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We use confocal microscopy to image colloidal gels formed from highly polydisperse particles. We
suspend our polydisperse particles in a density matched solvent, and let the particles spontaneously
aggregate through the van der Waals force. The particle size distribution P(R) is roughly log-normal,
with the largest particles more than 15 times the size of the smallest particles. The pairing of nearest
neighbor particles is consistent with a null hypothesis that pairings are made randomly, that is, any
two particle sizes have a probability of being neighbors consistent with their proportionality in P(R).
That being said, as expected, larger particles have more nearest neighbors than small ones. This
leads to an over-representation of large particles in tetrahedral structures where four particles are
mutually nearest neighbors, showing that large particles help provide rigidity to the gel structure.
The tetrahedral structures also suggest that particles are able to rearrange during the gelation
process, until their motion is stabilized by the multiple contacts with their neighbors. We discuss
the implications of how other size distributions P(R) would affect the gel structure.

I. INTRODUCTION

Colloids are suspensions of small solid particles sus-
pended in a liquid. “Small” means that the particle di-
ameters range from ~10 nm to ~10 ym. Thermal motion
is relevant: Brownian motion allows particles to diffuse.
Often precautions are taken to prevent the particles from
sticking together [1]. If particles have attractive interac-
tions, they can stick together in free-floating aggregates
[2-4], or large tendrils that can span across the system
[5-8]. The latter is a colloidal gel [9].

In the 1980’s and onward, several initial studies of col-
loidal gels focused on their fractal structure, analyzing
two-dimensional images of flattened gels or using scat-
tering techniques to measure the fractal dimension [10-
17]. The fractal nature of these materials mean that the
mechanical properties of a colloidal gel are significantly
different from the pure liquid, even at low concentrations
of the colloidal particles. A fractal colloidal gel behaves
like an elastic solid when the system-spanning tendrils
can support stress over long ranges. Later work used
confocal microscopy to image the microstructure of col-
loidal gels in three dimensions [6, 7, 18-29]. This was
complemented by simulations [30-35]. Several groups ob-
served local stable structures in the gels such as tetrahe-
dra [29, 36, 37|, triangular bipyramids [27, 29], and net-
works of these types of local clusters [38]. The stability
of these structures is due both to their rigidity [26] and
the general fact that particles with more neighbors are
more energetically stable [27, 32], that is, it is less likely
for thermal fluctuations to detach highly connected par-
ticles from their position in the gel. These various stable
structures contribute to the mechanical properties of col-
loidal gels [39], tuning their mechanical properties such
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as rheological moduli, flowability, or resistance to gravi-
tational effects [35, 40-53].

Much of this prior work studied gels composed of nom-
inally monodisperse particles. While experimental col-
loidal particles are physical objects with some size vari-
ability, they are typically treated as identical [54, 55].
Some recent work has studied nominally bidisperse sam-
ples composed of small and large particles with a size
ratio ranging from 1: 8 up to 1: 24 [56, 57]. Given that
the diffusive time scale for particles to diffuse their own
size scales with radius as R, the larger species is effective
non-Brownian in these samples [57, 58]. The inclusion of
these large particles can distort the local structure of the
gel composed of the smaller particles [57], and can even
result in rheological bistability [56].

In our work, we study colloidal gels formed from a sam-
ple with a wide and continuous particle size distribution.
The largest particles are rare, but can be up to 6.5 times
larger than the mean size and more than 15 times the
size of the smallest particles. There is a continuous range
of sizes and thus continuous variation of diffusive prop-
erties. Larger particles have more surface area and can
have more neighboring particles attached to their surface,
but smaller particles diffuse more rapidly and thus could
potentially find each other more easily in solution and/or
find small corners between particles to fit into. We wish
to understand the rich structure formed in such colloidal
gels, and therefore we do confocal microscopy of samples
over a range of volume fractions from 0.01 to 0.45. Our
results show that such highly polydisperse gels are assem-
bled fairly randomly — all particles are essentially equally
likely to be connected, in proportion to their prevalence
in the particle size distribution. Nonetheless, the larger
particles have more nearest neighbors than smaller par-
ticles, and in fact act as sites of local rigidity in the col-
loidal gel structure. Many particles contact three or more
neighbors, suggesting that particles can rearrange to in-
crease their number of contacts before the gel becomes
fully immobile.
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II. EXPERIMENTAL METHODS

Our experiments use polydisperse spherical PMMA
particles synthesized by A.B. Schofield (University of Ed-
inburgh), via established methods [59, 60]; images of
these particles are shown in Fig. 1. Asis clear from Fig. 1,
the particles are highly polydisperse. The particle sizes
range from 1.0 pm to 17.6 pm.

Typically this synthesis method results in parti-
cles sterically stabilized by a thin layer of poly-12-
hydroxystearic acid (PHSA), which prevents the particles
from aggregating. However, unlike much prior work with
PMMA colloidal particles [61], our colloidal particles are
only imperfectly coated with PHSA. This results in our
particles aggregating automatically due to London-van
der Waals forces. For two spherical particles of radii R
and Rs, separated by a distance r, the interaction poten-
tial is given by
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where A is the Hamaker constant [62, 63]. This formula
was originally derived in 1937 by Hamaker [64, 65]. Al-
though we do not know the exact value for A for our
sample, it is typically O(1072° J) [62, 63, 66, 67]. As a
result of this large magnitude of A, the van der Waals
force is quite strong, with the attractive energy at least
ten times higher than kpT [66, 68], where kp is the Boltz-
mann constant and 7" is the absolute temperature. Thus,
particles that touch are irreversibly bonded [9]. However,
given the 1/[r? — (R + R2)?] term in Eqn. 1 which decays
rapidly away from contact (r = Ry + Rap), these forces
are quite short-ranged [63, 68], and are smaller than kgT
at surface-to-surface separations comparable to the par-
ticle sizes [62]. The range of this force depends on the
relative particle sizes, but not to a large extent. As a
concrete example, with A = 2.5kgT and particle sizes
Ry =Ry =1pm,U(r) =kgT at r— Ry — Ry = 0.11 pm.
If we increase Ry to 100 pm, we have U(r) = kgT at
r— Ry — Ry = 0.22 ym. Note that Eqn. 1 is most accurate
for small separations; at larger separations (more than
0.1 pm), the interaction energy decreases more strongly
than the equation would suggest due to retardation ef-
fects, but there is no analytic formula describing this
[67, 69]. Nonetheless, qualitatively the behavior of the
London-van der Waals force is as we have described:
much stronger than kg7 for particles in contact, but
weak for particles not in contact.

