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Glass transition of two-dimensional binary soft-disk mixtures with large size ratios
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We simulate binary soft-disk systems in two dimensions and investigate how the dynamics slow as the area
fraction is increased toward the glass transition. The “fragility” quantifies how sensitively the relaxation time
scale depends on the area fraction, and the fragility strongly depends on the composition of the mixture. We
confirm prior results for mixtures of particles with similar sizes, where the ability to form small crystalline
regions correlates with fragility. However, for mixtures with particle size ratios above 1.4, we find that the
fragility is not correlated with structural ordering, but rather with the spatial distribution of large particles. The
large particles have slower motion than the small particles and act as confining “walls” which slow the motion
of nearby small particles. The rearrangement of these confining structures governs the lifetime of dynamical
heterogeneity, that is, how long local regions exhibit anomalously fast or slow behavior. The strength of the
confinement effect is correlated with the fragility and also influences the aging behavior of glassy systems.
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I. INTRODUCTION

Many liquids can form glasses if they are cooled rapidly,
and glassy materials have technological applications such as
optical fibers and plastics [1-5]. The origin of the glass tran-
sition is still unclear, despite the scientific and technological
interests. Much work has examined the dynamical properties
of materials near the glass transition. Those studies revealed
several important features of supercooled liquids and glasses.
For example, upon approaching the glass transition, the
structural relaxation time (7,) increases by several orders of
magnitude without a corresponding growing static correla-
tion length [6,7]. The rate of this increase in 7, is called
fragility and depends on the material [1-5]. For fragile glass
formers, 7, steeply increases for a small decrease in tempera-
ture, while for “strong” glass formers, the increase in 7,
requires a larger decrease in temperature. The relaxation time
is related to the viscosity, and thus the fragility is an impor-
tant factor in the ease of processing glass-forming materials.
Typically it is desirable to mold a glass-forming material
with the viscosity held within a certain range; for fragile
materials, this may correspond to a restrictively narrow range
of temperature.

Another common observation of materials close to the
glass transition is that they often have a broad distribution of
local mobility: some regions in a sample relax much faster
than other regions. Eventually, molecules in those regions
exchange their dynamics, that is, fast regions become slow,
and vice versa. This is termed “dynamical heterogeneity”
[8—14]. It is known that the characteristic lifetime of these
dynamically heterogeneous regions 7y is longer than 7,,
and the strong divergence of 7py near a glass transition tem-
perature suggests that heterogeneous dynamics are relevant
for understanding the glass transition [4].

A third common feature of materials in the glassy state is
that their properties evolve with time, such as the diffusivity
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of molecules or dielectric susceptibility. This phenomenon is
termed “aging” [15-20]. Despite the changing properties, no
clear structural changes have been seen; this can be true even
if, for example, diffusivity slows by several orders of mag-
nitude [19,20].

While all of these properties have been known for some
time and carefully characterized by experiments, the origins
of many of them are unclear. To understand the origins, nu-
merical simulations with simple intermolecular interactions
are used to study factors controlling the dynamics. These
model systems are useful as clear understanding is hindered
by the complexity of real materials [21-25]. For the fragility,
some simulations show that liquids become less fragile when
the polydispersity increases (or a larger size ratio for binary
mixtures is used) [22-24]. This has been explained as due to
ordering of the sample, which becomes frustrated in polydis-
perse samples. For example, in two-dimensional (2D) sys-
tems, small regions with hexagonal order can form, which
correspond to slower dynamics (larger values of 7,), and thus
increasing the polydispersity frustrates formation of these or-
dered regions and diminishes the fragility [22]. Furthermore,
it is reported that particle mobility in those ordered regions is
slower than that in randomly structured regions, and it sug-
gests that dynamical heterogeneity is also influenced by local
structure [22,25-33].

