faster vertical drift (perhaps due to Ekman pumping which should
be stronger in a vortex), then the observations of long-lived particles will be biased

towards flights.
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Chapter 5

Interaction of Eastward Jets

with Topography

5.1 Atmospheric Observations of Blocking

For decades, weather prediction has been based on the assumption that mid-latitude
storms arise from linear instabilities of large-scale eastward zonal flow [23, 37, 50, 51,
56, 102]. In fact, one to three times each Northern Hemisphere winter — and occa-
sionally during other seasons — large high-pressure anticyclones form and persist for
at least ten days and sometimes longer than a month [25, 35, 95], exceeding the usual
5-7 day life of mid-latitude storms. These anticyclones block the nearly zonal flow
and deflect it poleward (see Fig. 5.1(b)). The prediction of these blocking events has
become central to improving extended-range weather prediction [7, 91, 148]. Block-
ing events are an example of an anomaly, when the large-scale atmospheric flow
strongly differs from the normal flow for a significant period of time [48]. (“Normal”
flow in this context would be the the average over several years for that particular

month.)

Blocking events were known in the 1940’s and 50’s [48], and were first care-
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N\ mn - 7300 S Figure 5.1: Atmospheric pictures of

<Y N N | (a) zonal and (b) blocked flow; show-
(e~ ~i0\| ing contour plots of the height (m) of
B B e S\ 5| the T00-hPa (700 mb) surface, with
S\ el [ 25 v e | a contour interval of 60 m for both
N\ Bl X panels. The flow follows the con-
% S 3 tours; the flow in the jet stream is

from west to east. The plots are ob-
tained by averaging over ten days of
twice-daily data for (a) 13-22 Decem-
ber 1978 and (b) 10-19 January 1963
[168]. The nearly zonal flow of panel
(a) includes quasi-stationary, small-
amplitude waves [52, 152]. Blocked
flow advects cold Arctic air south-
ward over eastern North America or
Europe. The 2940-m contour corre-
sponds roughly to the mean position
of the jet axis; variations in its daily
position (using a weighted three-day
mean) are shown in panel (c) for the
time interval 5-16 January 1997, to
illustrate switching between the two
types of flow [169]. Figure adapted
from Ref. [157].
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fully studied by Rex [117, 118]. Rex proposed subjective criteria to define a blocking
case [117]:

1. the eastward zonal flow splits into two branches, each carrying an appreciable

mass of air;
2. the double-jet flow extends over at least 45° of longitude;
3. the flow is zonal upstream, and meridional downstream of the splitting; and
4. the pattern must persist for at least ten days.

These criteria have been refined by later authors (e.g. [35]) in order to find objec-
tive criteria which computers could use to determine blocking events from data, but
Rex’s criteria are still the most widely used [147]. As the flow is typically split by
a local high pressure region (an anticyclone), often a characteristic sign of blocking
is the presence of a persistent anticyclone which strongly distorts the eastward jet
flow. Blocking anticyclones typically appear singly (over the Atlantic or over the
Pacific [48, 117]), although occasionally a double-blocking event occurs such as that
pictured in Fig. 5.1(b). In general, blocking occurs more frequently in the North-
ern Hemisphere, and has more significant consequences for Northern Hemisphere
weather [48], although blocked flow does occur in the Southern Hemisphere as well.

Several clues led to the development of models for blocking (discussed in
Sec. 5.2). First, there is a suggestion that blocking could be understood as a
barotropic (two-dimensional) phenomenon. Daily mid-latitude weather evolves on
a time scale of 1-10 days. This evolution is largely driven by three-dimensional,
baroclinic instabilities of the nearly zonal flow [23, 37] that convert the potential
energy in the atmosphere’s density stratification into the kinetic energy of storms
[50, 56, 102]. In contrast, low-frequency atmospheric variability on the time scale of

10-100 days is predominantly barotropic, i.e., nearly two-dimensional [24, 25, 71].
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Thus, it seems appropriate to first consider blocking anomalies as a barotropic phe-
nomenon which is then perturbed by baroclinic effects (e.g., the baroclinic effects
drive the transition from the normal, nearly zonal flow to a blocked flow).

The second clue used to develop models is the axial asymmetry of blocking
events. In the Northern Hemisphere, blocking anticyclones occur in either the Pa-
cific or the Atlantic [48, 118]. Thus it is reasonable to assume that asymmetries of
the Earth fix the location of these anticyclones. Two likely candidates are the ocean-
land contrasts, and the topography immediately upstream of the anticyclones. For
North America, the Rocky Mountains are of significant height and extent, extending
from 70° N to 20° in latitude, ranging from 110 to 650 km in width, and having an
elevation from 1.5 km to 4.4 km at the tallest point. In Europe, the topographic
features linked to blocking events consist of the Spanish Plateau, the Pyrenees, the
Alps, the Apennines, and the Scandinavian mountain ranges [24]. These moun-
tains extend from 70° N to 35° N in latitude, and are more than 125 km wide at
their widest point. One possible reason that blocking occurs more frequently in
the Northern Hemisphere is that the mountain ranges in that hemisphere are more
pronounced and of larger extent than mountain ranges in the Southern Hemisphere

(such as the Andes).

5.2 Models of Blocking

Models have suggested the plausibility of a topographic origin of these blocking
events [8, 24, 62, 72, 99, 101, 116]. Barotropic models of large-scale flow over ide-
alized Northern Hemisphere topography explain some features of blocking episodes
[7,8, 24, 72,101, 140], while recent numerical simulations using a general circulation
model [79] provide further evidence for the barotropic character of the low-frequency
variability and support the results of the simpler models.

The first model was developed by Charney and DeVore [24]. They studied a
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two-dimensional model with mode-2 topography (two symmetrically placed “moun-
tains” which perturb the quasi-geostrophic equation for potential vorticity conser-
vation, similar to the way a sloping bottom can perturb a nearly two-dimensional
flow, as discussed in Sec. 1.2.6). In the Northern Hemisphere, the topography is
dominated by wave number 2 [103], making this a reasonable choice for their model.
They used simple eastward zonal forcing, and did a spectral expansion of their
equation of motion, keeping the three most significant spectral terms.

They found two equilibria which qualitatively resembled atmospheric blocked
and zonal flows' [24]. The blocked flow had a jet which was extremely wavy and
bent around anticyclones, while the zonal flow was less wavy. The ridge of the jet,
the area where the jet is furthest poleward and curves back away from the pole,
lies over the mountains for the zonal flow and shifts upstream to the valleys for the
blocked flow. The zonal jet flow was approximately twice as strong as the blocked
jet flow. For a range of parameters, both types of flow patterns were stable, and the
initial conditions would determine which flow pattern would ultimately develop.

Further modeling work extended the results of Charney and DeVore. Their
model used a S-plane approximation (see Sec. 1.2.6); later models used more realistic
geometry and considered more modes in spectral expansions, or otherwise made
fewer approximations. The models confirmed that blocked and zonal flows appeared
from the interaction of eastward jets with topography; in such models zonal and
blocked flows appear as two stable equilibria [8, 24, 101] or two separate chaotic
flow regimes [62, 72, 99, 116]. In all models, for very low forcing the blocked flow
was the only stable solution. As the forcing was increased, both blocked and zonal
flows became possible. For very high forcing, only the zonal solution was stable,

and this solution resembles the forcing for any particular model as the forcing is

!Charney and DeVore used the terms blocked flow and “low index” flow interchangeably, and
zonal flow and “high index” flow. The index terminology is related to the zonally averaged pressure
gradient across latitudes 35-55° N. Due to the structure of the equations, the blocked flow was also
identified as sub-resonant, and the zonal flow as super-resonant.

133



increased to infinity. For models with chaotic flow regimes, the time spent in the
blocked state compared to the time spent in the zonal-like state decreased as the
forcing was increased [72].

An additional barotropic model by Wu [163] used azimuthally asymmetric
forcing, rather than topography. This study found blocked and zonal flows, and
found that the flow would actually alternate between these two flows. This model
and the earlier work by Legras and Ghil support the hypothesis that the mechanism
allowing switching between blocked and zonal flows may be barotropic, rather than

needing to be baroclinic (as hypothesized by Charney and DeVore originally [24]).

5.3 Previous Experiments

Laboratory experiments in rotating annuli with a radial temperature gradient have
helped in the understanding of the mechanism of baroclinic instability and the at-
mosphere’s general circulation [53, 75]. Introducing wavenumber-two topography
in such annuli produced new phenomena [10, 63, 74, 107] but did not adequately
explain the spatio-temporal features of the atmosphere’s observed and modeled low-
frequency variability. Several barotropic experiments were conducted [22, 108, 110]
but did not examine questions of blocking and zonal patterns. Stream functions
shown in Ref. [108] resemble our nearly-zonal patterns (see Fig. 5.3(a)), but the
Reynolds numbers for those experiments were very low and the flows examined

were time-independent.