The confirmation that the van der Waals force is the
relevant one in our experiments is that particle detach-
ments from the gel structure are extremely rare in any
of our observations, matching the known strength of this
force, in contrast to other attractive forces such as deple-
tion [1] which in any case is not present in our sample as
we have no depletant. A key point is that while Eqn. 1

depends on both particle radii, qualitatively the van der
Waals force is strong enough that the size-dependent
properties do not matter for our experiments: all touch-
ing particle pairs will stick irreversibly, and the range of
the attraction is only weakly dependent on particle sizes.

Our particles are in a solution of 51.5 vol% de-
calin (Sigma Aldrich) and 48.5 vol% tetrachloroethylene
(Sigma Aldrich) [70]. This solvent mixture has several
benefits. First, the index of refraction of the colloids
closely matches that of the background solvent, enabling
optical microscopy so that the interior of the sample can
be observed. Second, this solvent mixture prevents ionic
dissociation from the colloids into the background sol-
vent, thus minimizing repulsive electrostatic interactions
[70]. The only interparticle forces thus are the short-
ranged van der Waals attraction and the solid core repul-
sion when particles are in contact. Finally, the solvent
mixture closely matches the density of the colloidal parti-
cles. While the density of the particles has some variabil-
ity, the particles require up to an hour at 400g in order
to cause sedimentation. This close density-matching al-
lows the colloidal gel structure to be stable during our
observation time scale (~ minutes).

The samples are in chambers that have an interior vol-
ume of approximately 25x 10x0.35 mm?. Prior to adding
the gel samples to the chambers, we vortex the stock jar
of colloids for 3 minutes. We next sonicate the jar for 30
minutes. The samples are added to the microscope slides
and then immediately put on a rotator which keeps the
slides slowly rotating overnight, so as to further delay sed-
imentation. The next day the samples are removed from
the rotator and then imaged within an hour of removal.
We have separately confirmed with optical microscopy
that immediately upon injection of the sample into the
slides, the particles are mostly free monomers or dimers;
the full gel structure thus forms overnight.

We use confocal microscopy (Leica TCS SP8 MP) to
image our colloids with a 63x 1.4 Numerical Aperture
lens. The images are typically 512 x 512 x 100 voxels
in size, with a voxel size of 0.27 x 0.27 x 0.30 um3 or
0.34 x 0.34 x 0.30 pm?; both of these choices keep the
voxel aspect ratio close to 1. To avoid potential near-
wall effects, our imaging volume is at least 35 pm from
the nearest wall. As noted above, the gels are imaged
12-20 hours after they are initially put into the sample
chamber; by the time we image, particle motion is ex-
tremely arrested with most particles forming part of a
gel. A typical two-dimensional confocal microscope im-
age is shown in Fig. 1(b).

To determine the position and radii of our particles,
we use the method of Penfold et al. [71], along with ad-
ditional techniques developed by Crocker & Grier [72].
To look for three-dimensional (3D) spheres, we start
by thresholding the image so that only voxels above a
threshold are white, and all other voxels are black. We
then perform a distance transform on the binary image,
producing a 3D Euclidean Distance Map (EDM). In this
map, the value of each voxel is the distance to the near-
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FIG. 1. (a) Scanning Electron Microscope image of colloidal
PMMA particles (image courtesy of the Robert P. Apkarian
Integrated Electron Microscopy Core at Emory University).
The scale bar is 10 pm. (b) 2-dimensional confocal slice of flu-
orescently labelled colloidal particles. The scale bar is 20 ym
and the volume fraction is ¢ = 0.26.

est black voxel of the binary image. Potential spheres are
identified by looking for local maxima in the EDM. The
precise center and radius are confirmed through a local
spherical convolution of the raw image with the radius
determined by the EDM. In dense gels especially, the
EDM can have maxima in the bridge between contact-
ing particles. We remedy this issue by looping through
maxima from large to small radius and removing max-
ima that are found within the spherical shell determined
by the local convolution. That is, if a small radius max-
ima is found within the shell of a larger radius maxima,
then it is likely the larger radius that is the real parti-
cle. This method allows us to measure particle positions

and radii with sub-voxel accuracy, although the exact ra-
dius measured depends on the choice of threshold used
to form the binary image, leading to a systematic uncer-
tainty for the radius of £0.2 ym based on the voxel size.
The uncertainty of our particle positions is half the voxel
size, so +£0.14 pm. The EDM method fails for particles
about 4 pixels or less in radius, leading to a lower limit
of identifiable particles of about 1.15 pm.

Our particles are highly polydisperse and accordingly
we show the particle size distribution in Fig. 2. The
mean size is 2.69 pm, the median size is 2.48 pm, and the
polydispersity (standard deviation divided by the mean)
is 0.37. While 95% of the particles have a radius R <
4.5 pm, the largest (and rarest) particles have a radius
of R=17.6 um, 6.5 times larger than the mean size and
more than 15 times larger than the smallest particles. A
common particle size distribution is log-normal [73-76],

given by:
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with mean size p and width 0. A fit of our data to
this P(R) is shown in Fig. 2 by the black dashed line,
showing that our P(R) is a bit like a truncated log-normal
distribution.

