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ABSTRACT

Photosynthesis is vital for the survival of entire ecosystems on Earth. While light is fundamental to this
process, excessive exposure can be detrimental to plant cells. Chloroplasts, the photosynthetic organelles,
actively move in response to light and self-organize within the cell to tune light absorption. These disk-shaped
motile organelles must balance dense packing for enhanced light absorption under dim conditions with spatial
rearrangements to avoid damage from excessive light exposure. Here, we reveal that the packing characteristics
of chloroplasts within plant cells show signatures of optimality. Combining measurements of chloroplast densities
and three-dimensional cell shape in the water plant Elodea densa, we construct an argument for optimal cell
shape versus chloroplast size to achieve two targets: dense packing into a two-dimensional monolayer for optimal
absorption under dim light conditions and packing at the sidewalls for optimal light avoidance. We formalize
these constraints using a model for random close packing matched with packing simulations of polydisperse
hard disks confined within rectangular boxes. The optimal cell shape resulting from these models corresponds
closely to that measured in the box-like plant cells, highlighting the importance of particle packing in the
light adaptation of plants. Understanding the interplay between structure and function sheds light on how
plants achieve efficient photo adaptation. It also highlights a broader principle: how cell shape relates to the
optimization of packing finite and relatively small numbers of organelles under confinement. This universal
challenge in biological systems shares fundamental features with the mechanics of confined granular media and
the jamming transitions in dense active and passive systems across various scales and contexts.
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INTRODUCTION

Photosynthesis is a fundamental process necessary for most life on Earth. However, fluctuations in light impose
significant stress on plants, necessitating permanent dynamic adaptation. In addition to exhibiting macroscopic
movements, such as phototropism, heliotropism, and shade avoidance [1–4], plants are also capable of changing
their intracellular structure [5], for example, by moving chloroplasts in response to light [6–9]. These disk-
shaped organelles, responsible for photosynthesis, can move towards or away from light by actively assembling
networks of short actin filaments around them [8, 10–14], allowing them to collectively rearrange the intracellular
structure to tune the optical properties of plant cells [7, 15, 16]. Dim light eventually leads to an accumulation
of chloroplasts in a layer to maximize the absorption of light [17], while in strong light, chloroplasts move toward
the sidewalls to increase leaf transmittance and avoid photodamage, such as increased production of reactive
oxygen species [6, 18–22]. Although the molecular driving mechanisms of these movements are well studied,
the collective aspects of the large-scale re-arrangement motion of chloroplasts in plant cells remain enigmatic:
How do cell shape and size impact the ability of the relatively large number (N ≈ 50 − 120) of chloroplasts to
collectively re-arrange the intracellular structure to achieve various packing configurations for light adaptation?

Waterplants such as Elodea densa, the subject of this study, provide an optimal system for microscopically
studying chloroplast motion due to their simple two-cell-layered leaf structure. In a previous study, we identi-
fied a glass-like state under dim light conditions, where chloroplasts in a dense two-dimensional configuration
(packing fraction ϕ ≈ 70 − 74 %) are caged and unable to move freely, exhibiting dynamics similar to those in
glassy systems [9]. These mechanical characteristics stem from the high two-dimensional density of chloroplasts,
which are bound to mostly move on the inner walls of the cells, as their movement relies on the anchorage to
the plasma membrane [8, 23], which can be alleviated via blue light in water plants [24–27]. Upon strong light
stimulation, the organelles become highly active and quickly transition within tens of minutes out of this two-
dimensional glassy regime into a three-dimensional collective swirling motion of aggregates. These aggregates
eventually spread on the side walls, enabling light avoidance (Supplementary Movie 1).

While the dynamic phases themselves pose intriguing questions about photo-activated phase transitions in a
biological active matter system under confinement, several questions remain open regarding the underlying
geometric aspects of chloroplast packing within cell confinement. In fact, the dynamic adaptation response
is infeasible if chloroplast number or size is altered. Normally, chloroplasts reach 2D packing densities of
ϕ ≈ 54 % in spinach, 63 % in beetroot [28], 69 % in wheat [29] and around 80 % in Arabidopsis [30], with
their number correlating to the area of their cells [28, 29] and chloroplast size [31]. It was found that a few
enlarged chloroplasts cannot re-arrange within the cell to reduce photo-damage efficiently [32, 33], while a large
population of smaller chloroplasts performs better [34–37]. These studies suggest that chloroplast size might be
optimal for photosynthesis [38] and is crucial to be well controlled. Importantly, not only chloroplast number
and size but also the cell shape have an impact on this adaptation response; for example, in lobed cells of
Magnolia or Zamia leaves, chloroplasts cannot re-arrange efficiently [7]. These lead to the hypothesis that
alterations to cell size and shape play a significant role in controlling the photo-protection efficiency.

