
Soft Matter

 PAPER 
 Kari Dalnoki-Veress  et al . 

 Mechanical properties of 2D aggregates of oil droplets as 

model mono-crystals 

ISSN 1744-6848

rsc.li/soft-matter-journal

Volume 17

Number 5

7 February 2021

Pages 1109–1446



Mechanical properties of 2D aggregates of oil
droplets as model mono-crystals†

Jean-Christophe Ono-dit-Biot, a Pierre Soulard,b Solomon Barkley,a
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We investigate the elastic and yielding properties of two dimensional defect-free mono-crystals made of

highly monodisperse droplets. Crystals are compressed between two parallel boundaries of which one acts

as a force sensor. As the available space between boundaries is reduced, the crystal goes through successive

row-reduction transitions. For small compression forces, the crystal responds elastically until a critical force is

reached and the assembly fractures in a single catastrophic global event. Correspondingly there is a peak in

the force measurement associated with each row-reduction. The elastic properties of ideal mono-crystal

samples are fully captured by a simple analytical model consisting of an assembly of individual capillary

springs. The yielding properties of the crystal are captured with a minimal bond breaking model.

1 Introduction

Historically, foams have often been used as model materials,
with an especially inspiring example being the use of bubble
rafts to model the behaviour of a metallic structure proposed by
Bragg and Nye.1 Using bubbles instead of atoms, dislocations
and grain boundaries were imaged directly and mechanical proper-
ties of the assembly were studied.2 The use of foams, emulsions,
and colloids has become a powerful tool to study fundamental
questions such as the glass transition,3–8 formation and melting of
crystals,9–12 the order-to-disorder transition13–18 and jamming.19–24

Complex biological systems can also be modeled using foams and
emulsions.25–28 One of the important characteristics of these
model systems is their mechanical response to external stress such
as compression or shear. The mechanical properties of such
systems depend strongly on the volume fraction of suspended
particles29,30 as well as the interaction between particles.31–34 Above
a critical volume fraction, foams and emulsions behave as soft
solids.33,35–38 For small applied stress, the assembly deforms
elastically.2,30 When the magnitude of the applied stress exceeds
a critical value, given by the yield stress, plastic deformations occur

and the material flows as a liquid. Several theoretical39–42 and
simulation43–46 works have studied the connection between local
plastic events and macroscopic flow. As the particles constituting
the foam or the emulsion can be resolved individually,4 studies
linking microscopic plastic events to flow properties can also be
conducted experimentally.34,46–51

In foams and emulsions, the nature of the constituting particles
is also a key parameter in understanding the properties of the
assembly. For example, the relevant scale for the elastic modulus of
an assembly of oil droplets is set by the Laplace pressure.30 Thus
changing the size of the droplets or the interfacial tension modifies
the elastic properties of the structure. The size distribution of the
particles is also particularly important. Indeed, monodisperse
particles can assemble into a crystal while polydispersity prevents
crystallization.52,53 Due to their perfect arrangement and periodi-
city, defect-free monodisperse crystals are well understood
theoretically.29 However, these mono-crystals are more challenging
to study experimentally, as perfect monodispersity and crystalline
order are difficult to achieve. Most experimental studies on colloidal
crystals have focused on the study of polycrystals34,35,51,54 and in
particular plastic deformations resulting from shear imposed on
structurally disordered materials.55,56 For crystals, it is known that
the mechanical properties, and in particular the yield stress, is
dictated by dislocations or local structural disorder.57 To date, only a
small number of experimental studies have been able to produce
ideal defect-free mono-crystals58,59 and the study of their elastic and
yielding properties warrants further attention.

In this study we use lightly attractive oil droplets in water
with low polydispersity to create mono-crystals made of tens of
droplets. Due to the droplets being monodisperse combined
with a small sample size, the aggregates are defect-free crystals.
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In the experiments we simultaneously measure the mechanical
response of these ideal mono-crystals under compression
between two glass capillaries and image the rearrangements
that cause yielding and plastic deformation of the structure.
We find that crystals behave elastically until a critical force is
applied and the crystal fractures. The bonds between droplets
are broken in a coordinated manner, after which the aggregate
can no longer sustain any stress. Upon further compression the
structure rearranges into a new crystal with one less row of
droplets. The elastic response and the yield properties are fully
captured by a simple analytical model.

