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We use confocal microscopy to image colloidal gels formed from highly polydisperse particles. We
suspend our polydisperse particles in a density matched solvent, and let the particles spontaneously
aggregate through the van der Waals force. The particle size distribution P (R) is roughly log-normal,
with the largest particles more than 15 times the size of the smallest particles. The pairing of nearest
neighbor particles is consistent with a null hypothesis that pairings are made randomly, that is, any
two particle sizes have a probability of being neighbors consistent with their proportionality in P (R).
That being said, as expected, larger particles have more nearest neighbors than small ones. This
leads to an over-representation of large particles in tetrahedral structures where four particles are
mutually nearest neighbors, showing that large particles help provide rigidity to the gel structure.
We discuss the implications of how other size distributions P (R) would affect the gel structure.

I. INTRODUCTION

Colloids are suspensions of small solid particles sus-
pended in a liquid. “Small” means the particle diameters
range from ∼ 10 nm to ∼ 10 µm. Thermal motion is rele-
vant: Brownian motion allows particles to diffuse. Often
precautions are taken to prevent the solid particles from
sticking together [1]. If particles have attractive interac-
tions, they can stick together in free-floating aggregates
[2, 3], or large tendrils that can span across the system
[4–7]. The latter is a colloidal gel.

In the 1980’s and onward, several initial studies of
colloidal gels focused on their fractal structure, analyz-
ing two-dimensional images of flattened gels or using
scattering techniques to measure the fractal dimension
[8–15]. Later work used confocal microscopy to image
the microstructure of colloidal gels in three dimensions
[5, 6, 16–27]. This was complemented by simulations
[28–32]. Much of this prior work observed local stable
structures in the gels such as tetrahedra [27] and trian-
gular bipyramids [25, 27]. The stability of these struc-
tures is due both to their rigidity [24] and the general fact
that particles with more neighbors are more energetically
stable [25, 30], that is, it is less likely for thermal fluc-
tuations to detach highly connected particles from their
position in the gel.

Much of this prior work studied gels composed of nom-
inally monodisperse particles. While experimental col-
loidal particles are physical objects with some size vari-
ability, they are typically treated as identical [33, 34].
Some recent work has studied nominally bidisperse sam-
ples composed of small and large particles with a size
ratio ranging from 1 : 8 up to 1 : 24 [35, 36]. Given that
the diffusive time scale for particles to diffuse their own
size scales with radius as R3, the larger species is effective
non-Brownian in these samples [36, 37]. The inclusion of
these large particles can distort the local structure of the
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gel composed of the smaller particles [36], and can even
result in rheological bistability [35].
In our work, we study colloidal gels formed from a

sample with a wide and continuous particle size distri-
bution. The largest particles are rare, but can be up to
6.5 times larger than the mean size and more than 15
times the size of the smallest particles. While the large
particles diffuse quite slowly, there is a continuous range
of sizes and thus continuous variation of diffusive proper-
ties. Larger particles have more surface area and thus can
have more neighboring particles attached to their surface,
but smaller particles diffuse more rapidly and thus could
potentially find each other more easily in solution and/or
find small corners between particles to fit into. We wish
to understand the rich structure formed in such colloidal
gels, and therefore we do confocal microscopy of samples
over a range of volume fractions from 0.01 to 0.45. Our
results show that such highly polydisperse gels are assem-
bled fairly randomly – all particles are essentially equally
likely to be connected, in proportion to their prevalence
in the particle size distribution. Nonetheless, it is indeed
true that the larger particles have more nearest neigh-
bors than smaller particles, and in fact act as sites of
local rigidity in the colloidal gel structure. While we
study one particular particle size distribution, we discuss
in the conclusions how our results would extend to other
continuous particle size distributions.

II. EXPERIMENTAL METHODS

Our experiments use polydisperse spherical PMMA
particles synthesized by A.B. Schofield (University of Ed-
inburgh), via established methods [38, 39]; images of
these particles are shown in Fig. 1. Typically this synthe-
sis method results in particles sterically stabilized by a
thin layer of poly-12-hydroxystearic acid (PHSA), which
prevents the particles from aggregating. However, un-
like much prior work with PMMA colloidal particles [40],
our colloidal particles are only imperfectly coated with
PHSA. This results in our particles aggregating auto-
matically due to van der Waals forces. As is clear from
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Fig. 1, the particles are highly polydisperse. The range
of particle sizes is 1.15 µm to 17.6 µm.