Here we study the interplay between cell geometry and chloroplast size to determine balanced packing to
achieve optimal light harvest and photoavoidance motion in the cuboid cells of the waterplant Elodea densa.
To accomplish this, we model chloroplast packing structures as a disk packing problem of two-dimensional
polydisperse disks in rectangular confinement. The optimal packing of n-dimensional spheres (n ≥ 2) is a
century-old problem with wide-ranging applications in condensed matter systems [39–41], optimization [42],
and signal transduction [43, 44]. The complexity of this seemingly simple problem is evident in the case of
monodisperse spheres in three-dimensional free space. The optimal packing was conjectured to be a face-
centered cubic structure by Johannes Kepler in 1611 [45] (but studied centuries earlier in a Sanskrit work
“Āryabhat̄Iya of Āryabhata” from 499 CE [46]) and was ultimately proven almost 400 years later by Thomas
Hales in 1998 [39, 47]. Notably, packing (or tiling) constituents in living materials, similar to many classical
condensed matter systems, feature additional complexities. First, in most cases, the packing is disordered,
lacking a clear crystalline structure or consisting of building blocks with more complex shapes [48–54]. In the
presence of noise and size-polydispersity, maximally dense packings can be determined algorithmically. However,
the random close packing density ϕrcp is not well-defined and depends not only on particle shape [55, 56] and
size distribution [57–59] but also on the choice of the algorithm used [60–62]. Second, biological systems are
often highly geometrically confined. Such a constraint strongly affects packing [63–65] and transport [66] . By
studying chloroplast configurations through the classical perspective of a packing problem, we aim to uncover
critical dependencies between chloroplast size and cell shape. To achieve this, this work is divided into three
parts: First, we quantify and describe the structure of cells in our model system. Next, we introduce the
disk packing simulation based on experimental parameters. Finally, we construct two arguments for maximal
packing in the cells’ center and the side walls, which, when combined, define a clear optimal shape.
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Fig. 1: Overview of experiment and packing model. (a) The aquatic plant Elodea densa. (b) A 3D confocal image of the
cell walls shows a bi-layered leaf structure. We focus on the abaxial (lower) cell layer, depicted on top. Cyan channel: cell wall.
Disk-like green structures: chloroplasts. Dotted line: guide to the eye to distinguish abaxial (lower) from adaxial (upper) cell layer.
(c) Orthogonal view of cell walls (cyan) and chloroplasts (orange) along dotted white lines, respectively. Walls represent box-like
structures with definitions of the box length Lx, width Ly , and height Ly of the lower cell layer. (d) Schematic of the box geometry
and experiment. Light enters from the top. Bottom wall A and sidewalls B and C are shown. (e) Cells under weak red light:
chloroplasts are packed with a high density on the bottom wall. The packing model (right) shows a schematic of the opened box
with chloroplasts packed solely in the A-plane. (f) Cells under strong blue light: chloroplasts spread on the side walls B and C. In
the model, the chloroplasts are packed on B and C planes. A brighter color corresponds to larger chloroplasts.

DISK-SHAPED CHLOROPLASTS ARE CONFINED IN ELONGATED RECTANGULAR CELLS.

We study the cell shape and structure of the water plant Elodea densa, commonly referred to as “waterpest”, us-
ing brightfield and confocal fluorescence microscopy. This monocot plant has a simple structure characterized by
four-fold symmetric leaf arrangements on a single stalk (Fig. 1a). The leaves have two layers: an adaxial (upper)
layer with larger cells and an abaxial (lower) layer with cells approximately half the size (Fig. 1b-c, Fig. S1) [67,
68] (similar to the related plant Elodea canadensis [69]). We observe that upon strong light stimulation, the
disk-shaped chloroplasts in the bottom of the cell move toward the cell walls after creating a motile aggregate
(Fig. 1d-f, Fig. S2 and Supplementary Movie 1). To quantify the cell shapes and chloroplast sizes, we perform
brightfield imaging and chlorophyll auto-fluorescence microscopy (Materials and methods, Fig. S3). We analyze
262 cuboid-shaped cells and n = 4451 disk-shaped chloroplasts (in 59 cells), with an approximately Gaussian-
distributed disk-radius r = 2.12 ± 0.29 µm (mean ± standard deviation) and polydispersity δ = ⟨r⟩/σr = 13.6%
and with an aspect ratio close to 1 (Fig. 2a). We find scaling between cell area A and chloroplast number N
(Fig. 2b), consistent with previous observations in other plants [28, 29, 31, 38]. As chloroplasts in dim light
mostly pack in a single layer, the upper limit of this scaling is expected to result from random close packing in
two-dimensional free space with a packing density ϕrcp (dotted line in Fig. 2b).

However, the chloroplast number lies well below this line, which likely results from the dependency of random
close packing on the confinement [63]. Furthmore, we find, that cells have various lengths Lx = 50 − 125 µm
while their width remains largely constant Ly = 22.2 ± 2.95 µm (Fig. 2c). To provide a physical intuition
about the cell confinement, we re-scale all dimensions by the average chloroplast diameter 2⟨r⟩. This renders
all length scales in terms of the average number of chloroplasts that fit within a given space and suggests that
only 4 − 7 chloroplasts fit within the width of the cells, while the cell length varies between approximately 10
to 30 chloroplasts.