5.4 Experimental Observations

We model Northern Hemisphere atmospheric flow experimentally in the rotating
annulus with topography added. As discussed in Sec. 2.1, because of the rapid

rotation the flow is essentially two-dimensional and can be compared with barotropic
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Figure 5.2: Bottom topography placed in the rotating annulus. The topography
is Gaussian in profile, has a height of 1.5 cm (approximately 7 % the mean height
of the annulus), and an angular extent of 72°. The ridge height is independent of
radius, although the topography rests on the sloping bottom of the annulus and thus
the topography has this overall slope (0.1). The raised inner circle at the center of
this figure reflects the sloping bottom.

model results. These experiments facilitate exploration of the flow’s behavior over
a wide parameter range: an hour at a rotation frequency of 2 Hz corresponds to 20

simulated years.

5.4.1 Apparatus

For these experiments, to increase the Reynolds number, the annulus is filled with
a fluid with a low viscosity, water (kinematic viscosity v = 0.009 cm?/s). The
pumping is from the outer ring (router = 35.1 cm) to the inner ring (Tipper = 18.9
cm), resulting in a co-rotating (“eastward”) jet (see Sec. 1.2.8). This forcing is
similar to the forcing assumed for the barotropic models discussed in Sec. 5.2. Two
radial aluminum ridges are symmetrically placed on the bottom of the annulus, each
having a Gaussian profile: h(r,6) = h(0) = hgexp[—(0/6p)?] with hg = 1.5 cm and
0y = 21° (see Fig. 5.2). This profile extends over 72°; at +36° the Gaussian profile

is smoothly tapered from 0.9 mm to zero using silicone glue.
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Unfortunately, the holes drilled in the aluminum ridges do not perfectly align
with the forcing holes in the annulus, and as a result the forcing flow through the
ridges is reduced by an unknown amount. The mis-alignment of the holes is the
same for both ridges. This presumably results in a perturbation with mode number
2 symmetry and the same phase as the topography, and thus does not significantly
change the interpretation of the results. However, any future work should attempt to
precisely align the holes, and should keep in mind this discrepancy when comparing
future results with these results.

A quick argument can compare the effective height of the experimental moun-
tains with the height of mountains on the Earth [81]. We consider the change in
potential vorticity due to flow across a mountain, compared with the change in po-
tential vorticity due to a change in position along the mountain (change in latitude
on the Earth, change in radial position in the annulus). From Sec. 1.2.6 it can be

seen than

Ah
Agmountain = _th2 (5. 1)
0

for both real mountains and the experimental ridges; fo = 2{2sinf for the Earth,
fo = 2Q for the annulus, hg is the effective height of the atmosphere for the Earth

and the mean height of the annulus, and Ah is the height of the mountains. Next,

Aqla‘citude = fMexico ; fCanada (52)
0
and
SATr
Agragial = —f0h2 (5.3)
0

with s = 0.1 as the slope of the bottom of the annulus. For the experiment, we take

Ar =43.2 —10.8 cm = 32.4 cm, producing

AQridge,expt _ Ah 1.5cm

(5.4)

Agragialexpt SAr  (0.1)(32.4cm)
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For the Earth, Ah = 2 km and hg = 10 km; taking 6y = 45°, Ocanada = 30°, and

eMexico - 650, we ﬁnd

Agmountains _ (sinfy)(Ah) _ (0.707)(2km)
AQIatitude h() (sin OMeXiCO — sin ecanada 10km(0.91 — 0.50)

~035 . (5.5)

Some of the numbers used in this calculation are somewhat arbitrary, but it appears
that the annular mountains are of roughly the correct order of magnitude in height,
perhaps six times larger than they ought to be. Future experiments should use
smaller hills rather than mountains for the ridges. Note also that the effect of the
land/ocean contrasts is unknown, and may be the primary mechanism for localizing
the blocking anticyclones in the atmosphere [24, 48]: the above calculation cannot
take the oceans into account, but it is reasonable to conjecture that to model the
effect of land /ocean contrasts the experimental ridges must be taller than they would

need to be for modeling purely topographic effects.

Our two control parameters are the pump flux rate F', which ranges from
0 to 400 cm3/s, and (2, which for these experiments ranges from 27 to 67 rad/s
(1-3 Hz). These two control parameters determine the nondimensional Rossby
(Ro) and Ekman (Fk) numbers (Sec. 1.2.1). The Rossby number Ro = U/2QL
is given in terms of L, the spacing between the forcing rings (16.2 cm), and the
maximum velocity U that would result from a steady, axisymmetric flow in the
absence of topography, U = (F/2r)(Q/v)'/?r;}, (see Eq. (1.36)). The Ekman
number Ek = (Tannulus/TEkman)? i given by the squared ratio of the annulus ro-
tation period, Tannuus = 27/, to the relaxation time for unforced disturbances,
Tekman = ho/2(vQ)Y? (see Sec. 1.2.3), yielding Ek = (4w/ho)*(v/Q). This dif-
fers from the definition of Ek given in Sec. 1.2.1 by a constant. In the present

experiments, 0.10 < Ro < 0.35 and 0.4 x 1073 < Ek < 1073,
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5.4.2 Results

In the absence of topography, the flow in this parameter range is characterized by
eastward propagating Rossby waves [132, 138]. With the topography in place, how-
ever, we observe two stationary wave patterns with dramatically different character-
istics, as illustrated by the contour plots of typical time-averaged stream functions
in Fig. 5.3 (see Sec. 2.4 for a discussion of stream function calculation). At high
Rossby numbers (i.e., high pumping or low rotation) a nearly zonal flow (Fig. 5.3(a)),
resembling the more frequently occurring atmospheric patterns (see Fig. 5.1(a)), is
observed: a strong co-rotating jet smoothly flows around the annulus, with a small-
amplitude wave of zonal wavenumber two induced by the two mountains. At lower
Rossby numbers a blocked flow is observed (Fig. 5.3(b)): the jet is wavier and its
speed much lower (see also Figs. 5.9(a,c)). A strong wavenumber-four component
of the flow field has arisen, with one anticyclone (counter-rotating vortex) present
upstream of each mountain, the other one downstream, like in a Rossby lee wave
[64]. In the atmosphere, though, unlike in the experiment here, it is the upstream
ridge (poleward curvature of the jet) which is more pronounced. There is some
evidence that the downstream vortex will move towards the equator in a real at-
mosphere [60, 100], and thus the upstream anticyclone seen in the experiment is
more important; in the atmosphere, the blocking anticyclone is upstream of the

topography.

Blocking anticyclones appear most often separately, in either the North-
Atlantic/European or the Pacific/North-American sector, although double-blocking
episodes (see Fig. 5.1(b)) do occur [7, 25, 35, 118, 122]; the two-fold symmetry of the
apparatus presumably favors the double-blocking pattern. The drop in jet inten-
sity, increase in wave amplitude, and upstream shift of the two stronger highs that
we observe for blocked flow are in agreement with the simplified barotropic models

[24, 72, 101, 140], which are supported by results from general circulation models
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Figure 5.3: Time-averaged stream function contours calculated from experimental
data for (a) zonal flow and (b) blocked flow. The peaks of the ridges are indicated
by heavy dashed lines, and the profile of each ridge is shown by black curves outside
the rim of the round panels. The contour interval is 15 cm?/s for both plots.
The annulus rotates counter-clockwise, and the flow is in the direction of rotation
(eastward). The Rossby numbers Ro for the zonal and blocked flows are 0.33 +0.02
and 0.22 4 0.02, respectively (pump flux F=390 cm®/s and 260 cm3/s); for both
flows, the Ekman number is Ek = 4.8 x 10~ (Q = 37 rad/s). The highs and lows
of the stream function are indicated by bold letters H and L respectively. The black
dots indicate the horizontal location of the hot film probe.
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[79]. Still, direct comparison of the experimental observations with the atmosphere
is not possible since the spectrum of Northern Hemisphere topography is dominated
by wavenumbers 2 and 3, thermal contrasts between continents and oceans compli-
cate the barotropic forcing, and baroclinic phenomena also play an important role
[8, 62, 101, 116].

The azimuthal flux carried by the jet is typically 3 times smaller than in the
zonal case, even for similar pumping rates and Ekman number (not shown). The
azimuthal flux can be determined by integrating the radial velocity profiles, shown
in Fig. 5.4. The blocked flow shown (Ro = 0.22 £ 0.02) has a net azimuthal flux
of 1100 cm? /s, while the zonal flow shown (Ro = 0.33 £ 0.02) has a net azimuthal
flux of 4900 cm3/s, over 400% larger, despite the change in forcing by only 50%.
The velocity profiles relative to the center of the jets are shown in Fig. 5.5. Here, a
contour representing the position of the jet has been chosen, and data are shifted by
this radial position before averaging. The zonal jet appears slightly narrower and

has a steeper velocity gradient.

The variability of the blocked flow in the experiments is much higher than
that of the zonal flow. For zonal flow (Fig. 5.3(a)), the variations from the mean
spatial pattern are small, and instantaneous stream function fields resemble their
time average. This can be seen in Fig. 5.6: a sequence of stream photographs
reveal the zonal flow structure. For blocked flow (Fig. 5.3(b)), the instantaneous
patterns differ considerably from the time average over most of the parameter range

investigated; see Figs. 5.7 and 5.8.