Our particles are in a solution of 51.5 vol% de-
calin (Sigma Aldrich) and 48.5 vol% tetrachloroethylene
(Sigma Aldrich) [41]. This solvent mixture has several
benefits. First, the index of refraction of the colloids
closely matches that of the background solvent, enabling
optical microscopy so that the interior of the sample can
be observed. Second, this solvent mixture prevents ionic
dissociation from the colloids into the background sol-
vent, thus minimizing repulsive electrostatic interactions
[41]. The only interparticle forces thus are the short-
ranged van der Waals attraction and the solid core re-
pulsion when particles are in contact. Finally, the sol-
vent mixture closely matches the density of the colloidal
particles. While the density of the particles has some
variability, the particles require up to an hour at 400
G’s in order to cause sedimentation. This close density-
matching allows the colloidal gel structure to be stable
during our observation time scale (∼ minutes).

The samples are in chambers that have an interior vol-
ume of approximately 25×10×0.35 mm3. Prior to adding
the gel samples to the chambers, we vortex the stock jar
of colloidal for 3 minutes. We next sonicate the jar for 30
minutes. The samples are added to the microscope slides
and then immediately put on a rotator which keeps the
slides slowly rotating overnight, so as to further delay sed-
imentation. The next day the samples are removed from
the rotator and then imaged within an hour of removal.
We have separately confirmed with optical microscopy
that immediately upon injection of the sample into the
slides, the particles are mostly free monomers or dimers;
the full gel structure thus forms overnight.

We use confocal microscopy (Leica TCS SP8 MP) to
image our colloids with a 63×, 1.4 NA lens. The imaging
volume is 128×138×40 µm3 with a voxel size of 0.27µm
in each direction (the voxel aspect ratio is 1). To avoid
potential near-wall effects, our imaging volume is at least
35 µm from the nearest wall. As noted above, the gels are
imaged 12-20 hours after they are initially put into the
sample chamber; by the time we image, particle motion
is extremely arrested with most particles forming part
of a gel. A typical two-dimensional confocal microscope
image is shown in Fig. 1(b).

To determine the position and radii of our particles,
we use the method of Penfold et al. [42], along with ad-
ditional techniques developed by Crocker & Grier [43].
To look for three-dimensional (3D) spheres, we start
by thresholding the image so that only voxels above a
threshold are white, and all other voxels are black. We
then perform a distance transform on the binary image,
producing a 3D Euclidean Distance Map (EDM). In this
map, the value of each voxel is the distance to the near-
est black voxel of the binary image. Potential spheres are
identified by looking for local maxima in the EDM. The
precise center and radius are confirmed through a local
spherical convolution of the raw image with the radius
determined by the EDM. In dense gels especially, the

(a)

(b)

FIG. 1. (a) Scanning Electron Microscope image of colloidal
PMMA particles (image courtesy of the Robert P. Apkarian
Integrated Electron Microscopy Core at Emory University).
The scale bar is 10 µm. (b) 2-dimensional confocal slice of flu-
orescently labelled colloidal particles. The scale bar is 20 µm.

EDM can have maxima in the bridge between contact-
ing particles. We remedy this issue by looping through
maxima from large to small radius and removing maxima
that are found within the spherical shell determined by
the local convolution. That is, if a small radius maxima
is found within the shell of a larger radius maxima, then
it is likely the larger radius that is the real particle. This
method allows us to measure particle positions and radii
with sub-voxel accuracy, although the exact radius mea-
sured depends on the choice of threshold used to form
the binary image, leading to a systematic uncertainty for
the radius of ±0.2 µm based on the voxel size.

Our particles are highly polydisperse and accordingly
we show the particle size distribution in Fig. 2. The
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FIG. 2. Measured probability distribution of the colloidal
particle radii. The dashed black line corresponds to a log-
normal fit (Eq. 1 with σ = 0.378). The mean size of the
particles is µ = 2.69 µm with a polydispersity of δ = 37%.
The total range of particle sizes goes from 1.15 µm≤ r ≤
17.6 µm.

mean size is 2.69 µm, the median size is 2.48 µm, and
the polydispersity (standard deviation divided by the
mean) is 0.37. While 95% of the particles have a radius
R ≤ 4.5 µm, the largest (and rarest) particles have a ra-
dius of R = 17.6 µm, 6.5 times larger than the mean size
and more than 15 times larger than the smallest parti-
cles. The electron microscope image in Fig. 1(a) confirms
that there are no unusually small particles that would be
missed by confocal microscopy. A common particle size
distribution is log-normal [44–47], given by:

P (R) =
1

Rσ
√
2π

exp

(
− (lnR− µ)2

2σ2

)
(1)

with mean size µ and width σ. A fit of our data to
this P (R) is shown in Fig. 2 by the black dashed line,
showing that our P (R) is a bit like a truncated log-normal
distribution.