Those simulations used the polydispersity as a small per-
turbation frustrating the ordering, that is, with either a small
polydispersity or a binary system with the particle size ratio
close to 1. However, dynamics in those situations are quite
different from highly polydisperse samples. Binary mixtures
have two control parameters: the size ratio and the volume
fraction ratio of the two components. These lead to complex
phase diagrams [34,35] and potentially emergent dynamical
properties such as an effective depletion interaction between
the large particles in binary hard-sphere systems [36,37]. Our
interest is in dense amorphous phases at intermediate size
ratios.

In this paper, we simulate the dynamics of binary soft-
disk mixture systems with large size ratios and find that the
glass transition in large size ratio binary systems can be quite
different from that of systems with smaller size differences.
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We study the fragility of binary soft-disk mixtures with vari-
ous size ratios and area fraction ratios. Local ordering is less
significant for large size ratio systems. Instead, we see a
molecular crowding effect from the large particles [38,39].
Our data suggest that the large particles act as confining
walls for the smaller particles, and that confinement effects
increase the fragility of such systems by suppressing dy-
namical heterogeneity. We also investigate aging in large size
ratio systems, and again seen an influence of confinement
effects due to the large particles. Overall, our results suggest
that confinement effects are crucial to describing the dynam-
ics of the glass transition in binary mixtures with large size
ratios between the two components.

II. METHOD

We perform two-dimensional Brownian dynamics simula-
tions for binary mixtures composed of large (L) and small
(S) soft particles. These simulations are meant to mimic the
colloidal glass transition. For the colloidal glass transition,
the key control parameter is the volume fraction [7,11,40],
and so in our simulations the chief control parameter is the
area fraction ¢. The results of Brownian dynamics simula-
tions are similar to those of molecular-dynamics simulations
in dense systems [22,24,41-43]. The particles interact via the
purely repulsive Weeks-Chandler-Andersen potential [44]:
U;j=4¢€(0;/r)?=(0;;/r)0+1/4] for r<2Y%g; otherwise,
U;j=0, where o;;=(0,+0,)/2 and i,j e {L,S}. We fix kzT/ e
=0.04, so the total area fraction ¢ is our control parameter to
approach the glass transition. The mass ratio is m;/mg
=(0;/0¢)* and the length is normalized by o The total
number of particles is N=N; +Ng=1024 (or 4096), where N,
and Ny are the numbers of large and small species, respec-
tively. We generate initial conditions by simulating at ¢
=0.10 for a long time and expanding the disk sizes to in-
crease ¢. We confirm that our results do not show initial
condition dependence, and our results are also independent
on time below ¢=0.66, that is, there is no aging observed.
Thus, we consider that our binary systems are well mixed
and ergodic for ¢<<0.66.

For certain area fractions for a 2D monodisperse sample,
the hexatic order phase can be found, which has orientational
order but no long-range positional order [45]. For binary
samples with large size ratios, there is apparently little order-
ing of either type, while for size ratios close to 1, hexatic
phases are still subtle to verify. Hence, we calculate an ori-
entation pair-correlation function g¢(R)/g(R), where R is a
normalized distance from a particle. g4(R)/g(R) decays with
the power of R~ in a hexatic phase for a monodisperse
sample [45]. Thus, we classify our samples as liquid (or
glassy) when the power of the decay is faster than R~"* (Fig.
1). We find no hexatic phases for any area fractions ¢ for
systems with size ratios o;/0¢=1.2, 1.25, 1.5, 1.75, 2, 2.5,
and 3 and area fraction ratios ¢;/ ¢S=NLO%/NSO'2=O.5, 0.75,
1, 1.5, and 2; these states are indicated by the circles in Fig.
2(a). We confirm that the decay rates of gs(R)/g(R) in those
simulation conditions are quicker than R4, and thus we are
studying liquids (or glasses at higher ¢). We note that it is
known that several crystalline structures exist in three-
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FIG. 1. (Color online) The orientation pair correlation as a func-
tion of distance. The straight line corresponds to R~"*, the behavior
expected for hexatic phases. A sample with size ratio o;/og=1.2
and area fraction ratio ¢,/ ¢g=0.5 at ¢=0.66 does not have hexatic
order since gg¢(R)/g(R) decays faster than the power of —1/4 (the
lower curve, marked “Glass”). In contrast, the upper curve (marked
“Hexatic”) shows the correlation for o;/og=1.15, ¢/ Pps=0.5, and
¢=0.66, which has long-range orientational ordering.