The velocity time series for zonal flow, measured at a fixed point in the
fluid, also shows nearly periodic variations superimposed on a noisy background
(Figs. 5.9(a,b)), with an associated period of 17 annulus rotations. The blocked
flow has a broad-band spectrum, with spectral power P decreasing with frequency

f (Fig. 5.9(d)). However, its fluctuations decrease with Ro and, at very low Ro,
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Figure 5.4: Azimuthally averaged azimuthal velocity profile. The data correspond
to the stream functions shown in Fig. 5.3. These velocity profiles are from time-
averaged data.

141



(@

ug (cm/s)

R
o

-10 0 10

N
o

&
||||||||||

R
o
1
H
S
o
H
S
X
o

r-ro (cm)

Figure 5.5: Azimuthally averaged azimuthal velocity profile, relative to the center
of the jet, for (a) zonal flow and (b) blocked flow. At right, the contour giving ry is
indicated; the data are shifted relative to r( for a given value of § and then averaged
azimuthally. The zonal contour is given by #(r,0) = 200, the blocked contour
by (r,0) = 70; these values are somewhat arbitrary and the velocity profiles are
similar for different contours (except for a radial offset). The vertical axes have the
same scales for (a) and (b). The data correspond to the stream functions shown in
Fig. 5.3. These velocity profiles are from time-averaged data.
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Figure 5.6: A sequence of four photographs of tracer particles in the zonal flow,
taken at ten second intervals, with exposure times of 0.25 s to show particle motion.
The rotation rate is 1.5 Hz, and the pump rate is 380 cm3/s; Ek = 4.8 x 10~* and
Ro = 0.32 £ 0.4. The mountain crests are located at 2 o’clock and 8 o’clock. The
fourth picture is dissimilar to the first three, and may be the beginning of a transition
to blocked flow: given the uncertainty in Ro for this particular experimental run, it
is possible the flow is actually in the intermittent region (see Fig. 5.11). The flow is
co-rotating (counter clockwise). The wavy continuous line around the center of the
annulus is the edge of a bubble; for these pictures (and Figs. 5.7 and 5.8) this bubble
was present, although not for most data presented in this chapter. The pictures are
printed as negative images to enhance the contrast.
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Figure 5.7: A sequence of four photographs of tracer particles in the blocked flow,
taken at two second intervals, with exposure times of 0.25 s to show particle motion.
The rotation rate is 1.5 Hz, and the pump rate is 170 cm?/s; Ek = 4.8 x 10~* and
Ro = 0.14 + 0.04. The mountain crests are located at 4 o’clock and 10 o’clock. For
further details, see the caption to Fig. 5.6.
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Figure 5.8: A sequence of four photographs of tracer particles in the blocked flow,
taken at two second intervals, with exposure times of 0.25 s to show particle motion;
the forcing rate is 40% higher than Fig. 5.7. The rotation rate is 1.5 Hz, and the
pump rate is 240 cm3/s; Ek =4.8x107* and Ro = 0.20+£0.03. At this high forcing
rate, the blocked flow is quite erratic in time; compare with Fig. 5.7. The mountain
crests are located at 5 o’clock and 11 o’clock. For further details, see the caption to
Fig. 5.6.
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Figure 5.9: (a,c) Velocity time-series and (b,d) associated power spectra obtained
from a hot-film probe located in the lid at » = 27.0 cm; its position is indicated in
Fig. 5.3 by a black dot. (a,b) Zonal and (c,d) blocked flows correspond to Ro =
0.332 £ 0.005 and 0.124 + 0.005 (pump flux F=320 cm?/s and 120 cm?/s), with
Ek = 7.2 x 10~* for both flows (Q = 27 rad/s). The peak in (b) has a period 17 s
= 17Tannulus-

the blocked flow becomes time-independent and two-fold symmetric in space. Fig-
ure 5.10 shows a sequence of time series taken at varying Ro values for fixed Ek.
In Fig. 5.10(a) can be seen periodic oscillations which are only present for very
low values of Ro; below this point, the flow is time-independent, although because
of limitations of our current pump and flow meter, it was impossible to precisely

determine the onset point of this periodic time-dependence.

Figure 5.11 is a regime diagram, showing blocked flow at low Rossby number,

zonal flow at high Ro, and an intermediate regime where, for fized experimental
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Figure 5.10: Velocity time-series obtained from a hot-film probe located in the lid at
r = 27.0 cm; its position is indicated in Fig. 5.3 by a black dot. The Rossby numbers
are indicated for each flow at right, with uncertainties +10%, and Ek = 4.8 x 10~*
for all flows (2 = 3w rad/s). For the first time series (Ro = 0.021), the period is
32 s = 48 Tannulus-
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conditions (Ro and FEk), there are spontaneous transitions between distinct zonal
and blocked flows (Fig. 5.12(a)). Similar spontaneous transitions are seen both in
the atmosphere (see Fig. 5.1(c) and Refs. [25, 35]) and in simple deterministic models
with a sufficient number of degrees of freedom [62, 72, 116]. Our blocked and zonal
flows, however, both persist for many more annulus rotation periods than blocked
and zonal flows persist in atmospheric observations. This is presumably due to the
absence of baroclinic instabilities in the present annulus (cf. [10], for instance), as

is the greater stability of the experimental zonal flow [72].

In the intermediate region, the fraction of time spent in one state varies as
a function of the Rossby number (Fig. 5.12(b)). Similarly, as the pole-to-equator
temperature gradient changes — from season to season or year to year in the same
season [24, 62, 72, 99, 122, 140] — the relative prevalence of zonal- or blocked-flow
episodes can change. Our experimental results are consistent with the idealized
barotropic models [72] in that the frequency of blocking events increases when ap-
proaching the parameter range where blocking is the stable regime (see also [99]).
The seasonal and interannual variability of persistent non-zonal flow patterns, such
as blocking, in the atmosphere is subtler and has been documented to some extent
in the Pacific/North-American sector, for both observations and general circulation

models [59].

5.4.3 Symmetry of Flow Patterns

The flow patterns pictured in Fig. 5.3 are slightly asymmetric. There are several
possible reasons for this asymmetry.

The first and simplest explanation is that the forcing may be asymmetric, for
a variety of reasons. As described in Sec. 2.1, the forcing rings are divided into six
sectors, and the plumbing controlling each sector may have slight variations resulting

in asymmetric forcing. Also, as the experiment progresses, particles are sucked into
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Figure 5.11: Diagram showing boundaries between the three observed flow regimes:
pure zonal, pure blocked, and intermittent regime. In the intermittent regime,
spontaneous switching between blocked and zonal flows occurs at irregular inter-
vals. Stars indicate the positions in this diagram of the experimental runs used for
Figs. 5.3(a,b), 5.9(a~d), and 5.12(a). The triangles indicate the positions of the last
five time series from Fig. 5.10.
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the atmosphere [35] and barotropic models [72]); Ek = 7.2 x 10™* (Q = 27 rad/s).
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the sink ring of holes, where they are trapped by the netting (Sec. 2.2). Spatial
variations of the amount of obstruction of flux through individual holes results in

azimuthally asymmetric forcing.

The second reason the stream functions may be asymmetric is the amount of
data used to produce the stream functions. As described in Sec. 2.4, a large amount
of data is averaged to find the velocity field, which is then fit to basis functions
to determine the stream function. In practice, the particle observations do not
completely cover the annulus. Also, some areas have sparse observations where
one or two particle trajectories solely determine the velocity in those areas, while
other areas may have many particle trajectories which are averaged. As discussed
in Sec. 2.4, both of these cases are given equal weight. Thus, the lack of data
may result in asymmetries of the resulting stream functions, which significantly
more data would smooth out. This was tested by taking portions of the data and
generating stream functions, and observing that they were indeed more asymmetric.
Additionally, the asymmetries observed in the stream functions generated from these
truncated data sets typically showed no overall bias. This suggests that perhaps the
forcing asymmetries are fairly insignificant, otherwise all stream functions would
show similar asymmetries (i.e., one blocking anticyclone always with larger vorticity

than the other, or a constant deformity of the jet on one side of the annulus.)

A third possibility was suggested by Panetta [100]. It is possible that the
flow pattern itself has a scale larger than what will fit around the annulus. In
such a situation, the topography may fix the phase of this large scale pattern.
The flow could choose an alignment with the topography which is easiest, e.g., the
pattern may be constructively interfering with the topographic forcing of one ridge
and destructively interfering with the other ridge. It is even possible to imagine
that for high forcing rates, where the flow structures are moving around somewhat

turbulently (see Fig. 5.8 for example), that the flow pattern may alternate between
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favoring one ridge and the other. Future work will be done with one mountain ridge

which will hopefully illuminate this question.

5.5 Conclusions

Our barotropic laboratory experiments with topographic forcing yield two flow states
qualitatively similar to atmospheric blocking and nearly zonal flow. Spontaneous
transitions between the two flow states resemble those observed in the atmosphere
and occur in the annulus for a wide range of control parameters. Our experiments
suggest that, in agreement with the results of both simple models [8, 24, 72, 101]
and general circulation models [71, 79], atmospheric blocking can be understood
as a nonlinear, predominantly barotropic phenomenon that is strongly affected by
topography.