We vary the volume fraction between 0.01 < ¢ < 0.45
by centrifuging the stock jar to a higher concentration be-
fore making the microscope slide, and then diluting the
samples for making lower volume fraction slides. The
volume fraction of our samples is measured locally by di-
viding the total volume of the spheres measured by the
volume of the confocal stack [77]; all volume fractions re-
ported below are from local measurements. Typically we
take several images from different fields of view of each
microscope slide. In total, our data are 421 individual
3D images. For all ranges of ¢ with width A¢ = 0.05, we
have at least 15 distinct images and more typically 25-40
distinct images. The images for ¢ < 0.05 are overrepre-
sented in our data, with 106 images in this range.

P(R) =

III. RESULTS
A. Fractal dimension

The fractal dimension Dy (or Hausforff dimension) is
connected to the rugosity (or complexity) of a geometric
object as different length scales of the object are probed
[78, 79]. Initially this idea was applied to self-similar ob-
jects, where viewing the object at different length scales
results in similar images. A different understanding of
fractal dimension, however, has been successfully applied
to characterize the microstructure of colloidal aggregates
[10-18, 30, 80-87]. The objective of this approach is less
concerned with the complexity of the self-similar shape,
but what might be termed the “tenuousness” of the ag-
gregate structure, with Dy — 1 being a highly tenuous
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FIG. 2. Measured probability distribution of the colloidal
particle radii. The dashed black line corresponds to a log-
normal fit (Eq. 2 with 0 = 0.378). The mean size of the
particles is u = 2.69 ym with a polydispersity of § = 37%.
The total range of particle sizes goes from 1.15 pym< r <
17.6 pm.

network and Dy — 3 being a bulkier, denser network.
Hence, Dy has been directly correlated with the elastic
response of a gel: the elastic modulus G scales with vol-
ume fraction ¢ as G ~ ¢'/3=Prs) [87, 88]. Beyond the
mechanical properties such as elasticity, the fractal na-
ture of a colloidal gel relates to the long-term stability of
a gel [47, 53], how solvent can flow through the network
[89], and provides insight into the gelation process [90].

To be precise, the fractal dimension of an aggregate
relates the scaling of the aggregate mass, M, with its
linear size, s, by a scaling relation M o s”7. Hence, a
low fractal dimension aggregate spans a greater spatial
scale than a high fractal dimension aggregate of the same
mass. Prior work, both experimental and computational,
has shown that the fractal dimension of aggregates of
monodisperse particles typically hovers below Dy ~ 2.0
[10, 12, 85].

In our experiment, we use an intermediate volume
fraction gel (¢ ~ 0.15) and measure Dy through a
“box-counting” method. This method discretizes a 3-
dimensional binarized confocal image into cubes of edge
lengths s and counts how many cubes contain at least
one bright voxel. By starting at the smallest box size of
one voxel and incrementing up to the size of the image
stack, we plot the box count against the size of the box
in Fig. 3. Fitting to N ~ s~ 77 yields a fractal dimen-
sion of Dy = 2.5 £ 0.1 for our polydisperse colloidal gels,
with the uncertainty due to the thresholding choice and
also reflecting an average across several different gels; see
details in the Appendix.

Much prior work has studied the fractal dimension of
various colloidal gels, and it is known that the value of
Dy depends on several factors such as the attractive en-
ergy of sticking in experiments [11, 14, 24|, the aggrega-
tion kinetics [17], the attraction range [91], and/or the
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simulation algorithm [92, 93]. Bushell et al. noted that
Dy can range from 1.5 to 2.5 depending on the details
of gel formation [17]. Given the variety of these factors
that influence the fractal dimension, we do not expect
our Dy = 2.4 to match any particular result. Neverthe-
less, a comparison with previous work is instructive as to
some factors that may be relevant for our particular col-
loidal gel formation. Some of this prior work specifically
considered the role of particle polydispersity. Intuitively,
if fractal dimension is a measure of the spatial scaling of
an aggregate, then a polydisperse distribution of spheri-
cal particles might be a way to embed “extra” scaling and
thus modify the overall fractal dimension of an aggregate.
An early experiment found that Dy =1.9+0.1 was sim-
ilar for colloidal aggregates formed from monodisperse
and polydisperse particles [12]. A contemporary simula-
tion found Dy = 1.78 + 0.03 with a similar lack of dif-
ference between monodisperse and polydisperse particles
[85]. Later computational work found that the fractal
dimension monotonically decreases with increasing poly-
dispersity for two common algorithms, Diffusion Limited
Cluster Aggregation (DLCA) and Diffusion Limited Ag-
gregation (DLA) [92, 94]. Eggersdorfer & Pratsinis [92]
argue that by only testing Gaussian distributions with a
maximum geometric standard deviation of g4, = 1.5,
these earlier works (Refs. [12, 85]) failed to probe a large
enough polydispersity to notice the effect. Our geomet-
ric standard deviation is ¢ = 1.41, so not in the ex-
treme polydispersity limit considered by Ref. [92]. The
fractal dimensions measured by Eggersdorfer & Pratsi-
nis range from 2.25 to 1.48 as o increases from 1.0 to
3.0, with the details also dependent on the algorithm
(DLCA or DLA). Using DLCA and o = 1.0 recovered
Dy = 1.79 £ 0.03 in agreement with Ref. [85], which
drops slightly to Dy = 1.77 £ 0.03 for ¢ = 1.45. Our
Dy = 2.5 is significantly larger.