To measure the height of the cuboid cells, we stain the cell walls with calcofluor and perform confocal microscopy
to generate three-dimensional volumetric images of the plant cells (Materials and Methods). We find that the
cells have an average height Lz/2⟨r⟩ ≈ 2.34 ± 1 (n = 86) measured within one average chloroplast diameter
from the boundary (compare Fig. 1c, Fig. S2c,d). Notably, sometimes the lower cell walls align with the upper
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(a) (b) (c)

Fig. 2: Chloroplast and cell geometry. (a) Gaussian statistics of chloroplast radii in experiments and simulations. Note: radii
are normalized by the mean value, ⟨r⟩. Inset: the histogram of the aspect ratio shows that experimental chloroplasts are mostly
circular. (b) Chloroplast number scales with cell area in simulation and experiment. Line depicts expected number for random
close packing fraction ϕrcp = 0.8478 in free space. (c) Larger cells are more elongated (black circles) while having the same width
(gray circles). Here, cell-dimensions are normalized with an average chloroplast diameter 2⟨r⟩ = 4.25 µm.

cells, creating trapezoidal shapes in which one cell wall is much higher than the other (Fig. S2). Taken together,
this shows that chloroplasts are highly confined in two directions and have greater freedom to arrange along the
long side of the cell. With these insights about chloroplast size and the respective confinement, we ask whether
these sizes are optimally related to achieving both objectives: optimal light capture and optimal chloroplast
avoidance. To address this, we will present a theoretical argument in the next section.

2D CHLOROPLAST PACKING IN CONFINEMENT

It has been observed that chloroplasts move toward the bottom wall under dim light and toward the sidewalls
under strong light [8, 25, 34, 70] (see Fig. 1e,f), with each configuration - chloroplasts in a single bottom layer
or at the sidewalls - serving distinct purposes for light adaptation. The first is associated with the optimal light
uptake under dim conditions [17], while the latter is a light-avoidance response that optimizes the intracellular
structure for enhanced light transmission and thus reduced photo-damage [6, 7, 16]. To outline the interplay of
chloroplast number, size, and cell geometry, let us consider a cuboid cell (container) shaped to allocate many
disk-shaped chloroplasts in the bottom layer (Fig. 1d-f). If the side walls are not large enough to accommodate
all chloroplasts during strong light avoidance, excessive light exposure may harm the chloroplasts. This occurs if
the cuboid is relatively flat and the bottom and top faces being large squares. On the contrary, if the side walls
are much larger compared to the bottom area (with the top and bottom faces being highly elongated rectangles),
the chloroplasts would easily fit into the bottom layer, leaving significant empty space due to inefficient packing
and boundary defects, which is suboptimal for the metabolite-production via photosynthesis.

Furthermore, we must consider that the disk-like organelles have an upper bound on their maximal packing
density (random close packing), which depends on the confinement, similar to the packing of disks in a plane
or spheres in a box [63, 65]. Here, we formalize these mathematical upper bounds for (I) random close packing
and (II) the side-to-bottom area mismatch to find the optimal geometry for packing under both constraints.
We anticipate that experimental data will fall well below this upper bound, as the disks (chloroplasts) must
dynamically re-arrange between configurations and, therefore, cannot be strongly jammed.

Constraint (I): random close packing in confinement

The packing fraction for a disordered arrangement of disks with radii r drawn from a distribution P(r) in
confinement can be approximated by the random close packing (rcp) fraction ϕrcp. Although random close
packing is not precisely defined and varies depending on the algorithm used [41, 60, 71], we employ this
concept to estimate changes in packing density under confinement. Our chloroplast data indicates a remarkably
Gaussian distribution of radii with a polydispersity of δ = σr/⟨r⟩ = 13.6 % (Fig. 2a) and a low average aspect
ratio, AR < 1.1. For a unimodal Gaussian distribution of diameters with such a polydispersity, the random close
packing density in asymptotically free space is ϕrcp ≈ 0.841 [59]. The value of the random close packing fraction
for confined disks, nonetheless, is less trivial. We simulate the disk packing in two-sided confinement, Lx and Ly,
using an approach adopted from [59] (Materials and Methods), which is originally based on the work of Xu et
al. [72] and Clarke and Wiley [73], and which has also been applied to one-sided confinement [63]. Running 23479
simulations with varying confinement widths, Lx = 5.25−37.41 and Ly = 1.79−11.78, we find that the random
close packing fraction, ϕ, depends on both the x- and y-confinement (Fig. 3a). We refer to the length scales here
as Lx and Ly, expressed in units of the average chloroplast diameter, 2⟨r⟩. To explore the variation in random
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Fig. 3: Packing statistics of simulation and experiment (a) Map of simulated maximal disk packing fraction in respective
confinements (Lx, Ly). Inset: fit of equation (1). (b) Packing fraction of simulation (points) and fit (black solid line) depending
on the width Ly , at cell lengths Lx ∈ 17, 18.5 (dashed white lines in the inset of (a)). Black dashed line: expected asymptotic
packing fraction for uniaxial confinement Ly → ∞. Magenta dashed line: expected asymptotic packing fraction in free space.
Oscillations are significant at confinements of Ly/2⟨r⟩ ≲ 4. (c) Voronoi area distribution of experiment packing follows a k-Gamma
distribution (dashed line). Inset: P-P plot of cumulative distribution function (CDF) suggests slight variations of observed and
maximum entropy distribution, suggesting structure. (d) Distribution of simulated packings with increasing random deletions of
particles (darker colors), indicating that random voids can generate structure (see (h) for parameters). (e) Average hexatic order
parameter for all confinements, indicated by a shape factor comparing area to perimeter. Colormap represents the area. Strong
oscillations become apparent in smaller and more elongated cells. White-points: experimental observation. (f) The number of
nearest neighbors scales with the size and shape of the container. The larger the bulk phase, the more neighbors are allowed. The
number of nearest neighbors in experiments significantly underestimates that of the random packings, suggesting more defects and
less dense packing. (g) Packing in experiments (top) and simulations (bottom), colors indicate the nearest neighbor numbers NN .
Lines: nearest neighbor network. (h) Distribution parameters for shape k and average ⟨V⟩ compared to experiment (dashed line)
as a function of the percentage of random deletions. The colors of each point correspond to the data in (d).