Further experimental and numerical work [146] should examine the dynami-
cal mechanisms responsible for the intermittency, and their effect on the long-term
mean properties of atmospheric, oceanic, and laboratory flows. Studies should in-
vestigate the dependence of the current observations on mountain height. Tsim-
ring suggested trying experiments without topography but with the forcing reduced
through two opposite sectors of forcing holes; if this could cause similar blocking
and zonal patterns, it would be an easy parameter to vary by controlling the valves
to each sector [151]. Also, it would be interesting to examine the flows which occur
when only one mountain ridge is used in the annulus. Several people have addi-
tionally suggested trying to control the transitions between blocked and zonal flow.
Given the uncertainty of the transition mechanism and the difficulty of obtaining
clear instantaneous pictures of the flow, probably a control method would need to
be one which has the possibility of learning directly from the limited measurements
available [156].

Another question worth examining is the pressure drop across the jet; this
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should change when a transition between zonal and blocked flows occurs. We expect
that the pressure drop should be greater for a zonal flow. An indirect way to
measure this might be to investigate the pump speed or power as the pump flux is
held constant and the flow undergoes a transition. This would be easy to measure,
given our current data acquisition software (and might be easier than installing a
pressure sensor). Either the control voltage sent to the pump controller could be
measured, or the power lines connecting the controller to the pump motor could
be monitored. By measuring the pressure drop across the jet, either directly or
indirectly, a connection could be made to the “index cycle” terminology often used

to describe blocking and zonal patterns [24, 48].
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Chapter 6

Two-Dimensional Turbulence

6.1 Introduction

Three dimensional (3D) turbulence has been widely studied, but remains an un-
solved mystery with few well established results [42]. The most well-known result is
due to Kolmogorov, who originally considered the question of the energy spectrum
E(k) when energy is injected into isotropic, homogeneous 3D turbulence at a length
scale Lin;. He found that energy starting at wavenumber k;,; = 27 / Liy,; “cascades” to
smaller length scales, eventually reaching the dissipation scale kg = (¢/ v®)'/* where
the energy is dissipated by viscosity; the energy injection rate (per unit mass) € is
equal to the energy dissipation rate. For length scales ki,; < k < kg, the energy
spectrum function is independent of the details of the forcing, and independent of
the scales kinj and kg; dimensional analysis shows E(k) ~ 2/3k=5/3 the famous
Kolmogorov -5/3 law. While Kolmogorov’s law has been closely studied and modi-
fied slightly, it is clear that this result is reasonably correct and the decay exponent

of the energy spectrum is close to -5/3 [42, 93, 139, 150].

Two dimensional (2D) turbulence is strikingly different as enstrophy, the

total squared vorticity of the flow, is conserved, in contrast to 3D flows where
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vortex tubes can be stretched. This constraint, in addition to the constraint of
energy conservation (true for 2D and 3D flows), results in sharply different behavior.
The classical picture of Kraichnan [69] and Batchelor [5] of forced 2D turbulence
includes two scaling regimes, an inverse cascade of energy to large length scales,
E(k) ~ €%/3k=5/3_ and a cascade of enstrophy to small length scales, E(k) ~ n?/3k~3

(see Fig. 6.1) (the directions of these two cascades are a consequence of Fjortoft’s

theorem [73]). 7 is the enstrophy injection rate, n = k?nje. As is the case for the
original Kolmogorov -5/3 law, new analyses find corrections to these cascade laws

[12, 111] while leaving the qualitative aspects of these laws unchanged.

In idealized forced 2D turbulence, the energy is never dissipated, unlike 3D
turbulence. The energy continues cascading to large length scales, with the largest
scale always increasing (see Fig. 6.1). In practice, two considerations limit this
growth. First, practical systems have a finite size, and when the energy reaches
length scales of the size of the system, the boundary prevents energy from reaching
larger scales and boundary effects can dissipate energy. Second, all experimental
flows at very high Reynolds number are really 3D rather than 2D [73]. As the
energy at large length scales increases, the local Reynolds number can increase and

dissipate energy through 3D turbulence.

Ekman pumping (Sec. 1.2.3) is a third dissipative mechanism present in
rotating experiments. Ekman pumping provides damping acting at large scales
rather than small scales [73]. In some cases, dissipation due to Ekman pumping is
strong enough to completely inhibit the inverse energy cascade [73]; this appears to
occur when Ro < V/EE [15]. The scale at which lateral friction becomes relevant is
given by L, = /v/w', and the Ekman dissipative scale is given by Lg = u'T, using
the viscosity v, rms value of the vorticity and velocity w’ and u’, and the Ekman time
5 = ho/(2VvQ) (see Sec 1.2.3) [28]. The energy dissipation rates due to Ekman

friction and lateral friction are given by ep = (u)?75' and €, = v(w)?, with the
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Figure 6.1: Schematic view of energy spectrum for 2D turbulence, adapted from
Ref. [73]. Energy and enstrophy are injected into the flow at wavenumber k; with
injection rates € and 7 respectively. Energy cascades upwards to large scales (small
wavenumber k) and enstrophy cascades to small scales (large k) where it is dissipated
by vorticity. The largest scales for the energy grow in time and are eventually
affected by the size of the system (see text for discussion). For the experiment, Kin;
and kg can be estimated as ki,; ~ 0.4 cm™! and kg ~ 10 cm™!; see the text for
details.
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angle brackets denoting a global spatial average [28]'. (The consequences of these
length scales and dissipation rates for our experiment are discussed in Sec. 6.2.)

Effects such as Ekman pumping are mechanisms allowing the three dimen-
sional nature of an experiment to modify the quasi-2D flow. In turn, 3D forcing can
be used to drive a 2D flow (and thus the inverse energy cascade and the enstrophy
cascade). Numerical simulations show that for sufficiently rapid rotation (low Ro),
3D forcing results in 2D turbulence [129]. This is supported by past experimental
work, discussed in Sec. 6.3.

An additional consideration for geophysical flows is the § effect (Sec. 1.2.6).
Vortices above a certain size are distorted by the 3 effect; this size is known as the

Rhines length, and is given by [119]:

In = % . (6.1)

Below this length scale, the turbulence is not affected by the f effect, and thus
the turbulence is generally isotropic. Above this length scale vortices are elongated
in the zonal direction and growth is blocked in the meridional direction [73]. It
is possible that the inverse cascade is blocked at [ by the propagation of Rossby
waves [28, 119].

A final length scale for rotating experiments is the two-dimensionalization
scale. This scale has not been well defined in the literature. As discussed in
Sec. 1.2.2, rotating experiments are constrained to be two-dimensional by the Taylor-
Proudman theorem. This theorem strictly holds when Ro and Ek are zero. For

nonzero values, this theorem becomes

ou U

lep can be determined by the following simple argument. The total kinetic energy can be
written as 3pV(u”), and the kinetic energy per unit mass as 1(u”). If the forcing is removed, the
flow decays as u = upe"t/"?, so dKE/dt = 1(2u du/dty = —(u®)/7E (evaluating du/dt at t = 0);
er = —dKE/dt.
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where U and L are typical length and velocity scales. From this equation, a length
scale for vertical changes can be estimated as L/(Ro + Ek).

This can be compared to experimentally determined results for Taylor col-
umns [54]. A Taylor column forms above a small topographic feature in a tank [145].
In order for the flow to be two-dimensional, the flow in a rotating experiment must
move around the topographic obstruction; for the flow to pass over the obstruction,
the fluid columns would have to compress, violating the two-dimensionality con-
straint. A Taylor column is the undisturbed fluid above such a topographic feature;
dye injected into the Taylor column region will not mix with the bulk fluid, even far
above the topographic feature [145]. However, for finite rotation, the Taylor column
becomes unstable sufficiently far from the obstruction which generated the column.
This distance has been found to be ~ L/Ek'/* [54], with L being the width of the
topographic obstacle and Fk = v/Q(L/2)? being the Ekman number based on the
length scale L/2. This result is for a Taylor column existing in a background flow

with a velocity relative to the column.

6.2 Considerations for our experiment

The parameters discussed in the previous section can be estimated for our experi-
mental apparatus. We start by considering the characteristic length L and velocity
U, used to define Ro and Re. Reference [137] finds an expression for the velocity of

the jet U and its width L in our rotating annulus:
U = a(sd?/2m%vhor2, ) 3 (FQ)?/3 . (6.3)

L = b(hod/4msryv' /)3 (F2 Q)16 (6.4)

with typical height hy = 18.7 cm, distance between forcing rings d, bottom slope
s = 0.1, mean radial position of jet r,,, viscosity v = 0.01 cm?/s, pump flux F, and

rotation rate 2. ¢ and b are nondimensional parameters depending on the details of
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the flow and exact definition of L; for our experiment with a counter-rotating jet,
a =~ 0.72 and b = 0.69 [137]. Equations (6.3) and (6.4) were derived by considering
the balance of the torque induced by the forcing and the torque caused by Ekman

friction, and the balance between advection and the beta effect.

Note that there are differences between co-rotating (eastward) and counter-
rotating (westward) jets in our experiment [136, 137, 138]. Co-rotating jets tend to
be narrower. Counter-rotating jets are broader, and are much more turbulent; it is
for this reason we plan to conduct experiments with counter-rotating forcing. The

Great Red Spot was simulated used counter-rotating jets [136].