We believe that the likely reason for our higher frac-
tal dimension is that our colloidal particles, while at-
tracted to each other, still have the possibility of rear-
ranging. Our reasoning stems from experimental work
by Liu et al. which showed the influence of the inter-
particle attraction strength on the fractal dimension of
colloidal gold aggregates [14]. In their study, they con-
trolled the attraction strength by varying the concentra-
tion of added surfactant. At low to moderate surfactant
concentration, surfactants reduce the electrostatic repul-
sion between the gold particles by coating their surface
and adsorbing residual surface charges, thus increasing
the interparticle attraction energy in proportion to the
concentration of added surfactant. At a low surfactant
concentration/low attraction energy, they were able to
produce dense colloidal aggregates with Dy = 2.7. With
the addition of extra surfactant /raising the attraction en-
ergy, they showed that the aggregates open into sparser
structures with Dy = 1.7 [14]. This phenomenon of low
energy/dense aggregates is likely due to the inability of
single particle bonds to sequester particles into a gel,
thus allowing colloids to perform a constrained diffusion
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FIG. 3. Graph of box counting method to estimate Dy for one
image stack of a gel at ¢ ~ 0.15. To simplify the calculation of
Dy, the aspect ratio of the voxel is made uniform. The slope of
inverse box size (s) against the number of boxes with a bright
voxel (N(s)) gives the fractal dimension of the aggregate. The
dotted black line fits to the equation N(s) = s~ where
Dy = 2.43. We repeat this measurement for three other image
stacks and report a mean value of Dy = 2.5+ 0.1.

along the surface of its neighbor until they settle into a
more rigid conformation with more bonds [24, 32, 33, 91].
This secondary, post-sticking diffusion has been studied
in Meakin & Julien where the authors show that restruc-
turing can carry an aggregate from D; = 1.8 all the way
to Dy = 2.2 [81]. We believe this restructuring likely
occurs in our colloidal gel structures before observation,
allowing our fractal dimension to rise to the observed
Dy =25+0.1.

B. Contact network

The contact number Z is an important metric for char-
acterizing a gel network, as it gives direct insight into the
connectivity of the microstructure. Whereas the fractal
dimension characterizes the gel over a range of length
scales larger than the particle size, the contact number
is a local measure at the particle scale, thus providing
complementary information. For monodisperse particles
the contact number will depend on the strength of the at-
tractive forces and the overall volume fraction, but is geo-
metrically restricted to 12 contacts. Dilute samples with
low attractive energy might just have occasional dimers
or trimers and the mean contact number could be less
than 1. High volume fraction samples such as attrac-
tive colloidal glasses [95-97] could have contact numbers
approaching 10-12. One early study used confocal mi-
croscopy to measure contact numbers for a monodisperse
colloidal gel, finding Z ranged between 2.7 < (Z) < 4.0
depending on the strength of attraction [18]. Later work
found wider ranges of contact numbers, depending on the

~
=%

—
\

100

<>

10

—
<

g

—_
(=)
>

1/[KZ(R) R

2
T T T T

[Zy R
C

FIG. 4. (a) The average contact number (Z) as a function
of the radius of the particle R. The volume fraction ¢ in-
creases monotonically from bottom to top as labeled. The
dashed black curve represents data gathered from RCP sim-
ulation which pack at ¢rcp = 0.67. (b) The data from (a) is
replotted as [(Z)R?]/[(Z(R)R?], using the mean particle size
R =2.69 pm. This normalizes the data by the contact num-
ber corresponding to R, as well as dividing by R? to remove
the influence of the surface area of each particle. For both (a)
and (b), the dotted lines follow a power law with slopes « as
indicated.

details of the particle interaction [21, 24, 28, 38, 98, 99].
Computational and experimental work has revealed the
role of structural evolution in the mechanical properties
of colloidal gels [28, 29, 32, 36, 100-103]. Many different
features of the coarsening process have been highlighted
(e.g. relaxation differences between colloids at the sur-
face of a strand vs. in the bulk of a strand; hierarchical
assembly of various structural motifs; contact stiffening
of solid-solid bonds), but the end effect on the aggregate
is similar: a moderate compaction of the contact network
with an increase in the average contact number as the gel
evolves.

For polydisperse gels, the theoretical maximum of con-
tacts is highly dependent on the shape of the particle size
distribution in addition to these other factors. In partic-
ular, the “granocentric” model developed by Clusel et
al. establishes analytic relationships between particular
size distributions and expectation values for the number
of contacts [104, 105], but only for the high ¢ regime of
random close packing.



In Fig. 4, we plot the average number of contacts
(Z) for a particle of radius R; the different curves in-
dicate different volume fractions ¢. Contacts are defined
as particles whose separation d is less than or equal to
r1+79 4207, where ér = 0.2 um is the uncertainty in the
radius as determined by particle tracking; this is also a
distance where the van der Waals interaction decreases to
less than kT, as described previously. Several qualita-
tive observations are straightforward. First, larger parti-
cles have more contacts; a result in line with their greater
surface area. Second, at low volume fractions, particles
still form contacts; a feature indicative of a colloidal gel.
Even for the smallest particles and the smallest volume
fraction, (Z) > 1. Third, at higher volume fractions,
particles have more contacts, an unsurprising result [37].

As seen in Fig. 4, the relation between (Z) and R ap-
pears to grow slightly faster than a power law. The curva-
ture also appears to increase as a function of ¢. We note
that there is no reason to expect a power-law relation
or any other particular relation, given that our particle
size distribution does not have a simple analytic form
(see Fig. 2). To better understand the relation between
(Z) and R, we examine simulated random close packing
(RCP) structures based on our measured particle size dis-
tribution given by Fig. 2. We use the simulation methods
described in Desmond & Weeks [106] as modified in Meer
& Weeks [107] to generate close packed configurations
with 800 to 3200 particles, finding ¢rcp = 0.67540.004.
In Fig. 4, we add the computational results as the top
black dashed line. Our experimental data for highest ¢
mimic the shape of this curve but with lower values.