close packing fraction ϕ within a 2D-container under confinement, we use a phenomenological relationship,
first introduced in 1946 [74, 75], and has also been applied to 1D confinement [63] and rods in a cylindrical
container [76]: ϕ = ϕrcp − α( 1

Lx
+ 1

Ly
) = ϕrcp − α

2
C
A . Here, ϕrcp is the free-space random close packing fraction

of the polydisperse disks, C = 2(Lx + Ly) is the perimeter, and A = LxLy is the box area. However, we observe
significant oscillations in packing density under strong confinements, Ly ≲ 4 (Fig. 3a,b). These oscillations arise
from integer mismatches of fitting the unimodally distributed disks, with maxima aligning at integer-values of
Ly = (1, 2, ...) and minima at Ly = (3/2, 5/2, ...) (Fig. 3b). To precisely model slender cells and especially the
packing on the side walls, we extend the simple hyperbolic law by introducing a damped oscillatory correction
term (Fig. 3a, inset):

ϕI(Lx, Ly) = ϕrcp − α

(
1

Lx
+ 1

Ly

)
+ β

(
cos(2πLx)e−Lx/ξ + cos(2πLy)e−Ly/ξ

)
(1)

The oscillatory relation is mainly needed to accurately model the packing on the side walls (x-z and x-y planes
in Fig. 1), where one dimension is highly confined (Lz ≈ 2.34). Fitting this symmetric relation to our simulation
data gives ϕrcp = 0.8478 for the free-space random close packing of this disk size distribution, with α = 0.2444,
β = 0.0825 and ξ = 1.284 (errors below 10−4). This constraint serves as a mathematical upper bound for two-
dimensional chloroplast packing within the cell. For confinements where Li < 1 (i ∈ {x, y}), the relation breaks
down as sampling from a Gaussian with an average disk diameter of 2⟨r⟩ = 1 becomes strongly constrained
(bigger disks cannot fit within the box). This reduces the effective average sampled radius, which is instead
drawn from a truncated Gaussian distribution: ⟨r⟩L = ⟨r⟩ − σrg(x)/G(x) ≈ 0.445, where g(x) = exp(− x

2 )/
√

2π,
G(x) = (1 + erf(x/

√
2))/2, and x = (L/2 − ⟨r⟩)/σr. In our case, this results in a packing fraction for such

confinement at Ly = 1: ϕ = π⟨r⟩2
L ≈ 0.622. This explains the discrepancy of the fitted function (eq. (1) which

reaches ϕI(1, 1) = ϕrcp −2α−2βe−1/ξ ≈ 0.435, largely underestimating the sampling-corrected packing fraction.
Hence, the estimation of the mean needs to be corrected for very strong confinements, though this correction is
not considered here as all length-scales remain Li > 1.
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Constraint (II): area-side-wall mismatch

The ability of chloroplasts to move towards the side walls under strong light introduces a second geometrical
constraint on the maximal possible packing fraction. If the chloroplasts can cover the area A = LxLy at a high
packing fraction ϕA(Lx, Ly), they must also be able to cover the four sidewalls without exceeding the maximal
packing fractions ϕB and ϕC (see Fig. 1g,h). We obtain the theoretical maximal packing density at the walls,
ϕB , ϕC , approaching the respective random close packing ϕB → ϕI(Lx − 1, Lz) and ϕC → ϕI(Ly − 1, Lz), as
described in eq. (1). Note that at the side walls, the effective wall length and width are reduced by one chloro-
plast diameter as the chloroplasts are positioned along the inner walls. If the sidewalls were fully packed and
folded into a box, chloroplasts might overlap due to their three-dimensional shape (see Fig.1d-f for comparison).