2 Experimental methods

The experimental chamber (55 � 30 mm2), shown in Fig. 1, is
made of two glass slides separated by a 3D-printed spacer of
thickness 2.5 mm [dark grey wall in Fig. 1(a)]. This gap between
the glass slides is 103 times larger than the size of the droplets.
The chamber is filled with an aqueous solution with 3% (w/w)
sodium dodecyl sulfate (SDS) and 1.5% (w/w) NaCl. The 3D-printed
wall reduces evaporation of the solution and ensures a concen-
tration that is approximately constant over the course of the
experiments. At this concentration, the surfactant, SDS, assembles
into micelles acting as a depletant resulting in a short-range
attraction between the droplets.60 Glass capillaries (World Preci-
sion Instruments, USA) are pulled to a diameter of about 10 mm
over several centimeters in length using a pipette puller (Narishige,
Japan). One of these pipettes, the ‘‘droplet pipette’’ is used to
produce highly monodisperse droplets of mineral oil, with size

proportional to the tip radius of the pipette, using the snap-off
instability.61 The droplets used in this experiment have a radius
R = 18.9 � 0.3 mm. The uncertainty on the radius corresponds to
the precision on the measurement of the droplet size. As droplets
are produced using the snap-off instability, the droplet polydis-
persity is less than 0.7%.61 Droplets are buoyant and accumulate
under the top glass slide. Aggregates of oil droplets are assembled
droplet-by-droplet into 2D crystals with arbitrary shapes (see
Movie M1 in ESI†). The crystals are made up of p rows and
q droplets per row, with the initial aggregate defined as p = pini

and q = qini [see Fig. 1(c)]. Under compression, the crystal
rearranges with corresponding values of p and q, while keeping
the total number of droplets, Ntot, constant. Aggregates are
compressed between two micropipettes: the ‘‘pushing pipette’’
and the ‘‘force-sensing pipette’’. The ‘‘pushing pipette’’ is a short
and stiff pipette used to compress the aggregates. The pushing
pipette is affixed to a motorized translation stage and moved at a
constant speed, v = 0.3 mm s�1, for all experiments. The ‘‘force-
sensing pipette’’ is a long compliant pipette. Its deflection is
used to measure the forces applied to the aggregate as it is
compressed.62 The pipette is pulled to a diameter of B10 mm
over a length of B3 cm to be sensitive to forces as small as
B100 pN. The thin section of the pipette is locally and
temporarily heated to soften the glass such that the pipette can
be bent into a shape that fits in the small chamber while
maximizing its total length [see pipette (iii) in Fig. 1(a)]. The
pushing and force-sensing pipettes are aligned to be as parallel
as possible in order to compress the aggregate uniformly.
A misalignment would result in one side of the aggregate break-
ing earlier than the other. The chamber is placed atop of an
inverted optical microscope for imaging while the aggregates are
compressed and images are collected at a frame rate of 1.8 Hz.

The distance between the pushing pipette and the force-sensing
pipette, d, is measured using cross-correlation analysis between
images. This analysis leads to a sub-pixel resolution and in this
study a precision of B0.1 mm.62 The deflection of the pipette is
measured using the cross-correlation analysis and converted into a
force using the calibrated spring constant kp = 1.3 � 0.1 nN mm�1

of the force-sensing pipette.62 The crystal is fractured and
rearranges under compression by breaking adhesive bonds
between droplets. Using the optical microscopy images, fracture
events observed directly can be linked to features in the measured
force-distance curves.

3 Results and discussion
3.1 Compression of colloidal crystals

Fig. 2(a) shows the measured force as a function of the distance
between the pipettes, d, for a crystal with initial geometry (pini = 7;
qini = 7). As the crystal is compressed, the distance d decreases over
time; thus, in the plots the experiment progresses from right to
left as indicated by the time arrow in Fig. 2(a). The trace shows six
distinct peaks corresponding to six fracture events (see movie M2
in ESI†). To accommodate for the decreasing space between the
pipettes, the number of rows of droplets, p, must be reduced.