To partially collapse the data, we divide the contact
number by the number of contacts at the mean radius
R = 2.7 and replot the data in Fig. 4(b), confirming the
agreement between the R dependence of the high ¢ ex-
perimental data and the RCP data. We additionally have
normalized the data by multiplying by R?/R? to remove
the surface area dependence. The corresponding decrease
shows that while larger particles have more neighbors,
the number of neighbors is fewer than would be expected
if the surface area were the sole determining factor. In
Fig. 4(b), the lower ¢ experimental curves deviate for
large R from the RCP data, showing that the largest
particles have fewer contacts than might be expected in
these low volume fraction colloidal gels. Nonetheless,
the qualitative agreement between the experimental and
computational data is intriguing given that the computa-
tional results treat the particles as purely repulsive hard
spheres, and do not have any physical dynamics or at-
tractive interactions considered. This strongly suggests
that the experimental particles pair up randomly.

We do one additional test to verify that particles pair
up randomly. Figure 5 shows the probability distribu-
tion of contact particle sizes, conditional on the size
of the particle. The curves are for contacts of small
particles (3 < R < 5um), contacts of large particles
(10 < R < 18pm), and all contacts. That is, for “all con-
tacts,” we list all particle pairs, extract their radii, and
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FIG. 5. Histograms of the particle size distribution given that
it is neighbors with a particle of size 3.0 < R < 5.0 um (green)
and 10.0 < R < 18.0 um (pink) for the experimental data.
The blue distribution is the “contact former” distribution,
i.e., the list of particle sizes that form contacts.

take a histogram of the data. A particle with Z contacts
will have its radius listed Z times. The data of Fig. 5
show that small and large particles have nearly equiva-
lent probability distributions for the size of their contacts.
The distribution for the largest particles (pink curve) is
shifted slightly to the left: the mean size of neighbors for
small particles is 3.0 & 1.2 um, and for large particles it
is 2.5+ 0.9 um (mean =+ standard deviation. Large par-
ticles are slightly more likely to have smaller neighbors,
and vice versa for small particles, but the difference is
not dramatic.

C. Tetrahedral structure

Our final structural characterization is an examina-
tion of tetrahedral particle configurations, to comple-
ment the fractal dimension (large scale) and coordination
number (single particle). Tetrahedral structure examines
how four particles are mutually neighbors, and relates
to local rigidity. The onset of an elastic response well
below the isostatic percolation determined by Maxwell
counting is a peculiarity of colloidal gels [108-111]. Mi-
crostructurally, it has been shown that for some gels, the
dynamical arrest brought on by gelation and the subse-
quent elasticity of the gel correspond to the formation of
rigid tetrahedral structures that percolate as the gel ages
[27, 29, 38, 112, 113]. The concept is that four particles
that are mutually nearest neighbors form a tetrahedron,
and this structure cannot be flexed without breaking a
contact [36, 37]. If the contacts are fairly strong (com-
pared to kgT), this imparts rigidity to the local structure
[109]. If there is a percolation of such tetrahedral struc-
tures, the gel will be macroscopically rigid. To be pre-
cise, in Ref. [29] Tsurusawa & Tanaka cite the pentagonal
bipyramid, not strictly the tetrahedron, as the percolat-
ing, rigidity enhancing structure. They do so because
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FIG. 6. (a) A 3D rendered image of a colloidal gel. Particles
in dark red are engaged in a tetrahedron with the shading
determined by particle size, and the lighter yellow particles
are other particles in the gel. The width of the image is
138 pm and ¢ = 0.27. (b-c) 3D rendered tetrahedra from our
sample. In (b), the largest particle has a radius R = 9.1 ym
and the asymmetry parameter for this tetrahedron is 7 =
1.42. In (c), the largest particle has a radius R = 3.6 ym, and
7 = 1.51, indicating a slightly more symmetric tetrahedron
than the one shown in (b).

the pentagonal bipyramid has a five-fold symmetry that
prevents crystallization, thus offering a route to under-
standing rigidity outside the traditional notions of local
glassy patches or crystallization (the icosahedron has also
been suggested for its similar five-fold symmetry). For a
detailed explanation of crystalline frustration in colloidal
gels, see Royall et al. [27].

For our polydisperse gels, where crystallization is im-
possible, the tetrahedron is a simple and useful struc-
ture that can lead to rigidity. Indeed, our colloidal gels
have tetrahedral clusters of particles. Figure 6(a) shows
a 3-dimensional rendering of one sample, with identi-
fied tetrahedra colored in red. As shown in Fig. 6(b,c),
a tetrahedron occurs when four particles are simultane-
ously in contact with each other, meaning that tetrahedra
can be identified by looking for sets of common entries
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FIG. 7. (a-d): Images showing a highlighted particle which,
over 250 s, moves from a position where it touches two other
particles, into a more stable position where it touches three
other particles. The scale bar indicates 5 pum, and the high-
lighted particle is R = 1.1 pym in radius. The sample was
photobleaching during the observation, so the contrast was
adjusted by hand during acquisition of this movie. Thus (d)
is slightly noisier despite also being slightly brighter. (e) The
y coordinate of the highlighted particle as a function of time,
with the points corresponding to panels (a-d) as indicated.

in the contact array.