dimensional (3D) binary sphere suspensions [34,46]. In none
of our samples do we observe large hexagonally ordered
patches for our simulations, and the small patches that some-
times appear are transient. This is discussed further below.
When the size ratio is large, a depletion force should be
generated [36]. This has been studied before in dilute sus-
pensions of large and small spheres and manifests itself as an
effective attractive force between the large spheres [37]. We
cannot rule out the existence of the depletion force in our
simulations, which may affect the structure of the large par-
ticles, although at large area fractions the depletion force
may be less relevant. Indeed, we observe pairs of adjacent
large particles which are neighbors for long periods of time,
but these neighbors separate eventually (see movie S1 of the
supplementary material [47]), and in general all of the dy-
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FIG. 2. (Color online) The contour plot of (a) fragility index D,
(b) the growth rate of hexagonal order &)/ d¢p, (c) the growth rate
of dynamical correlation length 9¢/d¢, and (d) the dynamical cor-
relation around a large particle ® in a plane of (o;/ 0, ¢p/ ¢g). All
those figures except (a) are obtained at ¢=0.66. The shading in
each figure is darker when each value is small; thus, the darker
regions correspond to (a) fragile liquids, (b) slow growth of hex-
agonal order, (c) slow growth of dynamical correlation length, and
(d) minimal correlations of motion between a large particle and its
neighbors. The circles in (a) are the simulated points, and the spe-
cific states A—F are labeled.
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FIG. 3. (Color online) The area fraction ¢ dependence of (a) the
relaxation time 7,, (b) average hexagonal ordering (i), and (c) the
dynamic correlation length £ at states A-F indicated in Fig. 2(a).
The solid lines in (a) are fitting lines with the Vogel-Fulcher func-
tion at each state. Filled and open symbols correspond to fragile
liquids and less fragile liquids, respectively.

namics are slow in our glassy experiments. It is unclear if
depletion introduces still slower dynamics or if this is merely
part of the overall slow behavior. At least, we note that our
systems are quite different from gels with strong attractive
force.

II1. RESULTS
A. Fragility: Behavior as ¢ increases

We obtain the relaxation time 7, from the self-part of the
intermediate scattering function for all particles, which is
given by F(k,t)=ﬁ2j(exp ilg-[r*j(t)—Fj(O)]), where 7; is the
position vector of particle j, () indicates a time average, and
k is the wave vector. 7, is determined when F (ky,T)=11e,
where &, corresponds to the wave number of the first peak of
the structure factor. The ¢ dependence of 7, is well fitted by
Vogel-Fulcher function substituting ¢ for 1/7: 7,
=14 exp[ D/ (do— @)1, where D is the fragility index and ¢,
is the area fraction of the ideal glass transition [see Fig. 3(a)]
[3]. Fragile liquids have smaller values of D. For example,
D ~ 4 for triphenyl phosphite which is one of the most frag-
ile liquids, while for the less fragile liquid butyronitrile, D
~30 [48]. For our simulations, 0.4<D=<1.0, smaller than
the molecular liquids. The difference may be due to using the
density as the control parameter rather than temperature. For
comparison, we examined the data of Refs. [49,50] which
used light scattering to study the colloidal glass transition as
a function of volume fraction. From their data, we find D
=0.497+0.002. Another example is that the fragility index
of glycerol in an isothermal experiment is smaller than that
measured in an isobaric experiment [51]. We expect our ob-
served qualitative dependence of the fragility on the system
parameters to still be revealing.