Henceforth, we require that the maximal number of chloroplasts covering the bottom area also fits onto the side
walls Nπ/4 = ϕAA ≤ 2Lz (ϕB · (Lx − 1) + ϕC · (Ly − 1)) = Nsideπ/4. Here, the area of the chloroplast π⟨r⟩2

has been normalized by the area of a square containing it 4⟨r⟩2. Using equation (1) we arrive at:

ϕ ≤ ϕII = 2Lz

A
(ϕI(Lx − 1, Lz)(Lx − 1) + ϕI(Ly − 1, Lz)(Ly − 1)) . (2)

The density ϕ at the bottom is subject to two constraints: (I) the geometrically feasible random close packing
(eq. (1)) and (II) the available space at the side walls (eq. (2)). Consequently, the maximal possible packing
under both constraints ϕ must satisfy:

ϕ ≤ min(ϕI , ϕII) ≡ ϕ∗. (3)

Structural comparison of chloroplast packing and simulations

We compare simulations and the model ϕ∗ top experiments by analyzing the data from 59 cells containing
4451 chloroplasts to determine whether their structural properties are similar to those of the simulated pack-
ing configurations. To this end, we perform a Voronoi-tesselation of the chloroplast positions in confinement
(Fig. 3c,d). The distribution of Voronoi areas V shows a slight deviation from the k-Gamma distribution, with
a shape parameter k, a cutoff scale Vc and an average ⟨V⟩. The comparison with the k-Gamma distribution
is primarily done since it represents a maximum entropy law found in various packing structures of granular
media and cells [53, 77]. While the k-Gamma law closely fits the simulated packing structures (by comparing
cumulative distribution function (CDF) of data and the k-Gamma distribution, see inset of Fig. 3d), introducing
a small number of random deletions of disks(1 % to 20 % of the disk number) produces deviations in the prob-
ability distribution function similar to that in the experiments (Fig. 3c,d,h). This suggests that the measured
chloroplast packing is more representative of packing densities below random close packing.

Further, we quantify the p-atic bond-orientational order parameter (p ∈ {4, 5, 6, 7}) for each chloroplast j and
its Nj nearest neighbors, then average the results within each cell

⟨Ψp⟩ = ⟨ 1
Nj

Nj∑
k=1

eipθjk ⟩, (4)

where θjk is the bond-angle between particle j and its nearest neighbor k. Focusing on the hexatic order
parameter (p = 6) and the number of nearest neighbors (Fig. 3e-g), we find that, although the nearest neighbor
number is slightly lower than in the simulations, the hexatic order is similar. This suggests a comparable overall
structure: a disordered material with a few hexagonal domains (compare also p = 4, 5, 7 in Fig. S4). Strikingly,
these values are consistent with those reported in [59], where polydispersity was shown to have a strong effect
on hexatic order. Additionally, we find that most packings exhibit an average nearest-neighbor number of
N > 4 (similar to a coordination number), which is a feature of mechanical stability of jammed structures in
two dimensions [41, 78]. Next, we use the cell shape data to compare it to the predictions from the model ϕ∗.

Cell shape is optimal for chloroplast packing

We represent the coordinates of the field ϕ∗(Lx, Ly, Lz) in terms of the dimensionless cell area A and perimeter
C (Fig. 4a), while keeping Lz = 2.34 constant. This representation comes with the caveat of an excluded region,
as A ≤ C2/16 for rectangles (the maximal area for a given perimeter corresponds to a square). Intuitively,
constraint (I) is weaker for larger cells, as a large bulk phase allows for more possibilities of optimized packing
(Fig. S5a). We can see that ϕI → ϕrcp as Lx, Ly → ∞, i.e. for infinitely large boxes. In contrast, constraint (II)
is weaker for elongated and small cells, which have a larger sidewall area relative to the bulk area (Fig. S5b).
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(a) (b) (c)

Fig. 4: Maximal packing under geometric constraints. (a) Color represents the maximal possible packing fraction ϕ∗

according to eq. (3). The shaded area is inaccessible to rectangles and exceeds the formula for squares A = C2/16. Circles represent
individual cells from microscopy experiments, with packing fractions indicated by color. Inset: comparison of theoretically expected
maximal packing fraction and measured packing fraction for all cells. (b) Same field as in (a) with extended boundaries. Lines
indicate different growth models: uniaxial (solid line, Lx), bi-axial (dashed line, Lx,Ly), and volumetric growth models (dotted
line, Lx,Ly ,Lz). Volumetric up or down-scaling of the cell size is equivalent to down or up-scaling of chloroplast size, respectively.
(c) Measured maximal packing fraction for the three growth models with corresponding lines. The scaling factor compares the
updated to the original cell length: L′

x/Lx. Dashed magenta line: random close packing fraction in free space.

This is evident by extending only one dimension, Lx → ∞ while Ly → 0, where ϕII → ∞, rendering this
constraint irrelevant for very slim and elongated cells. On the contrary, ϕII → 0 when both Lx, Ly → ∞, i.e.
a very strong constraint. As both constraints are incompatible, we find a maximum ridge of optimality, where
the packing fraction is as large as 81%, which is only 3.6% below rcp in free space (Fig. 4a).