The probability of a particle being found in at least
one tetrahedron is shown by the lower curve in Fig. 8(a),
and the number of tetrahedra the average particle par-
ticipates in is shown by the upper curve. Unsurpris-
ingly, both rise with larger volume fraction, although in-
triguingly even at small volume fraction tetrahedra are
present. Note that the data shown in Fig. 8 are based
on particles within the imaging volume; it is likely that



the results are a slight underestimate, as particles may
be part of tetrahedra that extend outside the imaging
volume.

The existence of tetrahedral structures implies that
particles have some ability to rearrange even after ini-
tially sticking together. If particles that initially touch
form an irreversible bond preventing rearrangements,
then many particles would only have one or two near-
est neighbors. On the other hand, if the bond energy is
not too large (a few kgT) then particles with one near-
est neighbor would have some ability to detach and reat-
tach. The implication is that the more neighbors a par-
ticle is bonded to, the more stable its position would be
[27, 32, 33, 91]. This would be equally true if a parti-
cle can “roll” or “slide” while remaining attached to its
neighbor. Indeed, the London-van der Waals attraction
is a central force, so there is no bond rigidity. A particle
touching one other particle can roll and/or slide freely
on its surface; a particle touching two other particles can
roll and/or slide in the groove formed by its two neigh-
bors. Only a particle touching three other particles is
fully constrained from moving — and if those three other
particles are also mutually nearest neighbors, they have
formed a tetrahedron. Thus, the existence of tetrahe-
dral structures in our gels, indeed a fair number of those
structures, suggests that our particles are able to rear-
range somewhat as the gel forms (as we had previously
suggested in Sec. IITA). A two-dimensional movie taken
at an early stage of gel formation (within 30 minutes af-
ter stirring the sample) has these sorts of rearrangement
events, one of which is pictured in Fig. 7. In this example,
the highlighted particle moves from a position where it
touches two neighbors into a more stable location where
it touches three neighbors, upon which it ceases motion.
Note that during the period from (b) to (c), the particle
is much more mobile, as indicated by the fluctuations in
the y position shown in Fig. 7(e). We have observed other
particles moving on the surface of a particle to which they
are bonded.

There is additionally a particle size dependence for the
tetrahedra. To illustrate this, in Fig. 8(b,c) we plot the
number of tetrahedra Niet(R) and probability of being
in a tetrahedron Pt (R) as a function of particle radius
(considering only the data for which ¢ > 0.35). Both rise
dramatically with particle radius. As Fig. 4(a) shows,
large particles have more contacting neighbors. More
neighbors gives more chances that those neighbors are
themselves mutually in contact, forming a tetrahedron.
Although Fig. 8(b) shows a power law relation, as noted
before for the contact number relation shown in Fig. 4,
there is no particular reason to expect a power law rela-
tion for these data.

It is perhaps surprising that small particles (R < 2 pm)
have any chance of being in a tetrahedron, given that
Fig. 4(a) shows they have Z = 1 — 2 neighbors on av-
erage. However, the mean values shown in Fig. 4(a) do
not reflect the outliers. Figure 9 shows the probability
of particles with radius R to have at least three neigh-
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FIG. 8. (a) The probability Piet(¢) that a particle is in a
tetrahedron as a function of volume fraction ¢, and also the
number Niet of tetrahedra on average that a particle partici-
pates in. At low ¢, Piet ~ Niet, suggesting that if a particle is
in a tetrahedron, it is unlikely to also be in a second tetrahe-
dron. The separation of the two curves at higher ¢ shows that
more particles participate in multiple tetrahedra. (b) Niet(R)
as a function of particle radius R averaged over samples with
¢ > 0.35. The plot has logarithmic axes and the dashed line
indicates power-law growth with an exponent o = 1.4. (c)
Piet(R) as a function of R for the same data as (b).

bors, which is about 10-30% depending on the volume
fraction. Thus, these outlier particles have some chance
to be in tetrahedra. As expected, Fig. 9 shows that the
largest particles are much more likely to have at least
three neighbors.

In Fig. 10, we show an example with a central (black)
particle which has ten particles in contact with it; the
particle and its ten neighbors form nine tetrahedra. This
lends credibility to the physical idea of particles which
land on the surface of the black particle and then can
move until they contact other particles also on the sur-
face, forming multiple contacts that are then more stable.
The neighboring particles of the central black particle
have in a sense formed a two-dimensional aggregate on
the surface of the black particle.

We wish to understand the geometric constraints that
may be acting in colloidal gel formation with our highly
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FIG. 9. The probability of a particle of radius R to have a
contact number Z > 3, that is, to have at least three neigh-
bors. Different curves are from different volume fractions as
indicated.

(a) (b)

FIG. 10. Two views of the same central particle (black, R =
4.66 pm) that is part of 9 different tetrahedra and in contact
with 10 particles. The particles are made slightly transparent
for clarity. The large magenta particle has R = 4.98 um,
in the front of (a) and back of (b). The smallest dark blue
particle has R = 2.2 pm, barely visible in the top back in (a),
and in the bottom front in (b).

polydisperse particles. Any four monodisperse spheres
are guaranteed the possibility of forming a tetrahedron.
Unlike monodisperse particles, this guarantee no longer
holds for polydisperse particles. We consider the ques-
tion: given four random spheres of radii {ry,ro,r3,74},
what are the conditions on these radii such that they
can form a tetrahedron? A general tetrahedron is made
of four triangular faces with six edges. Geometrically,
for each face, the three edges must satisfy a triangle
inequality. In addition, all four triangles must form a
closed tetrahedron. This latter condition can be tested
by taking the volume of the tetrahedron via the Cayley-
Menger determinant (a matrix whose elements are the
edge lengths of the tetrahedron). If positive, the edge
lengths can form a valid tetrahedron [114]. The combina-
tion of the four triangle inequalities (triangle condition)
and the Cayley-Menger determinant (closure condition)
produces a “tetrahedral inequality”. This inequality is,

however, an inequality acting on six independent edge
lengths. For a tetrahedron made of spheres with radii
{r1,7r2,73,74}, the edges of the triangles are composed of
the sum of the combinations of radii, meaning that a 4-
sphere tetrahedron has 4 degrees of freedom rather than
6.