Fig. 1 (a) Schematic top view of the experimental chamber. The typical
dimensions of the wall (dark grey) are 55 � 30 � 2.5 mm3. The ‘‘droplet
pipette’’, ‘‘pushing pipette’’, and ‘‘force-sensing pipette’’ are labelled as (i),
(ii) and (iii) respectively. (b) Schematic side view (not to scale). The buoyant
droplets are assembled into a quasi 2D crystal under the top glass plate.
The pushing pipette (black circle) is moved at speed v = 0.3 mm s�1 to
compress the aggregate and the force-sensing pipette (red circle) is used to
measure forces. Both pipettes are placed near the equatorial plane of the
droplets so forces are applied horizontally. (c) Optical microscopy image of a
typical crystal (scale bar is 50 mm). p refers to the number of rows of droplets
and q the number of droplets per row. In this example p = q = 5.
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These breaking events are referred to as row-reduction transitions:
from p = 7 to p = 6 rows of droplets [designated as 7 - 6 in
Fig. 2(a)], followed by 6 - 5, 5 - 4, etc., until the last transition
2 - 1. A zoom of the second transition (6 - 5) is shown in
Fig. 2(b) along with an optical image sequence corresponding to
this specific transition. To undergo a transition, adhesive bonds
between droplets that arise from SDS-induced depletion forces
must be broken. The droplet assembly maximizes the total
number of bonds between droplets, creating a hexagonal struc-
ture. We find that bonds break in a catastrophic and coordinated
manner. As the crystal transitions from p to (p � 1) rows, bonds
are broken along 601 fracture lines with respect to the pipettes [red
dashed lines on Fig. 2(c)], resulting in equilateral triangles with
(p � 1) droplets on their side. This breaking pattern corresponds

to the least number of broken bonds – and thus the minimum
energy cost – for the aggregate to undergo the row reduction
transition. A simple geometrical calculation, ignoring edge
effects, shows that the number b of broken bonds satisfies
b = 2q (see Appendix for more details). We emphasize that the
crystal structures studied here are not infinite, and hence ignoring
edge effects is an important simplifying approximation.

The bond breaking events observed are T1 events during
which four droplets exchange neighbours50,51 resulting in a
slip-line (the 2D equivalent of a slip-plane in 3D). T1 events
along a fracture line at 601 have also been reported as mono-
disperse droplets flow through a tapered channel.51,63 Similar
observations for simulations of lightly repulsive colloids under
compression have been made.64 After the fracture, the (p� 1)-sided
equilateral triangles slide past each other to rearrange into a new
crystal with (p � 1) rows of droplets accommodated between the
pushing and the force-sensing pipettes. During the sliding of the
structure between two fracture events the force is nearly zero as can
be seen in Fig. 2(b). This indicates that the compression is
conducted at low enough speed (0.3 mm s�1) to ensure that the
viscous drag is negligible. Nevertheless, the sharp decay of the force
peak corresponds to the resolved relaxation of the force-sensing
pipette as the entire system evolves through a viscous medium
[Fig. 2(a) and (b)]. Separate experiments have shown that the
relaxation of the force-sensing pipette in absence of droplets is
almost instantaneous on the relevant timescale. Therefore, the
decay of the force mentioned above is mainly due to the viscous
damping experienced by the droplets, though it remains fast
compared to the timescale of the experiment. For example, for
the peak shown in Fig. 2(b), the decay occurs over 5 s while the
experiment takes 10 min (the frame rate is 1.8 Hz). The relaxation
of the pipette takes longer for later transitions, for example the
2 - 1 transition, as more droplets must flow over a larger distance.

As a crystal aggregate is compressed, the force builds and
the system is elastically deformed. The elastic energy stored
eventually reaches the point of breaking the adhesive bonds.
Another interesting feature of the force trace is the evolution of
the peak magnitude with the transition index. From Fig. 1(a), it
is clear that the force required to fracture the structure becomes
larger from one transition to the next, as p diminishes. This
force increase can be explained by the number of bonds that
need to be broken to enable the transition. In going from one
transition to the next, the number of rows, p, decreases and
thus q increases (Ntot = pq is constant). Since q increases and
the minimal number of broken bonds is given by b = 2q, a larger
force is required with each subsequent transition.