Intriguingly, the data of cell shapes coincides closely with this maximum ridge, suggesting that cells are com-
patible with optimal packing density. The measured chloroplast packing fractions (colored points in Fig. 4
and inset) remain well below the expected maximal packing fraction. In fact, the average packing fraction of
approximately 67% ± 6% (mean ± standard deviation) is around 10% below the maximal packing fraction,
suggesting that the cells could indeed occupy a larger space in the C − A-plane without losing much of the
geometric benefits, or alternatively, accommodate a higher number of chloroplasts.

This discrepancy, however, is expected and can be explained by the difference between the average nearest
neighbor distance d and the chloroplast diameter ⟨d − 2r⟩/2⟨r⟩ = 0.1 ± 0.05. Hence, there is a small inter-
chloroplast distance of l = 0.42 ± 0.2 µm, consistent with the previous observations [9]. This suggests that
chloroplast packing is not organized directly at the close packing point but slightly below it, allowing for
occasional re-arrangements of the chloroplasts over larger timescales [9]. Additionally, other organelles and
structures, invisible to our imaging method, need space, making full chloroplast contact highly unlikely.

Moreover, we found that some cells exhibit a more irregular height profile, especially when one cell wall of the
lower cell layer is aligned with one of the upper cell layers. In such cases, the cell wall can form a deep trench
of up to Lz ≈ 4. Here, the anticlinal wall (facing outward, see Fig. 1d A-side) and the periclinal walls (between
the cells Fig. 1d and B-side) have approximately the same area and shape. This configuration minimizes the
influence of the side wall area as a constraint on the packing fraction.

In the last step, we illustrate lines of growth within the three-variate function ϕ∗(Lx, Ly, Lz). We model growth
by starting at a specific cell size, close to optimality with Lx = 18.2, Ly = 4.5 and Lz = 2.34, and linearly
increasing the size of the axes as Li → Li + αi , i ∈ {x, y}. We model uni- and bi-directional growth by setting
αi to either 0 or a linear growth function in time, α(t), for the i’th direction, respectively. This generates
various curves in the C − A plane (Fig. 4b). Additionally, we scale all axes proportionally in all directions
(Li → αiLi, ∀i ∈ {x, y, z}), equivalent to changing the chloroplast size, as studied experimentally [32–38].

We monitor how ϕ∗ evolves on these curves, noting that volumetric scaling evolves in three dimensions. The
corresponding ϕ∗ function, dependent on the scaling factor (updated length compared to initial length L′

x/Lx),
is shown in Fig. 4c. While uni-directional growth allows cells to remain aligned with the maximal ridge of ϕ∗,
bi-directional growth quickly deviates from the maximum, resulting in effectively more quadratic cell shapes.
Notably, most cells have similar widths but largely different lengths (Fig. 2c), suggesting uni-directional cell
growth, enabling cells to remain near the maximal ridge during development.

Interestingly, volumetric scaling, which is equivalent to changing the size of chloroplasts, can even increase the
maximal random closed packing fraction ϕ∗. This could explain the observed adaptability enhancement in cells
with smaller, more numerous chloroplasts [34, 37], as opposed to intercellular “crowding” [32]. Our analysis,
therefore, provides a potential framework to understand chloroplast motion and adaption under confinement
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and in relation to cell geometry.

DISCUSSION

Packing objects into a confined space is a challenging and ubiquitous problem [39], from candies in a jar to
understanding structural configurations in condensed matter systems [41, 79]. The problem also extends to
practical considerations such as packaging optimization [42] and more abstract scenarios like high-dimensional
sphere packing [43, 80], which plays a role in telecommunications and information theory. Notably, biological
systems have evolved to tackle packing challenges, from densely packed cells in embryos [50], organoids [81] and
tissues [48, 82, 83], bacterial growth in confinement [84], to compactly folded genetic material in nuclei [85, 86].

We show that the packing of mesoscale structures, such as organelles in biological systems, plays a crucial role in
adaptation processes. Specifically, we combined structural analysis of photosynthetic chloroplasts in the water
plant Elodea densa with disk-packing simulations in confinement to explore the efficiency of chloroplast packing
within cells. To cope with the everchanging light conditions, chloroplast rearrangement results in two distinct
configurations: high coverage on the bottom cell wall for maximal light absorption in dim conditions and a fast
and efficient relocation to the side walls to minimize light exposure under strong light.

First, we investigated the size and shape of cells and chloroplasts. Notably, we found that chloroplasts are Gaus-
sian distributed, which must rely on a size control mechanism. Simple growth-division models with either size-
additive noise or size-multiplicative noise predict Gaussian and log-normal size distributions, respectively [87,
88]. However, due to the small coefficient of variation (polydispersity δ = 13.6%) these two distributions are
not distinguishable from each other within the resolution of our data. Additionally, we found that the chloro-
plast number scales with cell size, consistent with observations in other plants [28, 29, 31]. This suggests an
intrinsic mechanism that regulates chloroplast number and thus density [89, 90]. Furthermore, the cuboid cells
display variations in lengths but similar widths and heights, a pattern consistent with unidirectional growth,
as expected from development in monocot plants with simple leaf architecture, where growth is predominantly
localized near the leaf base [91, 92].