Considering the case of four spheres, we first consider
the triangle inequality generated by three spheres. The
centers of any three spheres form a plane, so really this
is the problem of three circles lying in a plane that mu-
tually touch. For all positive, real numbers any three
combinations of circles produce a valid triangle. That
is, given three triangle edges a = r1 + 13, b = r9 + 13,
and ¢ = ry + rs, the three triangle inequalities reduce to
ry > 0,79 > 0 ,and r3 > 0. Therefore, a 4-sphere tetrahe-
dron always satisfies the triangle condition for each of its
faces; thus the tetrahedral inequality reduces to the clo-
sure condition. Furthermore, by taking the determinant
of the Cayley-Menger matrix with the six edge lengths
generated from the four sphere radii, the closure con-
dition reduces to a well known problem in mathematics
known as the Interior Soddy Circle problem. That is, any
three spheres can be positioned to touch; the important
question is whether a fourth sphere can be added to that
triangle such that it contacts all three spheres simulta-
neously. Thus, our initial tetrahedral inequality question
reduces again, this time to a two-dimensional problem
whose solution was first discovered by Rene Descartes
and popularised by Frederick Soddy. (The result was so
beautiful that it drove Soddy to publish the poem “The
Kiss Precise” in Nature [115]). The result shows that the
smallest the radius of the 4th particle can be before it no
longer forms contacts is given by:
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rs is a “Soddy radius” below which the addition of the
fourth particle would fail to yield a tetrahedron: that is,
small spheres are the ones that will fail to touch larger
spheres. This is the lower bound on the small sphere
radius; there is no upper bound, and any sphere with
a radius larger than rg is able to touch the three other
spheres. If we consider the case r;{ = ro = r3 to be three
large particles, Eq. 3 states that the range of particle
sizes at which this restriction becomes relevant for de-
termining possible tetrahedra is when the radius of the
largest particles 3 + 2v/3 ~ 6.7 times the radius of the
smallest particles. Prior work has studied the affinities
between the Soddy circle problem and questions about 4-
ball tetrahedral structures [116], but, to our knowledge,
the route to the Soddy inequality through the Cayley-
Menger determinant has not yet been reported.

For our particular sample, the tetrahedral inequality,
reduced to Eq. 3, barely restricts the structure of the col-
loidal gel. By randomly sampling our radius distribution,
we find that the probability of crafting an invalid tetrahe-
dron given four random radii is P2 ~ 1079; a value



which is commensurate with the probability of choosing
three particles of radii > 8um. That is, given that our
size distribution (Fig. 2) has many small particles and
few large particles, it is extremely rare that we would
ever have three large particles mutually contacting each
other, such that a small fourth particle would be unable
to touch the three large particles. We note that for a col-
loidal gel composed of a polydisperse sample where P(R)
has a more negative skew, such that the large particles are
common and the small particles are rare, would be more
subject to the Soddy radius constraint. For example,
if one draws four particles at random from a bidisperse
distribution with sizes R, = 1, R, = 7 and probabilities
pa = 1/4,pp = 3/4, then 42.2% of the time the four par-
ticles would fail the Soddy radius inequality, and thus
forming tetrahedra would be strongly influenced by this
geometric constraint.

Despite the rareness of the geometric constraint ap-
plying in our sample, nonetheless the large particles play
an interesting role in the formation of tetrahedra. To
characterize this, in Fig. 11(a), we plot the size distri-
bution of all particles, particles that are neighbors, and
particles that are in tetrahedra. The size distributions
are different because particles can be repeated if they
have multiple neighbors, or are parts of multiple tetra-
hedra. The curve with the highest probability in the tail
for large R (blue) is the one corresponding to all par-
ticles found in tetrahedra. Thus, while large particles
are rare in our samples, Fig. 11(a) shows they have an
out-sized presence in the formation of tetrahedra rela-
tive to their presence in the sample. This is consistent
with Fig. 4 which shows large particles have more neigh-
bors in general, so a larger possibility of participating in
tetrahedra. In Fig. 11(a) the middle (violet) curve rep-
resents P(R) for all contacting particles, which is quite
similar to the P(R) for contacting particles which are in
tetrahedra, although nonetheless the tetrahedral parti-
cles have slightly more participation from the large par-
ticles. Notably, both these curves are distinct from the
bottom green curve which shows P(R) for all particles.
This observation of the relative prevalence of large par-
ticles in tetrahedra may help understand Cantor et al.’s
computational observation that large particles help form
a stress-resistant backbone [117].