3.2 Equivalent spring model

To quantitatively understand the evolution of the magnitude of
the peaks for subsequent transitions, we developed a minimal
analytical model. Let us focus on the onset of fracture, for
example the peak shown in Fig. 2(b). If droplets were strict hard
spheres, one would expect the rise of the peak (i.e. upon
decreasing d) to have an infinite slope. The fact that the force
increases with a finite slope indicates that droplets are slightly
deformable and the aggregate can withstand a certain amount

Fig. 2 (a) Measured force, F, as a function of the distance between the
pipettes, d for a crystal with an initial configuration given by pini = 7; qini = 7,
and a droplet size R = 18.9 � 0.3 mm. The distance between pipettes, d,
decreases over time as the aggregate is compressed. The crystal under-
goes six well defined transitions p - (p � 1) evidenced by six local maxima
in the force curve. (b) Zoom of the 6 - 5 transition force peak, corres-
ponding to the black square shown in panel (a). The right side of the peak,
rising of the force, occurs during the compression of the crystal. The onset
of the peak is shown by the black dot. The force reaches a maximum
Fc, shown by the blue dot, as the crystal fractures. (c–g) Sequence of
microscopy images of the crystal being compressed (scale bar is 50 mm).
During a fracture event, all bonds are broken in a single catastrophic and
coordinated manner along fracture lines shown by the red dashed lines in
(c). The fracture patterns for 2D crystals consist of equilateral triangles with
(p � 1) droplets on the triangle’s side [see (c), (f) and (g)].
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of elastic deformation before breaking. However, the deforma-
tion of individual droplets remains extremely small and cannot
be seen on optical microscopy images (see movie M2 in ESI†).
To account for this capillary deformation, we model individual
droplets as identical springs with spring constant k1. This
is consistent with previous studies that have investigated
the deformation of a droplet under external forces.27,65 At
lowest order in the deformation, the restoring force can indeed
be modelled as that of a capillary spring with a spring constant
k1 = Gg (see discussion in the appendix) directly proportional to
the interfacial tension g between oil and the SDS aqueous
solution.66 The proportionality constant G depends on the exact
contact geometry between the droplets. The aggregates are thus
made of q springs in parallel (along the same row) and p rows of
springs in series. The resulting crystal can thus be represented
by an equivalent spring with constant:

keq = k1q/p. (1)

Under compression, the restoring force is linear with slope
keq. To validate this model, we measure the evolution of the
equivalent spring constant of a crystal for the different transitions
as the aspect ratio q/p changes from one transition to another.

Fig. 3(a) shows the rise of the force peaks as a function of the
compression of the crystal for the six p - (p� 1) transitions. For
each peak, the compression is defined as Dx = dp

0 � d with dp
0 the

onset of compression for each transition, corresponding to the
black dot in Fig. 2(b). Within the resolution of the experiment,
the force is linear with the compression. The peaks flatten and
deviate from the early linear behaviour for larger values of Dx.
This is particularly noticeable on the curve corresponding to the
2 - 1 transition and can be explained by a slight misalignment
of the pushing and force-sensing pipette. The misalignment
results in parts of the crystal breaking earlier than the rest
(movie M2 in ESI†). The experiment is more sensitive to mis-
alignment for the later transitions as the lateral extent of the
crystal is larger (increasing number q of droplets per rows).
The non-linear part of the curve that deviates from the linear
behaviour is excluded from the linear fit as the model is only
valid in the limit where all droplets are in contact and prior
to the onset of fracture events. This non-linear behaviour is
especially obvious in the case of the 2 - 1 transition in Fig. 3(a)
where at high forces the crystal fracture initiates at one edge of
the structure (see Movie M2 in ESI†). The slope of each force
curve keq is extracted and plotted against the ratio q/p as suggested
by eqn (1) and shown in Fig. 3(b). The equivalent spring constant
keq is found to scale linearly with q/p, as predicted by eqn (1), with
a slope corresponding to k1 E 1.46 mN m�1. The value of
surface tension extracted for the relation k1 = Gg depends on
the geometrical factor G. Literature values for the interfacial
tension are in the B5–10 mN m�1 range,30,67 which is consis-
tent with what we find for a geometrical pre-factor, G, on the
order of 1. The assembly of droplets thus behaves like a perfect 2D
Hookean solid, where the 2D-equivalent applied stress s = F/(2qR)
is equal to the strain e B Dx/(2pR) times a 2D-equivalent Young’s
modulus E B Gg.