It is worth noting that, for our data, we also compute the
value of D by calculating F(k,r) for only small particles (or
large particles), and we obtain almost the same values for D
and ¢,. We do not see separate glass transitions for the two
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particle species, which have been seen in simulations with
large size ratios and equal particle numbers (thus volume
fraction ratios ¢,/ ¢pg much larger than ours) [38,39]. In such
cases, the large particles do not seem to interact as directly
with the small particles but rather have their own glass tran-
sition, and then the small particles move in the interstices
between the large particles. In our simulations, the volume
fraction ratios are somewhat close to 1, and so the large
particles always ‘“see” the small particles and the « relax-
ation time scales for both particle species have similar ¢
dependence.

Figure 2(a) shows the contour plot of the fragility D in a
(01/ 05, ¢/ ¢s) plane. The circles indicate the states simu-
lated. This figure shows that the fragility is a nonmonotonic
function of the size ratio or the area fraction ratio. For
example, for ¢;/¢g=2.0, the fragility has values D
=1.05,0.82,0.45 for states A, C, and E, but then increases
slightly to 0.49 for the state to the right of state E. Likewise,
for ¢,/ ¢ps=0.5, the fragility behaves nonmonotonically with
increasing size ratio: D=0.64,0.48,0.77 for states B, D, and
F. Comparing states A and B, or states C and D, suggests that
increasing the number of large particles increases the fragil-
ity index D, but states E and F disprove this trend.

We find that fragile liquids (small D) have small ¢, the
area fraction where 7, appears to diverge. The relationship
between fragility and the divergence point of 7, is observed
at glass-forming liquids [52,53], and our results are consis-
tent with them. On the other hand, the existence of ¢, for
molecular liquids is still discussed and not well established
[54,55]. We are not sure what determines ¢, and why fragil-
ity is related to the divergence point. Below, we focus on
microscopic properties such as particle mobility and local
arrangement.

Prior work observed that two-dimensional systems can
form small hexagonally ordered regions, and the mobility of
particles is diminished within these regions. More fragile lig-
uids are observed to have large growth rates of the size of
these regions with respect to ¢ [22-24]. To check this we
study the ¢ dependence of hexagonal order for our samples.
We use the local hexatic order parameter described as
=(1/n_/-)|2”mleei69,m , where n; is the number of nearest neigh-
bors for particle j and &, is the angle of the relative vector
7,,—¥; with respect to the x axis. %:1 means that a hexago-
nal arrangement is formed around particle j, while ;=0
corresponds to a nonhexagonal arrangement. We then con-
sider (i), the time and particle average of zﬁé. We compare
the ¢ dependence of (i) with that of 7, [Figs. 3(a) and
3(b)]. Both particle sizes are similar at states A and B,
o7/ og=1.2, and here both 7, and (i) increase dramatically
as ¢ increases, suggesting they are indeed related as seen in
prior work. However, for states C and E, (i) stays nearly
constant with increasing ¢, while 7, grows rapidly. The sys-
tem slows without significant hexagonal ordering.

Next, we compare the fragility with the growth rate of
hexagonal ordering i)/ d¢p since fragility corresponds to
dlog 7,/ d¢. (We calculate all derivatives of a quantity X
with respect to ¢ as dX/dp=[X(p)—-X(Pp—Ad)]/ A, where
we choose Agp=0.01. In the results below, we compare the
behavior of the samples at a fixed ¢=0.66. However, our
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FIG. 4. (Color online) The fragility index D as a function of (a)
Ky dp and (b) 9&/dp at $=0.66. The triangles correspond to
systems where size ratio is close to 1 (o /0g<1.4), and the circles

correspond to large size ratios (>1.4). The lines are added as guides
to the eye.

results show similar trends when comparing samples at fixed
7,.) Figure 2(b) shows the contour plot of Kuy)/dp at ¢
=0.66 in a plane of (0;/ 0y, ¢/ Ps). The growth of hexago-
nal order is small at large o /og and ¢,/ dg (upper right
region). This behavior is expected since hexagonal ordering
should be frustrated with increasing o /o Figure 4(a)
shows D as a function of &)/ dp. We observe two distinct
behaviors. For similar particle size systems (o;/0g<1.4, tri-
angles), more fragile liquids (smaller D) have a larger depen-
dence of hexagonal order on ¢, in agreement with prior work
[22]. In contrast, large size ratio systems (o./o¢>1.4,
circles) show less correlation between the growth of hexago-
nal order and the fragility index.