To investigate the optimality of cellular geometry for chloroplast packing, we simulated the random close packing
of disks under confinement. The geometry-dependent maximal packing was then compared to a phenomeno-
logical packing model, similar to the hyperbolic laws previously applied [63, 74–76], with an added explicit
treatment of non-monotonic deviations under strong confinements (L ≲ 4). This was necessary for accurately
evaluating packing on the side walls with heights around Lz ≈ 2.34. By combining two constraints - maximal
packing on the bottom side and all side walls of the box, we constructed a law for cell shape-dependent optimal
packing. Mapping measured cell structures to this morphological packing criterion showed that the cuboid
cells have optimal shape and dimension to meet these two targets. This morphological feature allows cells to
adapt their intracellular structure efficiently for optimized light absorption while simultaneously being able to
mitigate potential photo-damage by switching between packing configurations. We hypothesize that this trait
is likely a result of evolutionary adaptation to the plant’s highly fluctuating aquatic environment. Furthermore,
this simple physical constraint may also explain the inefficient chloroplast re-arrangement observed in various
mutant plants with altered chloroplast sizes and numbers [32–38].

While the cell sizes and shapes align well with optimal packing solutions, the experimentally observed densities
consistently fall below the shape-dependent maximal packing fraction by up to 10%. Several factors can explain
this discrepancy: 1) cells are not perfectly cuboid, and chloroplasts are not perfectly disk-shaped; 2) chloroplasts
are embedded within a cellular matrix of other organelles, cytoplasm, and especially cytoskeletal filaments [8,
10], which impose an inter-chloroplast spacing, suggesting that the effective radius of chloroplasts might be
slightly underestimated; and importantly 3) our previous study [9] suggested that chloroplasts are close to, but
not deep into a glassy phase, allowing for space for re-arrangements, especially to facilitate efficient transitions
between the two packing configurations. Notably, the packing fractions we found are rather close to a liquid-
hexatic transition region [93–95] which also shows reduced hexatic order (Fig. 3e) as compared to the dense
packing from simulations.

Overall, our study highlights the importance of packing problems in confinement in biological systems, which
might be the key to understanding the collective light-controlled chloroplast re-arrangement within plant cells,
a physiologically relevant process for light adaptation. Our findings suggest that plant cells evolve and develop
geometries that balance the motion and re-arrangement of organelles inside the cell with the structure demand of
the tissue. This raises the intriguing question: how are cellular and developmental processes shaped by packing
constraints across scales? While it is known that intracellular processes can be modulated via macromolecular
crowding [96, 97], we expect that not only organelle size [98] but also the packing configuration of organelles,
condensates, and vesicles may play crucial roles for cell physiology, homeostasis and mechanics [99, 100].
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To further broaden the scope of our work, we note that we mainly investigated the two chloroplast configurations
within the plant cells. However, the transition and coordination of chloroplast motion offer another intriguing
direction of research: chloroplasts can individually sense and move in response to light [8] and yet re-arrange
collectively by coordinated movements similar to flocks, form three-dimensional aggregates and spread on the
cell walls. Besides its biological relevance, this rich phenomenology displays fertile ground for future studies,
especially from a perspective of phase transitions of confined active matter systems.

MATERIALS AND METHODS

Imaging and image processing

We measured the chloroplast density in 3 different leaves of Elodea densa plants. For this purpose, we detached
healthy leaves from the stem and imaged the bottom layer (abaxial layer) of the tissue. For imaging a Nikon
TI2 microscope, a Prime BSI Express sCMOS camera and brightfield illumination using red-color bandpass
filter (600 nm, FWHM = 40 nm) was used (Fig. S3a). Additionally chlorophyll autofluorescence imaging was
performed using a CY5 filter cube (excitation: 604 − 644 nm, emission: 672 − 712 nm) (Fig. S3b).
To account for the curvature of the leaf tissue, we acquire z-stacks of 10 − 20 µm. Z-stacks were compressed
into a single plane by extended depth-of-field-stacking using a Sobel filter approach (kernel width = 10 px) to
account for the curvature of the underlying tissue. Chloroplasts were segmented using StarDist [101] (Fig. S3c).
Cells are segmented by hand from brightfield images (Fig. S3d). Segmented chloroplasts are assigned to their
cells and filtered by size with an equivalent diameter d = 2

√
A/π in a range of 2−15 µm; note that chloroplasts

are expected to be around 4 − 6 µm in diameter. Additionally, we require a solidity (area divided by convex
hull area) of above 0.7 to ensure mostly convex particles, excluding mis-detections. Packing fractions were
calculated by summing chloroplast areas in different cells: ϕ =

∑N
i=1 Ai/A. The p-atic order parameter (4) was

calculated from chloroplast positions via a distance matrix Dij and a cutoff depending on chloroplast radii ri:
dij = 2(ri + rj)+ ra where ra = 0.4 represents an additional zone of 20% of the radius around every chloroplast.
We calculate the Voronoi tesselation of chloroplasts within each cell and measure the Voronoi volumes V. We
compare the measured histograms with the maximum entropy distribution P (V) = kk

Γ(k)
(V−Vc)k−1

(⟨V⟩−Vc)k exp
(

−k V−Vc

⟨V⟩−Vc

)
,

where Vc ≈ min(V) and k = ⟨V⟩−Vc

var(V) .
Cell shape parameters such as aspect ratio, length scales Lx and Ly, area A and perimeter C are calculated
from the mask images.