In the equivalent spring model, it is assumed that the
droplets can store elastic energy under compression and the
stretching of adhesive bonds is neglected. Indeed, the adhesion
comes from the depletion forces induced by the SDS micelles
and can be described by the Asakura-Oosawa potential.68 This
potential has a negative curvature which means that as soon as the
adhesive force is overcome, the bond between droplets breaks
completely. The range of the depletion forces is set by the nano-
metric size of the SDS micelles (B5 nm) and is thus short-ranged
compared to the elastic deformation of the droplets, and the
strength of adhesion is dependant on the concentration of SDS,
which is kept fixed here to simplify the system.

Having validated the equivalent spring model, if the aggregate
maintains a compressed hexagonal configuration the droplets
deform, and the stored elastic energy increases with compres-
sion as Es = keqDx2/2. In order for the cluster to fracture, bonds
between droplets must be broken. As mentioned above, the
minimum number of bonds that must break for a 2D hexagonal
crystal to rearrange is b = 2q. As a result, crystals fracture when

Fig. 3 (a) Force as a function of the compression Dx of the aggregate for
the six different transitions. The part of the force shown is the rising one,
that corresponds to the force between the black and blue dot in Fig. 2(b),
from onset to peak. The compression is defined to be equal to zero at the
onset. The black dashed lines are linear best fits to the data. Each dashed
line is only fitted to the elastic part of the compression. The slopes of these
lines are the equivalent spring constants of the cluster, keq. (b) Evolution of
keq with the aspect ratio q/p. The black dashed line is the best fit to eqn (1).
The error bars correspond to the uncertainty on the slopes of the linear fits
in panel (a). Indeed, these linear fits are sensitive to the first and last data
points included in the fit.
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the stored elastic energy, keqDxc
2/2, reaches the threshold 2qE1,

where E1 is the depletion-induced adhesive energy associated
with breaking a single bond. This criterion corresponds to a
critical yield force Fc = keqDxc, which is equal to:

Fc ¼ 2Ntot

ffiffiffiffiffiffiffiffiffiffi
k1E1

p3

s
: (2)

The model developed in this study assumes an ideal experi-
ment where the pushing and the force-sensing pipettes are
strictly parallel and the b bonds are broken simultaneously for
every transition. As such, eqn (2) represents an upper bound for
the measured real force. It can be tested experimentally by
recording Fc, for each transition p - (p � 1), and with
aggregates of different initial geometries (pini, qini). For example,
the compression experiment shown in Fig. 2(a) for droplets with
radius R = 18.9 � 0.3 mm, leads to six values of Fc for p = 7 to
p = 2. After a compression experiment is completed, the same
droplets can be reassembled into a new crystal with a different
initial geometry. By using the same droplets from one experi-
ment to another, we ensure that the energy per bond E1 and
spring constant k1 remain constant.

In Fig. 4(a), we plot the experimentally measured force at
failure normalized by Ntot as a function of p�3/2 for five different
experiments with different initial geometries, as suggested by
eqn (2). The best fit of eqn (2) to all the data (dot-dash line)
corresponds to a bond energy of E1 = 0.096 fJ. The depletion
energy per unit area that must be overcome to break an adhesive
bond can be expressed as W = rkTa,69 with rB 5 � 1023 m�3 the
number concentration of SDS micelles, a B 5 nm the radius of a
micelle and k the Boltzmann constant. With an estimate of the
contact patch to be Rp B 0.1R, one can obtain the order of the
energy per unit bond to be E1 = WpRp

2 B rkTapRp
2 B 0.13 fJ, an

approximate value that is consistent with the best fit value.
However, any imperfections in the experiment or thermal fluc-
tuations, ensure that one can never measure a force greater than
that corresponding to the ideal crystal. For comparison we also
show eqn (2) with E1 = 0.2 fJ (dashed line) corresponding to a
bond energy adjusted such that all the data lies below the upper
bound given by the theory.

Using the experimental estimated value of E1 E 0.2 fJ, and
the spring constant k1 E 1.46 nN m�1 of individual droplets,
one can construct the theoretical force curve for an ideal system
through the various transitions. Fig. 4(b) shows the force trace
for a (pini = 7; qini = 7) crystal (red curve). Eqn (2) predicts
the upper-bound values of the force peaks which are
shown with the blue dots. Additionally, from eqn (1) we have
that upon compression the force rises linearly with slope
keq E (1.46q/p) mN m�1, which is shown with the black dashed
lines for the various transitions. We find good agreement
between the simple analytical model proposed in this study
and the experimental results. The discrepancy between the
measured and the predicted maximum forces is larger for the
later transitions (for example 2 - 1). This is expected since the
experiment is more sensitive to imperfections as the lateral
extent of the crystal becomes larger (increasing q).