We vary the volume fraction between 0.01 < ϕ < 0.45
by centrifuging the stock jar to a higher concentration
before making the microscope slide, and then diluting
the samples for making lower volume fraction slides. The
volume fraction of our samples is measured locally by
dividing the total volume of the spheres measured by the
volume of the confocal stack [48]; all volume fractions
reported below are from local measurements.

III. RESULTS

A. Fractal dimension

The fractal dimension Df (or Hausforff dimension) is
connected to the rugosity (or complexity) of a geometric
object as different length scales of the object are probed

[49, 50]. Initially this idea was applied to self-similar ob-
jects, where viewing the object at different length scales
results in similar images. A different understanding of
fractal dimension, however, has been applied successfully
to study and characterize microstructure of colloidal ag-
gregates [8–16, 28, 51–58]. The objective of this approach
is less concerned with the complexity of the self-similar
shape, but what might be termed the “tenuousness” of
the aggregate structure, with Df → 1 being a highly ten-
uous network and Df → 3 being a bulkier, denser net-
work. Hence, Df has been directly correlated with the
elastic response of a gel: the elastic modulus G scales
with volume fraction ϕ as G ∼ ϕ1/(3−Df ) [58, 59].

To be precise, the fractal dimension of an aggregate
relates the scaling of the aggregate mass, M , with its
linear size, s, by a scaling relation M ∝ sDf . Hence, a
low fractal dimension aggregate spans a greater spatial
scale than a high fractal dimension aggregate of the same
mass. Prior work, both experimental and computational,
has shown that the fractal dimension of aggregates of
monodisperse particles typically hovers below Df ∼ 2.0
[8, 10, 56].

In our experiment, we use an intermediate volume
fraction gel (ϕ ∼ 0.15) and measure Df through a
“box-counting” method. This method discretizes a 3-
dimensional binarized confocal image into cubes of edge
lengths s and counts how many cubes contain at least
one bright voxel. By starting at the smallest box size of
one voxel and incrementing up to the size of the image
stack, we plot the box count against the size of the box
in Fig. 3. Fitting to N ∼ s−Df yields a fractal dimension
of Df = 2.4± 0.1 for our polydisperse colloidal gels.

Much prior work has studied the fractal dimension of
various colloidal gels, and it is known that the value of
Df depends on several factors such as the attractive en-
ergy of sticking in experiments [9, 12], the aggregation
kinetics [15], and/or the simulation algorithm [60, 61].
Bushell et al. noted that Df can range from 1.5 to 2.5
depending on the details of gel formation [15]. Given
the variety of these factors influencing fractal dimension,
we do not expect our Df = 2.4 to match any particular
result. Nonetheless, a comparison with prior work is in-
structive as to some factors that may be relevant for our
particular colloidal gel formation. Some of this prior work
specifically considered the role of particle polydispersity.
An early experiment found that Df = 1.9± 0.1 was sim-
ilar for colloidal aggregates formed from monodisperse
and polydisperse particles [10]. A contemporary simula-
tion found Df = 1.78 ± 0.03 with a similar lack of dif-
ference between monodisperse and polydisperse particles
[56]. Later computational work found that the fractal
dimension monotonically decreases with increasing poly-
dispersity for two common algorithms, Diffusion Limited
Cluster Aggregation (DLCA) and Diffusion Limited Ag-
gregation (DLA) [60, 62]. Eggersdorfer & Pratsinis [60]
argue that by only testing Gaussian distributions with a
maximum geometric standard deviation of σmax = 1.5,
these earlier works (Refs. [10, 56]) failed to probe a large
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enough polydispersity to notice the effect. Our geomet-
ric standard deviation is σ = 1.41, so not in the ex-
treme polydispersity limit considered by Ref. [60]. The
fractal dimensions measured by Eggersdorfer & Pratsi-
nis range from 2.25 to 1.48 as σ increases from 1.0 to
3.0, with the details also dependent on the algorithm
(DLCA or DLA). Using DLCA and σ = 1.0 recovered
Df = 1.79 ± 0.03 in agreement with Ref. [56], which
drops slightly to Df = 1.77 ± 0.03 for σ = 1.45, com-
parable to our σ = 1.41. Our Df = 2.4 is significantly
larger.