L and U depend on the details of the forcing (to determine d and r,,) and the
experimental control parameters F' and 2. We consider two forcing configurations
in this subsection, narrow forcing and wide forcing. Wide forcing uses two forcing
rings, at r = 18.9 cm and r = 35.1 cm (d = 16.2 cm and 7, = 27 cm); this results in
the largest possible values of L and U for a given F and Q. Narrow forcing is done
between forcing rings at r = 27.0 cm and » = 35.1 ¢cm (d = 8.1 ¢cm and 7, = 31
cm); this results in the smallest possible values of L and U. A third alternative,
forcing between rings at r = 18.9 cm and r = 27.0 cm, yields intermediate values of
U and L. For our experiment, U ~20-100 cm/s for wide forcing and ~5-40 cm/s
for narrow forcing, L ~6-22 cm for wide forcing and ~4-14 cm for narrow forcing

(see Fig. 6.2).

We examine four separate cases in this subsection: wide forcing and narrow
forcing, at /2m = 4 Hz and 1 Hz. The values of Ro, Re, and U are shown in
Fig. 6.3 as a function of the forcing F. Rois O(107!) and Re is O(10* —103) for our
experiment. It appears that for sufficiently high forcing and low rotation, Ro ~ 0.2,
at which point the Taylor-Proudman theorem may be significantly violated (i.e., the

flow will be 3D).

The Ekman number (Ek) is purely a function of rotation rate; it does not
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Figure 6.2: Length scale L and velocity scale U as a function of pump flux F', for

four experimental configurations. These are empirically checked predictions from
Ref. [137] (Egs. (6.3) and (6.4)).
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depend on the forcing. Ek is shown as a function of 2 in Fig. 6.4. For our experi-
ment, Ek is O(107%). The Ekman time (7g) is also shown in Fig. 6.4, and ranges
from 2040 s; this time scale is separated from the vortex turnover time (~2-10 s for
the turbulence experiments) and the rotation time for the annulus (0.2-1 s). The
condition that the tank period is less than the vortex turnover time is equivalent to
the condition of low Ro; the condition that the vortex turnover time is less than 75

is equivalent to the condition of small Ek [138].

An additional length scale is the forcing scale. One possible choice is to
use L = 16.2 cm for wide forcing, and L = 8.1 cm for narrow forcing (that is,
L = d where d is the spacing between the forcing rings). Another possible choice
is to consider the distance from the forcing rings to the walls of the experiment;
turbulence is generated by the shear effects between the fluid forced between the

rings and the motionless fluid near the walls. We choose [j;; = 8.1 cm as the shorter
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of the two distances, d and the distance from the forcing rings to the walls. (That is,
there are three possible forcing rings and two must be used; one ring used will always
8.1 cm from a wall, and the forcing rings themselves are spaced 8.1 cm apart.)
Using the definitions for L and U, we can calculate various important length
scales. The forcing scale is always 8.1 cm, as discussed above (and thus ki,; = 27/8.1
cm = 0.78 cm™!). The thickness of the Ekman layer is 6z ~ /v/Q (Sec. 1.2.3)
which is 0.04 cm for /27 = 1 Hz and 0.02 cm for 4 Hz. The dissipation scales
for Ekman friction (Ig) and viscous friction (I,) are calculated as discussed in the
previous subsection, as are the Rhines length [r and the enstrophy dissipation scale
ly = 2w /kq (with kg = (n/v®)1/6); the results are shown in Figs. 6.5 and 6.62. g
is O(1000 cm), lg is O(40 cm), lg is O(0.5 cm), and [, is O(0.05 cm); these four
length scales are well separated and separate from the forcing scale liy; = 8.1 cm. As
the enstrophy dissipation scale is larger than the viscous dissipation scale (Fig. 6.5),
the 2D turbulence cascade model is satisfied (that is, energy cannot cascade to the
small scales; it must be removed by Ekman friction). Because [z > 100 cm, Ekman

friction is important for flows in our experiment (size ~ 90 cm).

Next, we calculate the dissipation due to Ekman pumping (eg) and viscous
dissipation (e,). The results are shown in Fig. 6.7. As eg is two orders of magnitude
larger than ¢,, Ekman dissipation is the dominant dissipation mechanism for our

experiment.

The vertical distance over which the Taylor-Proudman theorem breaks down
can be estimated as L/Ro (see previous section). As L ~ 8 cm and Ro ~ 0.3 or
smaller, this length scale is ~ 26 cm, slightly larger than the height of our experiment
(18.7 cm). As 2 is increased, this length scale increases (see Fig. 6.3).

A last consideration is whether Ekman pumping can inhibit the inverse cas-

cade for our experiment, that is, if Ro < v Ek [15] (as discussed in the previous

2

2To derive the enstrophy injection rate 7, we use 1 = kin;e, with e determined from the values

shown in Fig. 6.7.
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subsection). This condition can be rewritten as U?/2v < Q. As U > 5 cm/s for our
experiments, {2 must be larger than 1250 rad/s to inhibit the inverse cascade. Cur-
rently the experiment cannot rotate this rapidly, suggesting that an inverse cascade
will occur, although as discussed previously it may be halted at the Rhines length
scale [28, 119]. As Igr > liy;j for our experiment (Fig. 6.5), we should observe an
inverse cascade with structures larger than the forcing length. Such structures are
expected to be a strong jet for co-rotating forcing [137] or a large persistent vortex
(the “Great Red Spot”) for counter-rotating forcing [136], as discussed above. Our

experiments will examine the counter-rotating case.

6.3 Previous Experiments

Several experiments have studied quasi-2D flows at moderate Re. These include
flows in magnetic fields [11, 18, 161] and in soap films [29, 47, 164]. Because of the
geophysical applications, several experiments have examined specifically turbulence
in rotating experiments. Two good reviews of rotating turbulence experiments are
Refs. [58] and [149]. Generally these experiments used 3D forcing. The resulting
flow was 3D near the forcing mechanism and 2D elsewhere. The 3D regions gen-
erally showed no qualitative or quantitative difference between the rotating and
non-rotating cases.

The earliest experiment examining turbulence in a rotating system was con-
ducted by McEwan [83]. He examined the formation of vortices from turbulence
driven by sources and sinks arranged in periodic arrays on the bottom of a rotating
tank, finding that the eddies generally had an anisotropic cyclonic form. His experi-
ments were conducted at Ek ~ 107%, Ro ~ 1072, and Re ~ 10*. These experiments
were not able to investigate a wide range of Ro or Re.

Colin de Verdiére studied rotating 2D turbulence using random sources and

sinks in a rotating cylinder [28] (rather than the periodic arrays of McEwan). He
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found evidence for an inverse cascade as vortices formed on larger scales than the
forcing, although he did not determine a scaling exponent. The flow was strongly
anisotropic when 3 # 0. The experiments were conducted at Ek ~ 1075, Ro ~ 1072,
and Re ~ 10. He did not investigate the possibility of 3D structures for larger Ro.
For steady forcing, energy injected at small scales was dissipated primarily by Ekman
pumping at the larger scales.

Hopfinger and co-workers conducted experiments using a rotating tank with
an oscillating grid at the bottom [57]. The 3D to 2D transition was difficult to
characterize since the flow properties evolved in space, and quantities such as the
Rossby number had to be estimated locally. As Ro decreased (moving away from
the grid), at Ro ~ 0.2 a transition from 3D to 2D behavior was observed. Again,
in the 2D region, the energy coming from the 3D forcing was dissipated by Ekman
friction. These experiments were conducted with Ek ~ 107°, Ro ~ 5 x 1072, and
Re =~ 103. The parameter space at higher Ro and Re remains uncharted.

Dickinson and Long examined the growth of turbulence in a system similar
to Hopfinger’s tank [34]. They found that a turbulent layer grew away from the
oscillating grid, and eventually a flow would be established similar to Hopfinger’s
observations: the flow was 3D near the grid, and 2D farther away. Their 3D region
was interpreted as similar to an Ekman layer. They also found for extremely strong
forcing that the 3D region would grow to fill the tank. However, the experiments
were done at low rotation rates (2 ~ 0.2 — 1.1 rad/s) and thus could not examine
behavior for extremely low Ro; the experiments were conducted at Ek ~ 102,

Ro ~ 107!, and Re ~ 10%.

6.4 Experiments

Our experiments will examine continuously forced 2D turbulence rather than the

decaying turbulence that has more often been the subject of 2D turbulence stud-
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ies [61]. We plan to conduct experiments to determine the conditions for which the
experimental flow is predominantly two-dimensional, and for which the experiment
is predominantly three-dimensional. For rapid rotation and low forcing, Ro and
Ek are both small and the flow will be strongly 2D as has been observed in past
experiments with our apparatus [131]. When the experiment is no longer rotating,

the flow will be three-dimensional.