Cooperative motion of groups of particles is a common
phenomenon as the glass transition is approached
[10-13,56,57], and this behavior is thought to be more com-
mon in fragile glasses. Figures 5(a) and 5(c) show snapshots
of the systems at ¢=0.66 at states B and E, where particles
are colored based on Ar?, and groups of highly mobile par-
ticles are seen (darker colors). To define displacements, here

Oe2tPR 0504

FIG. 5. (Color online) (a) and (b) are snapshots of the system at
state B, ¢p=0.66; (c) and (d) are at state E, ¢=0.66. The simulation
box is four times as large as those snapshots in each side. In (a) and
(c), particles are colored based on mobility Ar,z-, with darker colors
indicating more mobile particles. The darkest color corresponds to
Ar]2.=0.250'f_. The displacement time scale At is chosen to maximize
the non-Gaussian parameter, and is Ar=5X10* for (a) and 2
X 10* for (c). In (b) and (d), particles are colored based on the
hexagonal order parameter ng, with the darkest color corresponding
to %:O.S. The outlined regions are guides to the eye.
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FIG. 6. (Color online) 7, as a function of ¢ for our six repre-
sentative states. We find two trends of behaviors. One is an expo-
nential correlation for systems with size ratio close to 1 (A and B,
o7/ 0g=1.25), and the other is a faster divergence of 7, with & for
the systems with larger size ratios.

(and for the subsequent analysis in this work) we focus on
the time scale Ar* for which the non-Gaussian parameter is
the largest. The non-Gaussian parameter is defined as

(AP

=5 a1l

(1)

with displacements Ar measured over the lag time A¢, and
the factor of 1/2 is chosen so that «,=0 for a Gaussian dis-
tribution [58]. «, is larger when the tails of the distribution
become broad. Prior work identified the time scale A¢* that
maximizes «, as related to cage rearrangements [8,9,11]. In
our current work, we computed «, separately for the large
and small particles, finding similar values for Ar*. For our
analysis, we will use A¢* based on «, calculated for the small
particles, and our results are not sensitive to this choice.

Examining our data, we observe clusters with cooperative
motion in our systems, some of which are circled in Figs.
5(a) and 5(c). To look for the connection between the coop-
erative motion and fragility in our sample, we need to char-
acterize the cooperative motion. We compute a correlation
function described as S(R)=(AF;- A7)/ {|A/?), where R is the
distance between particles i and j, and AF; is the displace-
ment of particle i at Az=Ar* [56]. We find that S(R) shows
exponential decay with R, which was previously observed in
experiments [57] and simulations [56]. This exponential de-
cay yields a decay length & which we plot in Fig. 3(c) as a
function of ¢ for our six representative states. While all
samples have similar short-ranged cooperative motion at ¢
~(.60, we see a variety of behavior as the glass transition is
approached. Figure 6 shows the relationship between 7, and
&, and again we find two fairly distinct types of behavior.
When the size ratio is close to 1 (states A and B), 7, in-
creases exponentially with increasing & This is consistent
with systems with small polydispersity [22]. On the other
hand, 7, seems to diverge at finite ¢ for the large size ratio
systems (states C—F). It means that the dynamics slow with-
out increasing cooperative motion. Again, it suggests that the
dynamics of supercooled liquid in binary systems is strongly
sensitive to the size ratio.
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Figure 6 shows the clear distinction between large size
ratio systems, and close to monodisperse systems, but the
relationship between & and the fragility is not clear yet. So
we focus on the growth rate of & d&/d¢. This is sensible
since the fragility index D relates to the growth of 7, as ¢
increases. Figure 2(c) shows the contour plot of d&/d¢ in a
(o./0g, P/ Ps) plane. This plot has a rough qualitative simi-
larity to the fragility [Fig. 2(a)]. Figure 4(b) more directly
shows that D is related to d¢/d¢p, with distinct behaviors for
o7/0g<1.4 systems and o;/0g>1.4 systems. In o;/0y
< 1.4 (triangles), fragile liquids have larger increase in ¢
with respect to ¢, and it is natural that the increase in 7, is
related to this. This is also suggested by experimental studies
of colloidal suspensions [11,13,57]. In contrast, the opposite
relationship is seen for the large size ratio states [circles in
Fig. 4(b)]. The most fragile states (small D) correspond to
those where & grows least as the glass transition is ap-
proached. This unusual behavior seems to be a key result for
understanding the fragility of large size ratio binary mix-
tures.