We believe the likely reason for our higher fractal di-
mension is that our colloidal particles, while attracted to
each other, are not strongly attractive. Our reasoning
stems from experimental work by Liu et al. that showed
the influence of interparticle attraction strength on the
fractal dimension of colloidal gold aggregates. In their
study, they controlled the attraction strength by varying
the concentration of added surfactant. At low to moder-
ate surfactant concentration, surfactants reduce the elec-
trostatic repulsion between gold particles by coating their
surface and adsorbing residual surface charges, thus in-
creasing the interparticle attraction energy in proportion
to the concentration of added surfactant. At a low surfac-
tant concentration/low attraction energy, they were able
to produce dense colloidal aggregates with Df = 2.7.
With the addition of extra surfactant/raising the attrac-
tion energy, they showed that the aggregates open into
sparser structures with Df = 1.7 [12]. This phenomenon
of low energy/dense aggregates is likely due to the inabil-
ity of single particle bonds to sequester particles into a
gel, thus allowing colloids to perform a constrained dif-
fusion along the surface of its neighbor until they settle
into a more rigid conformation with more bonds [30].
This secondary, post-sticking diffusion has been studied
in Meakin & Julien where the authors show that that re-
structuring can carry an aggregate from Df = 1.8 all the
way to Df = 2.2 [52]. We believe this restructuring likely
occurs in our colloidal gel structures before observation,
allowing our fractal dimension to rise to the observed
Df = 2.4± 0.1.

B. Contact network

The contact number Z is an important metric for char-
acterizing a gel network, as it gives direct insight into the
the connectivity of the microstructure. For monodisperse
particles the contact number will depend on the strength
of the attractive forces and the overall volume fraction.
Dilute samples with low attractive energy might just have
occasional dimers or trimers and the mean contact num-
ber could be less than 1. High volume fraction samples
such as attractive colloidal glasses [63, 64] could have
contact numbers approaching 10-12. One prior study
used confocal microscopy to measure contact numbers for
a monodisperse colloidal gel, finding Z ranged between
2.7 < ⟨Z⟩ < 4.0 depending on the strength of attraction

FIG. 3. Graph of box counting method to estimate Df for one
image stack of a gel at ϕ ∼ 0.15. To simplify the calculation of
Df , the aspect ratio of the voxel is made uniform. The slope of
inverse box size (s) against the number of boxes with a bright
voxel (N(s)) gives the fractal dimension of the aggregate. The
dotted black line fits to the equation N(s) = s−Df where
Df = 2.43. We repeat this measurement for three other image
stacks and report a mean value of Df = 2.4± 0.1.

[16]. For polydisperse gels, the theoretical maximum of
contacts depends highly on the shape of the particle size
distribution in addition to these other factors. In par-
ticular, the “granocentric” model developed by Clusel et
al. establishes analytic relationships between particular
size distributions and expectation values for the number
of contacts [65, 66], but only for the high ϕ regime of
random close packing.
In Fig. 4, we plot the average number of contacts

⟨Z⟩ for a particle of radius R; the different curves in-
dicate different volume fractions ϕ. Contacts are defined
as particles whose separation d is less than or equal to
d ≤ 1.1(r1 + r2). Several qualitative observations are
straightforward. First, larger particles have more con-
tacts; a result in line with their greater surface area. Sec-
ond, at low volume fractions, particles still form contacts;
a feature indicative of a colloidal gel. Even for the small-
est particles and the smallest volume fraction, ⟨Z⟩ > 1.
Third, at higher volume fractions, particles have more
contacts, an unsurprising result.
As seen in Fig. 4, the relation between ⟨Z⟩ and R

appears to grow slightly faster than a power law. The
curvature also appears to increase as a function of ϕ.
We note that there is no particular reason to expect a
power-law relation or any other particular relation, given
that our particle size distribution does not have a sim-
ple analytic form (see Fig. 2). To better understand the
relation between ⟨Z⟩ and R, we examine simulated ran-
dom close packing (RCP) structures based on our mea-
sured particle size distribution given by Fig. 2. We use
the simulation methods described in Desmond & Weeks
[67] as modified in Meer & Weeks [68] to generate close
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FIG. 4. (a) The average contact number ⟨Z⟩ as a function of
the radius of the particle R. The volume fraction ϕ increases
monotonically from bottom to top as labeled. The dashed
black curve represents data gathered from RCP simulation
which pack at ϕRCP = 0.67. The dotted line follows a power
law with slope α as indicated. (b) The data from (a) is re-
plotted, with ⟨Z⟩ divided by ⟨Z(R̄)⟩ using the mean particle
size R̄ = 2.69 µm.

packed configurations with 800 to 3200 particles, finding
ϕRCP = 0.675 ± 0.004. In Fig. 4, we add to the exper-
imental plot the computational results as the top black
dashed line. Our experimental data for highest ϕ mimic
the shape of this curve but with lower values. To partially
collapse the data, we divide the contact number by the
number of contacts at the mean radius R̄ = 2.7 and replot
the data in Fig. 4(b), confirming the agreement between
the R dependence of the high ϕ experimental data and
the RCP data. The lower ϕ experimental curves deviate
for large R, showing that the largest particles have fewer
contacts than might be expected in these low volume frac-
tion colloidal gels. The qualitative agreement between
the experimental and computational data is intriguing
given that the computational results treat the particles
as purely repulsive hard spheres, and do not have any
physical dynamics or attractive interactions considered.
This strongly suggests the experimental particles pair up
randomly.