The study presented here focusses on the mechanical properties
of mono-crystals. In reality, most crystals are poly-crystalline with
defects in their structure. Introducing defects in mono-crystals has
been investigated with the model system described here, and the
results are presented in Ono-dit-Biot et al.18 Defects are added
through the introduction of smaller or larger droplets into the
aggregate. It was found that even a small number of defects has a
significant impact on the mechanical properties of the assembly.

4 Conclusions

In summary, we prepared 2D defect-free colloidal mono-crystals
by assembling highly monodisperse droplets into small size
aggregates. The force trace measured during compression shows
a well defined number of peaks corresponding to row-reduction
transitions. Using our experimental apparatus, we are able to
measure macroscopic mechanical properties while monitoring
individual droplets. Under small applied forces, crystals respond

Fig. 4 (a) Evolution of the peak force, Fc normalized by Ntot, as a function
of p�3/2 for five different compression experiments with different initial
geometries. The size of the droplets is kept constant to R = 18.9 � 0.3 mm.
The initial geometries are: (.) 7 alternating rows of 6 and 5 droplets; (%)
pini = 5; qini = 8; (~) 8 alternating rows of 6 and 5 droplets; (K) pini = 5; qini =
9; (’) pini = 7; qini = 7. The dash-dot line corresponds to the best fit of
eqn (2) to all the data with the energy per bond E1 = 0.096 fJ, while the
dashed line ensures all measured maximal forces fall below the line with
E1 E 0.2 fJ. (b) Measured force as a function of the distance between
pipettes for a (pini = 7; qini = 7) crystal. The blue data points correspond to
the maximal forces, predicted from eqn (2) with E1 E 0.2 fJ, which would
be expected for an ideal experiment. The black dashed lines correspond to
the theoretical predictions from eqn (1) with k1 E 1.46 mN m�1.
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elastically. A simple assembly of capillary springs, representing
individual droplets, captures the elastic properties of the crystal.
As the aggregate is further compressed and a critical yield force is
reached, the crystal fails catastrophically, but in a coordinated
manner. Plastic T1 events occur simultaneously along 601 frac-
ture lines, resulting in equilateral triangles of droplets which
slide past each other. This defect is a slip-line, the 2D equivalent
of a slip-plane in 3D. The droplets eventually reassemble into a
new crystal with one less row. An analytical model balancing the
stored elastic energy upon compression with the released
depletion-induced adhesion energy during bond breaking,
allows us to predict the yield point. The satisfactory agreement
between the model and experiments highlights the validity of
assuming that the edge effects of the finite crystals can be
ignored. We expect this assumption to break down for smaller
aggregates. While here the attraction between droplets is caused
by depletion forces, the model is expected to remain valid for
other sources of adhesion. The low-polydispersity droplet system
with controllable adhesion strength provides an ideal platform
for investigating material properties while individual constitu-
ents can be directly imaged.
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Appendix

Spring constant of a droplet

Individual droplets are modeled as capillary springs of constant
k1, directly proportional to the surface tension g between the oil
and the aqueous solution. In this section, we provide details to
justify this model analytically. Consider two oil droplets, with
initial radius R, compressed against one another as shown in
Fig. 5.

During compression, the volume of the droplet is conserved
but the radius, R1, and thus the surface area of the droplet is
modified. The change in surface area results in a capillary
energetic cost. Following the work by Pontani et al.,27 one can
show that the change in energy is DE = gpR2y4/2. For the spring
model developed in this study, the change in energy must be
expressed as a function of the compression of an individual
droplet, x. Using simple geometrical arguments, the compression
can be written as69 x C Rp

2/R, with Rp the radius of the patch
between droplets (see Fig. 5). In the limit of small deformations:
y C Rp/R. Using these two expressions, the change in surface
energy can be written as:

DE C 1
2gpx2. (3)

Comparing eqn (3) to the energy Es = k1x2/2 stored in a
spring naturally leads to k1 = pg. Taking into account the
hexagonal geometry of our droplet assemblies would lead to a
different pre-factor for the effective individual spring constant

k1 = Gg. Nevertheless, this simple analytical calculation justifies
why droplets can be modelled as springs, and that the associated
spring constant is directly proportional to the surface tension g.