Confocal imaging and image processing

We mount an Elodea leaf on a microscope slide with a spacer, remove the water from the aquarium culture,
and immerse it in a mixture of one drop (approx 100 µl) Calcofluor White Stain (MERCK) and one drop
of 10 % potassium hydroxide, subsequently we place a coverslide. Calcofluor is used to stain cellulose in the
cell walls [102]. Confocal imaging is performed with a Leica SP8 in the Leeuwenhoek Centre for Advanced
Microscopy, Amsterdam. A 405 nm diode laser is used for the excitation of Calcofluor White, and the emission
band is set from 450 − 520 nm. Chlorophyll autofluorescence is excited with a Helium Neon laser at the 633 nm
line, and the emission band ranges from 640 to 740 nm. We acquire z-stacks of 0.36 µm step size with a x-y
pixel size of 0.3 µm using a 60× oil-immersion objective (NA=1.4)

For processing, the Calcofluor channel is first slightly blurred using a Gaussian filter (σ = 1 px), then binarized
using Li’s method in FIJI [103], then inverted (i.e. cells interior is 1 and cell walls 0). Subsequent morphological
opening using a cube of 2 pixels and distance-transform watershed segmentation using Manhattan-metric and
a 6-connectivity generated to a well-separated label map for cells. Subsequently, we rejected labels touching
the upper or lower boundary of the field of view, enabling us to avoid segmentation of the upper cell layer and
noisy background. We measure the average height in the border of all cells within one chloroplast diameter
2⟨r⟩ ≈ 4.25 µm from the side wall.

Disk packing algorithm

We use a disk packing algorithm based on previous works [72, 73] and further modified and applied in [59, 63].
In brief, we first select a fixed number of particles N drawn from a size distribution P (r), with P (r) chosen to
be a Gaussian with polydispersity δ = 13.6% to match the experiments. The N particles are randomly placed
in a confined system with initial size Lx and Ly such that the initial area fraction ϕ = 0.01 and no particles are
allowed to overlap. We then loop through the particles in random order, trying to expand each particle’s size
by a small amount a, if that expansion does not cause any overlap with other particles or with the walls of the
system. We additionally try to move each particle a small distance in a random direction, again only if that
displacement does not cause an overlap. When all particles have been successfully expanded by a, the system
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size is rescaled (L′
x = Lx/a, L′

y = Ly/a), particle sizes rescaled down by a, particle positions within the box
likewise rescaled. If too many trials occur without every particle successfully expanding, then the particle sizes
are reset to the last rescaled value, a is decreased, and the trials resume. This continues until a − 1 = 10−5, at
which point the simulation is concluded. Throughout the simulation, the aspect ratio Lx/Ly is kept fixed, so
to explore the necessary conditions, we vary N from 30 to 130 and Lx/Ly from 1.0 to 10.0. In total, we run
23479 simulations, with at least 5 repetitions of each condition and in many cases more.
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APPENDIX
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Fig. S1: 3D image of cell walls (a) 3D view of upper and lower cell walls using calcufluor (b) Orthogonal slices (along dashed
lines). Definitions of cell length Lx, width Ly , and height Lz . (c) Height profile of various cells. Height peaks correspond to cell
boundaries from the upper cell layer. (d) The height of cells lies around Lz = 2.35 ± 1 chloroplast diameters.
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Fig. S2: Bright light avoidance configuration of chloroplasts. Orthogonal view of cell walls (cyan) and chloroplasts (orange)
along dotted white lines, respectively. xy-plane represents the maximum intensity picture of chloroplasts. Chloroplasts cluster on
the side walls. Blob-like chloroplast clusters are visible. These co-localize with wider profiles along cell walls (yz view) of the upper
cell layer or chloroplast aggregates in the upper layer (xz view).

(a) (b) (c) (d)bright field autofluorescence star dist cell labels

25 µm

Fig. S3: Image analysis (a) brightfield channel to detect cell walls (b) widefield fluorescence channel of chlorophyll. (c) Segmen-
tation using StarDist[101]. (d) Hand-segmented cells with definitions of Lx and Ly .
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(a) (b) (c) (d)

Fig. S4: p-atic order parameters: (a)-(d) tetratic (p = 4), pentatitc (p = 5), hexatic (p = 6) and heptatic p = 7 order. Open
symbols: experimental data. Color represents cthe onfinement area.
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Fig. S5: Constraints (I) and (II) (a) Random close packing in confinement corresponding to equation (1). (b) Area-sidewall
mismatch constraint, corresponding to equation (2). Colored points correspond to experimental data, with colors representing
the packing density respectively. Note that colormap limits at ϕII = 1, which is total coverage and not achievable by any disk
packing. Insets: comparison of theoretical versus experimentally measured packing fraction ϕ, suggesting that data is limited by
both constraints.
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