We do one additional test to verify that particles pair
up randomly. Fig. 5 shows the probability distribu-
tion of contact particle sizes, conditional on the size

FIG. 5. Histograms of the particle size distribution given that
it is neighbors with a particle of size 3.0 < R < 5.0µm (green),
10.0 < R < 18.0µm (pink) for experimental data. The blue
distribution is the “contact former” distribution, i.e., the list
of particle sizes that form contacts.

of the particle. The curves are for contacts of small
particles (3 < R < 5µm), contacts of large particles
(10 < R < 18µm), and all contacts. That is, for “all
contacts,” we list all particle pairs, extract their radii,
and take a histogram of the data. A particle with Z
contacts will have its radius listed Z times. The data of
Fig. 5 show that small and large particles have equivalent
probability distributions for the size of their contacts,
thus suggesting that there is no measurable systematic
dependence of the likelihood of contacts on the particle
radii.

C. Tetrahedral structure

The onset of an elastic response well below the iso-
static percolation determined by Maxwell counting is a
peculiarity of colloidal gels [69, 70]. Microstructurally, it
has been shown that for some gels, the dynamical arrest
brought on by gelation and the subsequent elasticity of
the gel correspond to the formation of rigid tetrahedral
structures that percolate as the gel ages [25, 27, 71, 72].
The concept is that four particles which are mutually
nearest neighbors form a tetrahedron, and this structure
cannot be flexed without breaking a contact. If the con-
tacts are fairly strong (compared to kBT ), this imparts
rigidity to the local structure [70]. If there is a percola-
tion of such tetrahedral structures, the gel will be macro-
scopically rigid. To be precise, in Ref. [27] Tsurusawa &
Tanaka cite the pentagonal bipyramid, not strictly the
tetrahedron, as the percolating, rigidity enhancing struc-
ture. They do so because the pentagonal bipyramid has
a five-fold symmetry that prevents crystallization, thus
offering a route to understanding rigidity outside the tra-
ditional notions of local glassy patches or crystallization
(the icosahedron has also been suggested for its similar
five-fold symmetry). For a detailed explanation of crys-
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(a)

(b) (c)

FIG. 6. (a) A 3D rendered image of a colloidal gel. Particles
in dark red are engaged in a tetrahedron with the shading
determined by particle size, and the lighter yellow particles
are other particles in the gel. The width of the image is
138 µm and ϕ = 0.27. (b-c) 3D rendered tetrahedra from our
sample. In (b), the largest particle has a radius R = 9.1 µm
and the asymmetry parameter for this tetrahedron is τ =
1.42. In (c), the largest particle has a radius R = 3.6 µm, and
τ = 1.51, indicating a slightly more symmetric tetrahedron
than the one shown in (b).

talline frustration in colloidal gels, see Royall et al. 2008
[25].

For our polydisperse gels, where crystallization is im-
possible, the tetrahedron is a simple and useful struc-
ture that can lead to rigidity. Indeed, our colloidal gels
have tetrahedral clusters of particles. Figure 6(a) shows
a 3-dimensional rendering of one sample, with identi-
fied tetrahedra colored in red. As shown in Fig. 6(b,c),
a tetrahedron occurs when four particles are simultane-
ously in contact with each other, meaning that tetrahedra
can be identified by looking for sets of common entries
in the contact array.

Our colloidal gel samples have quite a few tetrahedra
within them, as seen by the red particles in Fig. 6(a). The
probability of a particle to be found in at least one tetra-
hedron is shown by the lower curve in Fig. 7(a), and the

number of tetrahedra the average particle participates in
is shown by the upper curve. Unsurprisingly, both rise
with larger volume fraction, although intriguingly even
at small volume fraction tetrahedra are present. The
existence of tetrahedral structures implies that particles
have some ability to rearrange even after initially stick-
ing together. If particles that initially touch formed an
irreversible bond preventing rearrangements, then many
particles would only have one or two nearest neighbors.
On the other hand, if the bond energy is not too large (a
few kBT ) then particles with one nearest neighbor would
have some ability to detach and reattach. The implica-
tion is that the more neighbors a particle is bonded to,
the more stable its position would be [25, 30]. This would
be equally true if a particle can “roll” while remaining
attached to its neighbor. A particle touching one other
particle can roll freely on its surface; a particle touch-
ing two other particles can roll in the groove formed by
its two neighbors. Only a particle touching three other
particles is fully constrained from rolling – and if those
three other particles are also mutually nearest neighbors,
they have formed a tetrahedron. Thus the existence of
tetrahedral structures in our gels, indeed a fair number
of those structures, suggests that our particles are able
to rearrange somewhat as the gel forms (as we had previ-
ously suggested in Sec. II). Note that the data shown in
Fig. 7 is based on particles within the imaging volume;
it is likely that the results are a slight underestimate, as
particles may be part of tetrahedra that extend outside
the imaging volume.