Minimal bond breaking model

As explained in the main text and evidenced by Fig. 1, the
aggregates break forming equilateral triangles. This geometry
minimizes the number of bonds that needs to be broken. To
justify why the number of bonds that must be broken is equal
to 2q, one considers the number of droplets per triangle:

d ¼
Xp�1
i¼1

i ¼ pðp� 1Þ
2

: (4)

Therefore, the number of triangles t for a transition (excluding
edge effects) is:

t ¼ Ntot

d
¼ 2q

p� 1
: (5)

The bonds are broken along the edge of the triangles only,
leading to (p � 1) bonds broken per triangle. Only one side of
the triangle is considered to avoid double counting. The total
number of bonds b broken during a transition is thus given by:

b = t(p � 1) = 2q. (6)
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T. Salez, E. Raphaël and K. Dalnoki-Veress, Phys. Rev. Res.,
2020, 2, 023070.

19 A. J. Liu and S. R. Nagel, Nature, 1998, 396, 21–22.
20 V. Trappe, V. Prasad, L. Cipelletti, P. Segre and D. A. Weitz,

Nature, 2001, 411, 772–775.
21 C. S. O’Hern, L. E. Silbert, A. J. Liu and S. R. Nagel, Phys. Rev.

E: Stat., Nonlinear, Soft Matter Phys., 2003, 68, 011306.
22 E. I. Corwin, H. M. Jaeger and S. R. Nagel, Nature, 2005, 435,

1075–1078.
23 A. J. Liu and S. R. Nagel, Annu. Rev. Condens. Matter Phys.,

2010, 1, 347–369.
24 D. Bi, J. Zhang, B. Chakraborty and R. P. Behringer, Nature,

2011, 480, 355–358.
25 T. Hayashi and R. W. Carthew, Nature, 2004, 431, 647–652.
26 D. Gonzalez-Rodriguez, K. Guevorkian, S. Douezan and

F. Brochard-Wyart, Science, 2012, 338, 910–917.
27 L.-L. Pontani, I. Jorjadze, V. Viasnoff and J. Brujic, Proc. Natl.

Acad. Sci. U. S. A., 2012, 109, 9839–9844.
28 S. Douezan and F. Brochard-Wyart, Soft Matter, 2012, 8,

784–788.
29 H. Princen, J. Colloid Interface Sci., 1983, 91, 160–175.
30 T. Mason, J. Bibette and D. Weitz, Phys. Rev. Lett., 1995,

75, 2051.
31 E. Irani, P. Chaudhuri and C. Heussinger, Phys. Rev. Lett.,

2014, 112, 188303.
32 M. Grob, C. Heussinger and A. Zippelius, Phys. Rev. E: Stat.,

Nonlinear, Soft Matter Phys., 2014, 89, 050201.

33 D. Bonn, M. M. Denn, L. Berthier, T. Divoux and
S. Manneville, Rev. Mod. Phys., 2017, 89, 035005.

34 I. Golovkova, L. Montel, E. Wandersman, T. Bertrand,
A. M. Prevost and L.-L. Pontani, Soft Matter, 2020, 16,
3294–3302.

35 T. Mason, J. Bibette and D. Weitz, J. Colloid Interface Sci.,
1996, 179, 439–448.

36 P. Coussot, J. Raynaud, F. Bertrand, P. Moucheront,
J. Guilbaud, H. Huynh, S. Jarny and D. Lesueur, Phys. Rev.
Lett., 2002, 88, 218301.

37 J. Goyon, A. Colin, G. Ovarlez, A. Ajdari and L. Bocquet,
Nature, 2008, 454, 84–87.

38 B. Dollet and C. Raufaste, C. R. Phys., 2014, 15, 731–747.
39 G. Picard, A. Ajdari, F. Lequeux and L. Bocquet, Eur. Phys.

J. E: Soft Matter Biol. Phys., 2004, 15, 371–381.
40 L. Bocquet, A. Colin and A. Ajdari, Phys. Rev. Lett., 2009,

103, 036001.
41 K. Kamrin and G. Koval, Phys. Rev. Lett., 2012, 108, 178301.
42 A. Nicolas and J.-L. Barrat, Phys. Rev. Lett., 2013, 110, 138304.
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