We plan to use both hot film probes and the ultrasound probe to investigate
the character of the flow. We have placed a hot film probe at the top of the ex-
periment at r = 27.0 ¢m, and another probe directly underneath at the bottom of
the experiment. By measuring the correlation of the signals from these two probes,
a measure of the two-dimensionality of the flow can be obtained. The ultrasound
probe can be used to measure the vertical velocity along one column of fluid at a
fixed location 2.6. This probe best measures time-averages. One reasonable mea-
surement of the dimensionality of the flow is to measure the time-averaged vertical
velocity as a function of height z; if the time-averaged vertical velocity profile is
close to zero, the flow can be considered 2D. A second measurement would be to
find the time-average of the fluctuations in the vertical velocity, perhaps also as a

function of z.

The character of the transition from 2D to 3D flow is unknown. One pos-
sibility is growth of the Ekman boundary layers. This is unlikely; for dgx ~ 9 cm,
the half height of the tank, the rotation rate must be © ~ 0.0001 rad/s, and the
conditions of small Ro and Ek will be violated at larger rotation rates. Also, it is
reasonable to suppose that the phase space boundary between 2D and 3D behavior
depends on both 2 and the pump flux F, but §g; is determined solely from 2. The
growth of the boundary layers will be monitored by the ultrasound probe. As the
hot film probes are located 1 cm from the top lid and the bottom of the annulus,

if the boundary layers grow to 1 cm (2 ~ 0.01 rad/s), a change in the correlation
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should be noticed. We do not expect that growth of the Ekman layers is a significant
source of 3D behavior.

A second possibility for the transition from 2D to 3D behavior is through
bursting of 3D turbulence [81]. It is possible that, via the inverse energy cascade,
energy flows to large length scales; as the energy contained in these large scales
increases, possibly it is released through a sudden burst of 3D turbulence. This
bursting of 3D flow may be localized, or it may fill the tank. Bursting behavior
could be detected by considering the correlation between hot film probes for short
periods of time; a burst would be signaled by a sudden low correlation. Also, a 3D
burst would be visible as a sudden abnormal vertical velocity profile as measured by
the ultrasound probe. By examining ultrasound and hot film data, the fraction of
time spent in 2D and 3D behavior could be determined. It is possible that Ekman
dissipation will prevent the buildup of energy at large scales; also, the § effect may
inhibit the inverse cascade.

A third possibility for the transition from 2D to 3D behavior would be an
abrupt transition (as a function of F' and ). If such a transition occurs, it would
be easy to detect both with the ultrasound probe and the hot film probes. It would
be interesting to learn if such a transition was hysteretic.

A last possibility is that the transition is gradual. Perhaps the 3D behavior
grows as Ro (or 1/Ro) according to Eq. (6.2). In such a case, the 3D behavior
could be measured by the correlation coefficient for the top and bottom hot film
signals, and by quantities such as the average fluctuations of the vertical velocity,
rms average vertical velocity, or other averaged measurements from the ultrasound
probe.

We expect to begin conducting these 2D /3D turbulence experiments during

the months of October and November 1997.
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Appendix A

Random Walk Second Order

terms

This appendix contains coefficients for the second order terms discussed in Chap. 3.

A.1 Notation

Table A.1 contains a summary of the important notation used in this appendix. For
a random walk alternating between flight events and sticking events, T' = (t¢) + (ts)

when both moments are finite (u > 2,v > 2).

A.2 Second order terms

The asymptotic behavior of (z) and (z?) depends only on the leading terms in
the expansion of Egs. (3.26) and (3.27). In order to study the approach to the
asymptotic limit, it is necessary to calculate higher order terms. (In cases where
(z) ~ t, it was necessary to calculate third order terms as the first order terms for
(x) and (z2) canceled.) In this appendix, we use Eq. (3.32) for the expansion of the

Laplace transform of the PDFs to produce the second order terms. The variance
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Table A.1: List of common symbols used in this appendix.

Symbol Meaning
T mean time between the start of successive steps
tr,ts minimum time for short flight, sticking events (see

0 0
PS

bi, Pr

Ui, Ur

Egs. (3.28), (3.29), and (3.41))

first moment of flight, sticking PDF's

power law decay exponent for the flight PDFs

power law decay exponent for the sticking PDFs

variance exponent: g2 ~ t7

probability that first event is a flight event, sticking event
probability a flight is to the left (—z), right (+z)

velocity in left direction, right direction

(v; > 0 for leftward motion)

will scale in time, generally, as o%(t) ~ CtY 4+ C't” with 4/ < . The asymptotic
behavior, given in Sec. 3.5, will always be given by the largest exponent.

Regions with different second order terms are shown in Fig. A.1. We calculate
the highest order terms for each region; these are listed in Tables A.2-A.4. The
calculations are valid to second order, so while several terms are listed for each of
the regions shown in Fig. A.1, only the two terms with the largest exponents are

useful. The other terms may have exponents which are smaller than neglected third

order terms that do not appear in the table.
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Figure A.1: (a) Phase diagram for the tables in the appendix. The regions shown
correspond to the regions discussed in Tables A.2-A.4. The axes are the flight
exponent g and sticking exponent v.
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Table A.2: Scaling of the mean position for asymmetric random walks (vaye =
prvy — pvp # 0), (z) ~ Kvapet? + K'v,et?. The terms have been calculated to
second order for each region shown in Fig. A.1. To use this table, determine which
two terms have the largest exponent for a given value of i and v. The term with the
third largest exponent is not necessarily the third order term, as the calculations
have only been done to second order. In this table T is defined as (ts) + (¢r). Terms
containing (t¢) are only valid for g > 2, and terms containing (ts) are only valid for
v > 2.
Region exponent 8 coefficient K

I 1 (te)/T )
.
3= e
3—v (3(52%
0 2(te)(ts) (Pp (te)— P(;(Ttsz)) (82) (tr)—(ts)(t7)
1I 1 1 -
p-l g
I+p—v _(I‘(2 ,1:)(I2‘Z2:2u—u) )téiutg_l
111 v—1 (Geatnrey trts
l+v—pu (%)tg_lté‘”
2v -3 m)((ﬁ) + Lkt (te)td >
1=2p+2v T2 1;1*(2 2)u+2u) )t%u_th_b
2—p (u—%)tﬁ '
0 S (t)
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Table A.3: Anomalous diffusion results for symmetric random walks (vaye = prv, —

pvp = 0),

rms

o2 ~ Cv2 17 + C'v2 7. For each region shown in Fig. A.1, the terms

TIIIS

for 02 have been calculated to second order. See caption for Table A.2 for an
explanation of how to use this table.

Region exponent v coefficient C'
I 1 )
et
4-p ((4 u)2(3 u))FT 2
p,
6o (FAGolen) ),
[,L 1
6—p—v (22%*;, ) (B
4
0 M0 4 D + <t§> + 2(te) (PR(tr) — P3(ts))]
II 2 2—pu
Il (remerry) (1 — Dt + (n = 2) ()t
2u—4)I(2—v 1—pu—
2+p—v (1"((271.5)1')‘(35—#/.&7)1/) )t Mt
111 v—1 (r(z—i)r(u) NG e
2I°(3— —1,1—v
24v—p (e s
w—3 [t )F(Q Syl (v = 2){t) + (v - 1)ts) (t2)t22
0 —PY(t?
% — [ty ) (v — 2)t) + (v — Dts) 122
3 2P0 u— 1
— = t
2o (OGS e
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Table A.4: Anomalous diffusion results for asymmetric random walks (vaye = prv, —
pop £ 0), 02 ~ Ct + C't"'. For each region shown in Fig. A.1, the terms for o
have been calculated to second order. For an explanation on how to use this table,
see caption for Table A.2.

Region exponent v coefficient C

I ] (P CE ) 2 ) 2
2
%[U?ms - @Ugve] e
A ceeanill ‘f*{;”““ J0hve + Vsl ()
4—v (4— U)2(3 V)(ts Tgtfi )Uave
6 — 2u (it DR (G S
t s
()T (2 — ) Kl §t§< >—r<(4> u)]
2 14 I/
6 — 2 <F§ e e e T
0 [(23—‘3’“ ) {8) + 200 (PRUE) - PR >);—2§,—] o+
(3—32)<t?><tf><T+<ts>> 2o+ (gn) () (t1) 2020t
t
<%§r)<3<ts>2 — Atr) (1) — 2(t6)?) e+
(g ) e) —2068) )it
Pp(t
(t—%fé)u ) (t) ({te) + 3(t)) + ()2 (#2002 e+
(%ﬁ)[tm t) () — 4(te) (ts) — (12)+
3(82){t)2 + 3(tr)2 ()]0 — (0002 4
0
(D R0t (1) + (1)) + (02 (E2) () + 2(te) (t) Joe
II 2 (2= 1) (W0 — v20)
p (W)[(M Dt + (u — 2)(ts)]ty “(v rms—vgve)1
2tp—v (W)[(‘l—u— V)0 + (1 — 2)0knslty M1
11 2% — 2 (e ,,E%gr(fr”@i) 7)) 285 vave
2+v—up (ng_,ﬁ))t“ 1S 02
2I'(3v—3)—4AI'(v)I'(2v—-2)|[(2—v){ts )+(1—V)t 1/
3v—4 (L = T £)r( %ESV 2))%iéy‘3) Ssl) )28 vl
v—1 ( (02 V)T )[ <tf> ave+<tf> rms]tS
3—pu Sty 1'02
F rms

2 (2—p)((2u—2)T2 (2—pu+v)-T(3—2u+2v)) \ ,2u—2,2—2v w2
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Appendix B

Software documentation

This appendix documents several useful software programs that have been developed
in the past five years. All of these programs work using command line options, and
for all programs the -h option gives a brief help message and a listing of all command
line options. The source code for all software discussed in this Appendix can be found
on the World Wide Web at the address http://chaos.ph.utexas.edu/~weeks/
thesis/thesis.html.