There is additionally a particle size dependence for the
tetrahedra. To illustrate this, in Fig. 7(b,c) we plot the
number of tetrahedra Ntet(R) and probability of being
in a tetrahedron Ptet(R) as a function of particle radius
(considering only data for which ϕ > 0.35). Both rise
dramatically with particle radius. As Fig. 4(a) shows,
large particles have more contacting neighbors. More
neighbors gives more chances that those neighbors are
themselves mutually in contact, forming a tetrahedron.
While Fig. 7(b) shows a power law relation, as noted
before for the contact number relation shown in Fig. 4,
there is no particular reason to expect a power-law rela-
tion for these data. In Fig. 8, we show an example with
a central (black) particle which has ten particles in con-
tact with it; the particle and its ten neighbors form nine
tetrahedra. This lends credibility to the physical idea of
particles which land on the surface of the black particle
and then can move until they contact other particles also
on the surface, forming multiple contacts that are then
more stable. The neighboring particles of the central
black particle have in a sense formed a two-dimensional
aggregate on the surface of the black particle.

We wish to understand the geometric constraints that
may be acting in colloidal gel formation with our highly
polydisperse particles. Any four monodisperse spheres
are guaranteed the possibility of forming a tetrahedron.
Unlike monodisperse particles, this guarantee no longer
holds for polydisperse particles. We consider the ques-
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FIG. 7. (a) The probability Ptet(ϕ) that a particle is in a
tetrahedron as a function of volume fraction ϕ, and also the
number Ntet of tetrahedra on average that a particle partici-
pates in. At low ϕ Ptet ∼ Ntet, suggesting that if a particle is
in a tetrahedron, it is unlikely to also be in a second tetrahe-
dron. The separation of the two curves at higher ϕ shows that
more particles participate in multiple tetrahedra. (b) Ntet(R)
as a function of particle radius R averaged over samples with
ϕ > 0.35. The plot has logarithmic axes and the dashed line
indicates power-law growth with an exponent α = 1.7. (c)
Ptet(R) as a function of R for the same data as (b).

tion: given four random spheres of radii {r1, r2, r3, r4},
what are the conditions on these radii such that they
can form a tetrahedron? A general tetrahedron is made
of four triangular faces with six edges. Geometrically,
for each face, the three edges must satisfy a triangle
inequality. In addition, all four triangles must form a
closed tetrahedron. This latter condition can be tested
by taking the volume of the tetrahedron via the Cayley-
Menger determinant (a matrix whose elements are the
edge lengths of the tetrahedron). If positive, the edge
lengths can form a valid tetrahedron [73]. The combina-
tion of the four triangle inequalities (triangle condition)
and the Cayley-Menger determinant (closure condition)
produces a “tetrahedral inequality”. This inequality is,
however, an inequality acting on six independent edge
lengths. For a tetrahedron made of spheres with radii
{r1, r2, r3, r4}, the edges of the triangles are composed of

(a) (b)

FIG. 8. Two views of the same central particle (black, R =
4.66 µm) that is part of 9 different tetrahedra and in contact
with 10 particles. The particles are made slightly transparent
for clarity. The large magenta particle has R = 4.98 µm,
in the front of (a) and back of (b). The smallest dark blue
particle has R = 2.2 µm, barely visible in the top back in (a),
and in the bottom front in (b).

the sum of the combinations of radii, meaning that a 4-
sphere tetrahedron has 4 degrees of freedom rather than
6.
Considering the case of four spheres, we first consider

the triangle inequality generated by three spheres. The
centers of any three spheres form a plane, so really this
is the problem of three circles lying in a plane that mu-
tually touch. For all positive, real numbers any three
combinations of circles produce a valid triangle. That
is, given three triangle edges a = r1 + r2, b = r2 + r3,
and c = r1 + r3, the three triangle inequalities reduce to
r1 > 0, r2 > 0 ,and r3 > 0. Therefore, a 4-sphere tetrahe-
dron always satisfies the triangle condition for each of its
faces; thus the tetrahedral inequality reduces to the clo-
sure condition. Furthermore, by taking the determinant
of the Cayley-Menger matrix with the six edge lengths
generated from the four sphere radii, the closure condi-
tion reduces to a well known problem in mathematics
known as the Interior Soddy Circle problem. That is,
any three spheres can be positioned to touch; the impor-
tant question is whether a fourth sphere can be added
to that triangle such that it can form contacts with all
three spheres simultaneously. Thus, our initial tetrahe-
dral inequality question reduces again, this time to a two-
dimensional problem whose solution was first discovered
by Rene Descartes and popularised by Frederick Soddy.
(The result was so beautiful that it drove Soddy to pub-
lish the poem “The Kiss Precise” in Nature [74]). The
result shows that the smallest the radius of the 4th par-
ticle can be before it no longer forms contacts is given
by:

rs =
r1r2r3

r1r2 + r1r3 + r2r3 + 2
√

r1r2r3(r1 + r2 + r3)
. (2)

rs is a “Soddy radius” below which the addition of the
fourth particle would fail to yield a tetrahedron: that is,
small spheres are the ones that will fail to touch larger
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spheres. This is the lower bound on the small sphere
radius; there is no upper bound, and any sphere with
a radius larger than rs is able to touch the three other
spheres. If we consider the case r1 = r2 = r3 to be three
large particles, Eq. 2 states that the range of particle
sizes at which this restriction becomes relevant for de-
termining possible tetrahedra is when the radius of the
largest particles 3 + 2

√
3 ≈ 6.7 times the radius of the

smallest particles. Prior work has studied the affinities
between the Soddy circle problem and questions about
4-ball tetrahedral structures [75], but, to our knowledge,
the route to the Soddy inequality through the Cayley-
Menger determinant has not yet been reported.

For our particular sample, the tetrahedral inequality,
reduced to Eq. 2, barely restricts the structure of the col-
loidal gel. By randomly sampling our radius distribution,
we find that the probability of crafting an invalid tetrahe-

dron given four random radii is P theory
tet ≈ 10−9; a value

which is commensurate with the probability of choosing
three particles of radii > 8µm. That is, given that our
size distribution (Fig. 2) has many small particles and
few large particles, it is extremely rare that we would
ever have three large particles mutually contacting each
other, such that a small fourth particle would be unable
to touch the three large particles. We note that for a col-
loidal gel composed of a polydisperse sample where P (R)
has a more negative skew, such that the large particles are
common and the small particles are rare, would be more
subject to the Soddy radius constraint. For example,
if one draws four particles at random from a bidisperse
distribution with sizes Ra = 1, Rb = 7 and probabilities
pa = 1/4, pb = 3/4, then 42.2% of the time the four par-
ticles would fail the Soddy radius inequality, and thus
forming tetrahedra would be strongly influenced by this
geometric constraint.

Despite the rareness of the geometric constraint apply-
ing in our sample, nonetheless the large particles play an
interesting role in the formation of tetrahedra. To char-
acterize this, in Fig. 9(a), we plot the size distribution
of all particles, particles that are neighbors, and parti-
cles that are in tetrahedra. The size distributions are
different because particles can be repeated if they have
multiple neighbors, or are parts of multiple tetrahedra.
The curve with the highest probability in the tail for
large R (blue) is the one corresponding to all particles
found in tetrahedra. Thus, while large particles are rare
in our samples, Fig. 9(a) shows they have an out-sized
presence in the formation of tetrahedra relative to their
presence in the sample. This is consistent with Fig. 4
which shows large particles have more neighbors in gen-
eral, so a larger possibility of participating in tetrahedra.
In Fig. 9(a) the middle (violet) curve represents P (R) for
neighboring (contacting) particles, which is quite similar
to the P (R) for contacting particles which are in tetrahe-
dra, although nonetheless the tetrahedral particles have
slightly more participation from the large particles. No-
tably, both these curves are distinct from the bottom
green curve which shows P (R) for all particles. This

(a)

(b)

FIG. 9. (a) Probability distributions of the radius dis-
tribution (green), the tetrahedron distribution (light blue),
and the the theoretical distribution of tetrehedra generated
by randomly sampling the neighbor distribution and check-
ing via Eq. 2 for validity (purple). The contact and tetrahe-
dron distributions are different from the radius distribution
because they are allowed to contain repeated entries if a par-
ticle has multiple contacts or is a part of multiple tetrahedra.
(b) Probability distribution of the asymmetry of tetrahedra,
τ . The rough black curve represents the experimentally mea-
sured tetrahedra, and the purple and orange curves represent
tetrahedra formed by randomly sampling the radius distribu-
tion or the contact radius distribution respectively.

observation of the relative prevalence of large particles
in tetrahedra may help understand Cantor et al.’s com-
putational observation that large particles help form a
stress-resistant backbone [76].