Finally, we consider the shapes of the tetrahedra
formed in our highly polydisperse sample. For each tri-
angle in a tetrahedron, consider the edge lengths a, b,
and ¢, with ¢ being the longest. We define the parameter
T = (a+b)/c. Given that ¢ > a and ¢ > b, and the tri-
angle inequality requires ¢ > a + b, then 7 is bounded by
1 <7 <2, 7 =2 corresponds to a completely monodis-
perse triangle, and increasing polydispersity within the
triangle leads to 7 — 1. Thus, each tetrahedron is com-
posed of four 7, which we then take the minimum of
(to identify the least symmetric triangle) to assign each
particular tetrahedron an asymmetry parameter 7. The
distribution of 7 is shown in Fig. 11(b) as the noisy black
curve. The minimum at 7 = 2 reflects the rarity of find-
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FIG. 11. (a) Probability distributions of the radius distribu-
tion (green), the tetrahedron distribution (light blue), and the
theoretical distribution of tetrehedra generated by randomly
sampling the neighbor distribution and checking via Eq. 3 for
validity (purple). The contact and tetrahedron distributions
are different from the radius distribution because they are al-
lowed to contain repeated entries if a particle has multiple
contacts or is a part of multiple tetrahedra. (b) Probability
distribution of the asymmetry of tetrahedra, 7. The rough
black curve represents the experimentally measured tetrahe-
dra, and the purple and orange curves represent tetrahedra
formed by randomly sampling the radius distribution or the
contact radius distribution respectively.

ing four particles of close to the same size to form a tetra-
hedra. The thin solid violet curve is a null hypothesis for
P(7) constructed by randomly sampling four particles
from P(R) and forming a tetrahedron. The experimental
data clearly have more asymmetric tetrahedra than the
null hypothesis curve. The over-representation of large
particles in Fig. 11(a) subsequently produces more asym-
metric tetrahedra as shown by the low 7 tail in Fig. 11(b).
We can correct for this over-representation by generating
tetrehedra from the contact radius list, which includes re-
peats if particles form multiple contacts. In Fig. 11(b),
we show this result in the thin light orange curve which
fits the experimental curve well at low 7.



IV. CONCLUSION

We have studied the structure of colloidal gels com-
posed of particles that span more than a decade in radii.
Larger particles have more particles attached to them as
compared to smaller particles. This finding is reason-
able given that the larger particles have a larger surface
area; although we observe that the number of neighbors
scales as R°.7 and not R?. All potential particle pairs
between particles of radii (R, R2) occur with a proba-
bility essentially proportional to P(R;)P(R2) in terms of
the sample’s particle size distribution P(R). Given that
the large particles are rare, this means that it is rare to
see two large particles stuck together, but not impossi-
ble. This could be controlled by changing the underlying
particle size distribution to favor larger particles.

When two particles stick together, the contact is suffi-
ciently “loose” that they have some ability to rearrange.
This results in the formation of tetrahedral structures
within the colloidal gel, where four particles are mutu-
ally touching, resulting in a much more stable configu-
ration that is much harder to rearrange [27, 32]. Given
that large particles have more nearest neighbors, a con-
sequence is that large particles participate in tetrahedra
more than might otherwise be expected, and thus large
particles frequently serve as rigid points of the gel.

Our observations are for our specific particle size dis-
tribution shown in Fig. 2 where large particles are rare.
In our samples, large particles are more frequently asso-
ciated with tetrahedral structures, and this result should
be general. In any colloidal gel, large particles will have
the ability to have more nearest neighbors than smaller
particles, and thus a large particle will have an increased
chance that some of those nearest neighbors form a tetra-
hedron with the large particle. However, we note that
for a particle size distribution where the largest particles
occur more frequently, we will have the Soddy radius re-
striction as a geometric constraint preventing some sets
of four particles from being able to form a tetrahedron.
Those colloidal gels will, in some sense, be “less random”
due to this geometric constraint. This geometric con-
straint arises when the size ratio between largest and
smallest particles is at least ~ 6.7.

Another potential difference between our highly poly-
disperse gels and other colloidal gel systems relates to the
rearrangements we believe occur in our gels that create
tetrahedral structure. In a colloidal gel with stronger at-
tractive energies (such that kpT is insufficient to break a
bond) and an inability for particles to roll or slide against
each other, it seems likely the average contact number
would be smaller and tetrahedral structures scarce. We
would also expect that preventing internal rearrange-
ments within the gel would decrease the fractal dimension
from our observed value of 2.5+ 0.1 [14]. For example, a
colloidal gel composed of faceted particles that could not
roll against each other found the fractal dimension was
1.8 to 1.9 depending on conditions [99].

A final difference to note is that many prior experi-
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mental studies used the depletion force to form the col-
loidal gel [2, 6, 18, 20, 21, 25-27, 52, 98-100, 118]. The
depletion force arises by adding small polymers to the
colloidal sample [119, 120]: the exclusion of polymers
from between particles results in an unbalanced osmotic
pressure, pushing the particles together [121]. The de-
pletion force is primarily controlled by the polymer con-
centration, but additionally it depends on the particle
size. The larger the particles are, the larger the force
[119]. For example, the attraction energy of a small par-
ticle to a much larger particle is twice that of two small
particles sticking together [122, 123]. Intriguingly, this
same factor of two is true for any short-ranged interac-
tion potential, as shown by the Derjaguin approximation
[67]; it is true for our experimental attractive van der
Waals force. The size dependence of our attractive force
(Eqn. 1) could be biasing the formation of our colloidal
gels. On the other hand, given that the energy of attrac-
tion is much larger than kgT, the size dependence of the
van der Waals strength may be irrelevant, in contrast to
depletion forces which are more typically O(kpT).

FIG. 12. Three different global thresholds applied to the same
image in the top left. The threshold increases from top right
to bottom right. The image in the top left is a ~ 300x 300 zm?
2-dimensional slice of a larger 712 x 712 x 105 um® volume
used for the determination of Dy. From top right to bottom
right, Dy ranges from Dy = 2.61 to 2.45. The bottom left
image is the threshold level used for our particle detection.
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V. APPENDIX

An artifact of using the box-counting fractal dimension
algorithm on real space fluorescence microscopy images is
the smooth, monotonic dependence of D on the chosen
threshold. Our initial estimate for a reasonable threshold
is given by the same threshold used for particle detection.
Our error is determined by tuning the threshold above
and below this value until we see either the erosion of in-
focus colloids or the erasure of network detail typical of
under-thresholding. We show a representative example
of this process in Fig. 12.
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