B.1 Ultrasound Data Acquisition

For a conceptual description of the ultrasound programs, see Sec. 2.6. Two programs
are needed to operate the ultrasound system, one to operate the Matec system via

a GPIB interface and one to read in data from the WAAG II data acquisition card.

B.1.1 Matec controller software

The program which sets the parameters for the Matec MBS-8000 system using the
GPIB interface is called matec. The GPIB bus is accessed through a National
Instruments GPIB-PC2A card. The GPIB board is configured with an address of
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Figure B.1: Schematic view of ultrasound pulses generated by Matec system.

2E1 (hex) using DMA channel 3. The Matec bus address is 11. This program works
by giving six numbers on the command line, i.e. matec 40 0 30 130 0 0. We
will refer to these six numbers as A, B,C, D, E, and F. A and B set the intra-pulse

interval (called Tgpacing in Sec. 2.6), by
Tepacing = A % 100 x 107 x (1/f) (B.1)

where f is the frequency of the ultrasound (see Fig. B.1). C sets the number of
cycles per pulse, thus 7ywigtn = C/f. D is the pre-amplifier gain in units of 0.5 dB;
D can be set between 0 and 190, and values over 190 are set to 95 dB. F may be
selecting a filter, although it may also be an obsolete variable; we always use £ = 0.
F is a switch for turning on (F = 128) or off (F = 0) the gated amplifier; we always
use F' = 0.

For the GPIB bus to work, the file “GPIB.COM” should be in the directory
C:\, and the statement DEVICE=C:\GPIB.COM must be in the “config.sys”
file of the computer.

Note that at low gain values (D < 96), the Matec system we have does not

always set the gain correctly. Some of the relays may be broken or working poorly;

178



the actual gain does not increase monotonically as D is increased. Above D = 96
this is no longer a problem, although a step change in D does not always increase

precisely 0.5 dB.

B.1.2 Data acquisition software

The ultrasound data acquisition was originally written by Paul Umbanhowar. This
program has been modified in several ways: the ability to use command-line options
to set parameters, the ability to use the internal WAAG clock or an external clock
as desired, and an improvement in the algorithm which determines velocities from
the raw data. The program works with a Markenrich WAAG II data acquisition
card, and is currently running on a 486 computer.

The output of the program is groups of six floating point numbers (4 bytes
each). They are the position (in cm), velocity v (in cm/s), uncertainty Awv, the x?
of the line fit to the data which determines the velocity, the amplitude of the pulse
(in V), and the time stamp (in seconds since the program began).

This program has several command line options:
-h: Provides a list of all command line options and a terse description of their use.

-0: Allows the user to specify a file name to store the data in. The default file
name is “blah.out”. Currently our naming scheme is to use the prefix “us”,
the date, and then a number for the file suffix, i.e., “-0 us041097.001” is the
first file created on April 10, 1997.

-n: Number of data points to read in. After the program has read this much data,
it will exit. (Actually, the program typically reads in a few more data points

past this point.)

-v: Number of reflection groups N to read to determine the velocity. Increasing

this number improves the velocity measurement, but runs the risk that the
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particle isn’t visible in each reflection group. Decreasing this number results

in a less accurate velocity determination. Typically 8-12 is good.

: The frequency of the RF signal, in MHz. This allows the program to calculate

the velocity, and also aids in recognizing pulses.

: Number of pulses between each ultrasound burst. This is the same number as

A for the matec program.

: Pulse length. This is the same number as C' for the matec program.

: This option lets you save the raw data, rather than the velocity information.

However, it only saves one measurement (that is, one set of reflections). When
used, the output has the velocity data at the top, then a line of large numbers
(9x107), then the raw data. The raw data has six columns: channel a, channel
b, amplitude, phase angle (radians), data number, and time stamp. This
option was used to create the figures for Sec. 2.6 and can be used for error

checking.

: Set the trigger level for the WAAG II card. It is not clear that the trigger

level makes much difference. “-t 0” is negative full scale, “-t 255” is positive

full scale.

: This option switches between the external clock and the internal 2 MHz clock.

This is the data digitization rate. The WAAG card can only take 2'6 data
points (per channel), s0 (Tspacing X N X felock) < 216 is required. (Recall N is

set by the -v option.)

: Set the delay from the clock signal box (Sec. 2.6.4), in units of 1/ fiock. Only

used if the external clock is used; this helps the program correctly determine

the position of particles.
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-s: The number of samples in the window set by the clock signal box (Sec. 2.6.4),

in units of 1/ feock- Again, this is only used if the external clock is used.

The defaults for the program can be seen by using the -h option, and can be

changed by modifying and recompiling the program.

B.2 Hot Film Probe Data Acquisition

The hot film probe data acquisition program is called adscan, as it scans the analog-
to-digital inputs of the National Instruments AT-MIO-16 board. The program was
originally written by Muhammad Shazad Pervez, but the source code was lost.
Muhammad Ali Bawany wrote the next version, and added many improvements.
Most recently Eshel Faraggi has added in the ability to control a multiplexer circuit
to the program.

This program has many command line options that allow the program to do
merely simple data acquisition, or in addition allow the program to control the flow

rate. The command line options are:
-h: Provides a list of all command line options and a terse description of their use.

-s: The number of samples to take. Typically this is chosen to allow the data to

be Fast Fourier Transformed, i.e., a power of 2.
-r: Sample rate for data acquisition.

-n: Number of channels to acquire. The total number of data points taken, set
by (number of samples) x (number of channels), must be less than or equal to
65536. For the version of adscan using the multiplexer, only one A/D chan-
nel is actually read; the successive measurements are interpreted as different

channels. This option is not needed when using the multiplexer version.
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=1m:

-stv:

-inc:

Number of multiplexer channels to acquire. As with the -n option, the total
number of points must be less than 65536. The program steps through the
multiplexer channels and once all channels have been read, a reset signal is
sent to the multiplexer. In this way, from 1 to 8 multiplexer channels can be
read. In the future, it would be possible to add in a second analog multiplexer
chip and slightly rewire the counter chip to increase the maximum possible

number of channels to 16.

: Gate pulse duration. The program reads digital pulses to find a frequency

(for the rotary encoder beneath the annulus used to find the rotation rate
of the annulus, or the pulses coming from the flow meter). These pulses are
measured for a set duration, and then the frequency is determined based on

the count of pulses. -p sets this duration.

: The flow rate required, if a constant flow rate is desired. The program produces

an output voltage which is used to control the pump motor, and this voltage
is adjusted if the measured flow rate is different from the desired flow rate. -ct
is set using the flow rate in cm/s; the program converts from the flow meter

frequency to flow rate.

This is the starting voltage for the pump motor control voltage. Typical usage

for pump control is described below.

When using pump control, the output voltage is adjusted in small steps. This
option sets the step size in units of bits. As the output voltage can vary from
-10-10 V, with 12 bits of resolution, each bit is 0.005 V. Setting this option
small results in small changes; larger values allow faster response time for the

program, but can result in over-compensation.

Specify a flow rate file. This option is used instead of the -ct option. A flow

rate file consists of pairs of points (data point number,flow rate). The first
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coordinate is equivalent to the time by (time in seconds x data acquisition rate
in Hz = data point number). The program then interpolates linearly between
pairs of data points to determine the target flow rate at any given instant.
This moving target then is used as the basis for the pump control voltage. If
the file contains an entry (-1,-1), the flow is held constant at the last previous
flow rate given in the file; the (-1,-1) is used to signal the end of the flow rate
file.

The files to save the data in must be specified by providing a file suffix on
the command line at the end. The file suffix must be at most six characters (plus
the standard 3 character MS-DOS file extension). adscan then prepends a prefix
indicating which data is in a given file. Files begin with “t0,” “t1,” etc., for the
Oth, 1st, and subsequent channels. A special file beginning with “tf” contains the
frequency information read by the data acquisition program, typically the frequency
of the pulses from the flow meter. This frequency could also be the frequency of
pulses from the rotary encoder beneath the annulus. Our naming scheme is to use
the date with a version number, thus “t1041097.002” is the second data file taken
for channel 1 on April 10, 1997.

Typically adscan is used to keep the pump rate constant. One small “fea-
ture” of the National Instruments driver software is that the output voltage of the
AT-MIO-16 card temporarily drops to zero when the board is reinitialized, that is,
at the beginning of the program. We have found the best way to control the pump
is to 1) determine the proper starting voltage by turning the knob on the manual
pump control box and checking the flow rate; 2) using this starting voltage as the
argument for the -stv to adscan; 3) starting adscan and waiting a few seconds, until
a beep is heard on the computer signalling the initialization of the AT-MIO-16 is
complete; and 4) switching the pump control box from manual control to computer

control. In this way the signal sent to the pump is steady. When exiting, adscan
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prints the last value of the control voltage, which can be used to specify the next

value for -stv.