Finally, we consider the shapes of the tetrahedra
formed in our highly polydisperse sample. For each tri-
angle in a tetrahedron, consider the edge lengths a, b,
and c, with c being the longest. We define the parameter
τ = (a + b)/c. Given that c ≥ a and c ≥ b, and the tri-
angle inequality requires c > a+ b, then τ is bounded by
1 < τ ≤ 2. τ = 2 corresponds to a completely monodis-
perse triangle, and increasing polydispersity within the
triangle leads to τ → 1. Thus, each tetrahedron is com-
posed of four τ , which we then take the minimum of
(to identify the least symmetric triangle) to assign each
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particular tetrahedron an asymmetry parameter τ . The
distribution of τ is shown in Fig. 9(b) as the noisy black
curve. The minimum at τ = 2 reflects the rarity of find-
ing four particles of close to the same size to form a tetra-
hedra. The thin solid violet curve is a null hypothesis for
P (τ) constructed by randomly sampling four particles
from P (R) and forming a tetrahedron. The experimental
data clearly have more asymmetric tetrahedra than the
null hypothesis curve. The over-representation of large
particles in Fig. 9(a) subsequently produces more asym-
metric tetrahedra as shown by the low τ tail in Fig. 9(b).
We can correct for this over-representation by generating
tetrehedra from the contact radius list, which includes re-
peats if particles form multiple contacts. In Fig. 9(b), we
show this result in the thin light orange curve which fits
the experimental curve well at low τ .

IV. CONCLUSION

We have studied the structure of colloidal gels com-
posed of particles which span more than a decade in radii.
Larger particles have more particles attached to them as
compared to smaller particles. This finding is reason-
able given that the larger particles have a larger surface
area and thus geometrically have more ability to be cov-
ered with particles. Apart from that, all potential par-
ticle pairs between particles of radii (R1, R2) occur with
a probability essentially proportional to P (R1)P (R2) in
terms of the sample’s particle size distribution P (R).
Given that the large particles are rare, this means that
it is rare to see two large particles stuck together, but
not impossible. This could be controlled by changing
the underlying particle size distribution to favor larger
particles.

When two particles stick together, the contact is suffi-
ciently “loose” that they have some ability to rearrange.
This results in the formation of tetrahedral structures
within the colloidal gel, where four particles are mutually
touching, thus resulting in a much more stable configu-
ration that is much harder to rearrange [25, 30]. Given
that large particles have more nearest neighbors, a con-
sequence is that large particles participate in tetrahedra
more than might otherwise be expected, and thus large
particles more frequently serve as rigid points of the gel
structure.

Our observations are particular to our specific parti-
cle size distribution shown in Fig. 2 where large particles
are rare. In our samples large particles are more fre-
quently associated with tetrahedral structures, and this
result should be general. In any colloidal gel, large parti-
cles should always have the ability to have more nearest
neighbors than smaller particles, and thus a large par-
ticle will have an increased chance that some of those

nearest neighbors form a tetrahedron with the large par-
ticle. However, we note that for a particle size distri-
bution where the largest particles occur more frequently
will have the Soddy radius restriction as a geometric con-
straint preventing some sets of four particles from being
able to form a tetrahedron. Those colloidal gels will, in
some sense, be “less random” due to this geometric con-
straint. This geometric constraint arises when the size
ratio between largest and smallest particles is at least
∼ 6.7.
Another potential difference between our highly poly-

disperse gels and other colloidal gel systems relates to the
rearrangements we believe occur in our gels that create
tetrahedral structure. In a colloidal gel with stronger at-
tractive energies (such that kBT is insufficient to break
a bond) and an inability for particles to roll against
each other, it seems likely the average contact number
would be smaller and tetrahedral structures scarce. We
would also expect that preventing internal rearrange-
ments within the gel would decrease the fractal dimension
from our observed value of 2.4± 0.1 [12].
A final difference to note is that many prior experimen-

tal studies used the depletion force to form the colloidal
gel [2, 5, 16, 18, 23–25]. The depletion force arises by
adding small polymers to the colloidal sample [77, 78]:
the exclusion of polymers from between particles results
in an unbalanced osmotic pressure, pushing the parti-
cles together [79]. The depletion force is primarily con-
trolled by the polymer concentration, but additionally
it depends on the particle size. The larger the particles
are, the larger the force [77]. For example, the attrac-
tion energy of a small particle to a much larger parti-
cle is twice as much as for two small particles sticking
together [80, 81]. This size-dependent attractive force
could bias the formation of the colloidal gels, resulting
in additional size-dependent microstructural effects that
we do not see in our current experiments. In particu-
lar, one might expect the largest particles to have even
more contacting particles, and thus to nucleate even more
tetrahedral structure than we observe.
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