B.3 Stream Function Programs

There are several programs which work together to process the raw data and then
generate stream function pictures.

The first program is filter2dat. This program takes data in the form (time
stamp, 60, r, ug, u,) and produces output in the same form. This program interpo-
lates the data onto an evenly spaced mesh (evenly spaced in (z,y) coordinates rather
than (r,0)). There is one command line option, -n. This option sets the number of
grid points used to cover the flow domain. The output from the filter2dat program
should be inspected to make sure that the flow domain is reasonably evenly covered
with data. For example, plotting a dot at the second and third coordinates for all
of the data should show a grid of dots that cover almost all of the flow domain®.
If this is not the case, the number of grid points should be decreased, or more raw
data obtained.

The second program is dat2amp, designed to take the velocity data and find
the amplitudes of the basis functions for the stream function. This is the program
that does the least squares calculation described in Sec. 2.4. This program has

several command line options:
-h: A help message listing all options.

-t: Set the number of azimuthal basis functions. (See Sec. 2.4 for details of basis

functions.)

-r: Set the number of radial basis functions.

'On the computer ‘maytag’, this could be done with the command filter2dat veldata | field
2 3 | plot | newworm.
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-m: Set the maximum value of r (default is 43.2 cm).

-n: Set the minimum value of r (default is 10.8 cm). If experiments are done
with the inner barrier, such as described in Chap. 4, then this value might be

changed.

The input of this program is in the form (time stamp, 6, r, ug, u,), although
the first column is ignored. This program can use the data from filter2dat, although
it can also use the raw data fed into filter2dat. See Sec. 2.4.3 for a discussion of the
subtleties; results are better when filter2dat is used to pre-process the data. The
output from dat2amp has ryj, on the first line, 7,4 on the second line, and then
a listing of the coefficients in the form (m,n, [, Cppi), corresponding to the indices
discussed in Sec. 2.4.

Several additional programs (discussed below) take the coefficients from
dat2amp and convert them into usable forms such as contour plots of the stream
function. If desired, the output from dat2amp can be filtered, for example only
using coefficients with |Cy,p;| > € for some threshold e. Also, by examining the mag-
nitudes of the coefficients, the proper number of basis functions to use for dat2amp
can be determined.

The most useful two programs are amp2con and amp2nat (the latter
named for obscure historical reasons). These programs take the basis function am-
plitudes produced by dat2amp and produce PostScript contour plots. amp2con is
the simpler of the two programs and is somewhat obsolete; amp2nat was designed
to create Fig. 5.3 and has more features. The default options of amp2nat are de-
signed specifically for the two data sets shown in Fig. 5.3, but can be modified as
necessary. Also, amp2nat draws in some topography information. This program
should probably be revised to allow the user to turn off the topography information
for cases when it is not needed. The program is extensively commented and should

not be difficult to modify.
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The algorithm used by the program is to partition the stream function do-
main into an NV X N grid; the stream function is initially calculated on all points of
this grid. (Portions of this grid outside the annular flow domain are excluded from
this calculation and all subsequent calculations.) Then, each square region with
four grid points at the corners is examined (see Fig. B.2). The program determines
if a contour line should pass through this square region (if at least one grid point
has v¥(z,y) > 1, and at least one has 9(z,y) < 1, where 1, = nipy is a multiple
of some fixed contour spacing). If so, the program partitions that square region
into four smaller square regions, and determines which of these squares the contour
lines go through. This process is repeated recursively for several levels until the
contour line is drawn through the smallest sized square region in a simple fashion
(Fig. B.2(d)). Although all contour lines are drawn at a multiple of 45° to each
other, by allowing the initial grid point spacing to be small and the recursion to

continue for several levels, smooth-appearing curves are drawn.

Both amp2con and amp2nat have the following command line options:

-h: A help message listing all options.

-n: Set the initial spacing for contours (the value of N above). This should typi-
cally be 200-400; lower values can result in the need for two contour lines to
pass through one initial square region, which causes problems. Higher values

will work but are usually unnecessary.

-z: Sets the level of recursion. In Fig. B.2 four levels of recursion are shown. The

higher N is (set by -n), the lower the recursion level is needed.

-c: The number of contours to use; the contour level spacing 1 is adjusted auto-

matically.

-1: The value of 1y (overrides the -c option). This is preferred when comparing

several stream function pictures and they all need the same contour spacing.
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Figure B.2: Partitioning scheme to draw contours for the programs amp2con and
amp2nat. Points colored black are “below” the contour level, and white points
are “above.” The recursion is continued until the contour lines are suitably high
resolution; see the text.

187



-L:

The default of automatic spacing (adjustable by the -c option) would be more

useful for a quick qualitative picture.

: Using the -A option prints a picture without an annulus outline around it.

: Using the -I option toggles the usage of the inner barrier (used in the ex-

periments described in Chap. 4). Normally the inner barrier should not be

used.

This option can be used to change the linewidth of the contour lines.

In addition, the program amp2nat has extra command line options. Primarily

these command line options are used to generate a figure with two stream functions

on the same page (discussed further below).

-N:

This option sets which stream function is being drawn, “1” or “2”. This affects

page positioning and also the generation of the PostScript headers.

: Change the orientation of stream function “1.” This is relative to a fixed

position on the annulus, i.e., the crest of the topographic ridges for Chap. 5.
In particular, this should be the angle that the mountain peak is located at in
the reference frame of the raw data. Typical procedure would be to place an
LED over the mountain crest in the annulus, then find the angular location
of this LED in the reference frame co-rotating with the annulus. This angle is

the value to give to the -m option.

: Change the orientation of stream function “2.”

: Use only one mountain. This makes the resulting figure fill the entire page

rather than leaving room for a second stream function, and prints a complete

set of PostScript headers.
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-T: This prints the two stream functions side by side rather than one above the

other.

-E: Normally the symbols “H” and “L” are printed to indicate the highs and lows

of the stream function. The -E option turns this feature off.

-e: This sets the window size for scanning for highs and lows. A local extremum
point of ¥ (z,y) must be larger (or smaller) than all nearby grid points within
this window radius. Increasing this value typically reduces the number of H’s

and L’s that are printed.

To produce two stream functions on the same page, the output of amp2nat
using the -N1 option can be placed in a file, and the output using -N2 appended to
that file.

A third program, amp2ppm makes color pictures of stream functions, in
PPM format?. This program only makes one picture at a time; it cannot be used to
make a multiple part figure, although other standard programs such as xv which can
read PPM format might be useful. The program uses the output from dat2amp
as input, and the output is the PPM file. The following command line options are

available:
-h: A help message listing all options.
-n: Width of picture, in pixels.
-i: Invert color scheme (exchange red and blue ends of the spectrum).
-¢: Adds in contours with a given spacing (spacing set with this option).

-e: Sets the width of the contours, in pixels; only useful if the -c option is also

used.

>The PPM (Portable Pixel Map) format is a standard graphics format, described at http://
chaos.ph.utexas.edu/ weeks/graphics/mkppm.html.
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-m: This option puts in outlines indicating where the mountains are positioned;
the location of the mountains is specified similar to the -m option for the

amp2nat program.

-M: This option puts in a bold dashed line at the mountain crest location, similarly

to -m.

-z: Adds a white border around the edges of the picture. The width of this border

in pixels is specified by -z.
-B: Makes a black and white picture rather than a color picture.
-R: Rotates the resulting picture 90°.
-C: Prints a color bar at the side of the picture.

The next program, amp2slip, shows the problems caused by the lack of a
zero-slip boundary condition imposed at the walls. This program calculates ug(r, 6)
for 7 = Tinner and 7 = Touter, Or at an arbitrary radius. Typical results are shown
in Fig. B.3. Ideally this should be a constant; due to a lack of data, especially near
the outer and inner walls, the velocity is poorly determined near the walls and does

not go to a constant.

This program has two command line options. The -n option specifies how
many different values of @ are calculated (with a default of 1000; usually there is no
need to change this value). The -r option specifies the value of r to use. The default
is to print out three columns, (8, ug(Tinner; 8), ug(Touter)-

The last program is amp2base. This program is used to extract radial
velocity profiles. The output is (r,ug(r,0)) for a specific (user-chosen) value of 6.

The command line options are:
-h: A help message listing all options.
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outer

f(rad)

Figure B.3: Azimuthal velocity at outer wall (solid line) and inner wall (dashed
line). Due to insufficient data, the velocity does not go to a constant at the walls.
These data correspond to Fig. 5.3(b), the blocked flow.

-d: Print the velocity, rather than the stream function value.
-n: Number of radial points to print out.

-r: Print a radial slice at the specified angular location (in degrees). If the -r
option is not used, the output is the azimuthally averaged velocity profile (see
Fig. 5.4) which may be a more useful way to use this program, and is the

default behavior.

The output of this program for the blocked and zonal flows of Fig. 5.3 is shown in
Fig. 5.4.
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