To further understand the relation between ¢ and fragility
in large size ratio systems, we consider the dynamical differ-
ence between the two particle species. We compute the
mean-square displacement (Ar?) of large and small species
separately at a variety of states, and find that the large par-
ticles are always significantly slower than the small particles.
We next consider how the motion of small and large particles
is coupled. To quantify this, we compute the correlation be-
tween the directions of motion of a large particle and its
neighboring small particles as @=((1/n;)2cos 6;;), where j
indicates a large particle, i is the nearest-neighbor particle for
particle j, n; is the number of these neighbors, ¢;; is the angle
between A7; and A7, A7, is the displacement of particle j at
At=Ar", and the angular brackets indicate a time average and
an average over all large particles j. ®@=1 indicates that par-
ticles around a large particle move in the same direction as
the large particle on this time scale, while ®=0 means that
their movements are uncorrelated with the large particle. Fig-
ure 2(d) shows the contour plot of in the plane of
(op/0g, P! Ps). O ranges from 0.7 (upper left corner) to 0.4
(lower right corner). Cooperative motion decreases as the
size ratio increases and as the number of large particles de-
creases.

If large particles move slower and small particles move
independently of the large ones [the lighter-shaded region in
Fig. 2(d)], this suggests that the large particles act as slow-
moving walls within the large size ratio systems [38,39]. The
small particles are trapped in pores between the large par-
ticles [see Fig. 5(c)]. In confined geometries, 7, can dramati-
cally change compared to an unconfined system at the same
temperature and density [59—61]. Confined systems with free
surfaces typically have smaller values of 7,, while those with
rigid walls have larger values of 7, [62]. Our data suggest the
latter situation is relevant for our large size ratio systems,
that crowding due to the large particles slows the motion of
the small particles. This has been seen in prior work [38,39],
and here we examine this behavior in more detail.

Here, we suggest the fragility of large size ratio systems
may be connected to the “strength” of confinement effects.
Less fragile liquids may have more mobile walls, such as
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state C with a large value of ® (implying that small and large
particles move together). Or, less fragile liquids may have a
larger spacing between the large particles, such as state F,
with a relatively small value of ¢;/¢g; here, they are less
confined. In contrast, the more fragile states D and E have
small values of ® and smaller distances between large par-
ticles. These systems are ultraconfined, where the spacing
between large particles is of order & or even smaller, thus
limiting 9¢/d¢p.

B. Influences of particle mobility at constant ¢

We also investigate the relationship between local struc-
ture and local mobility in our binary systems. According to
prior work, the mobility of particles decreases when the par-
ticles are in hexagonally ordered regions (for 2D simula-
tions) [22,25], which is also hinted at in 3D colloidal experi-
ments [26]. Thus, we focus on the spatial distribution of
mobility and hexagonal structure. Figure 5(a) shows a snap-
shot of the system in state B at ¢=0.66 with the darker
colors indicating particles with larger values of Arjz-, and Fig.
5(b) shows the same snapshot coloring the particles by their
values of . The circled regions in Figs. 5(a) and 5(b) show
that mobile regions correspond to regions with less ordering.
We calculate the Pearson correlation coefficient C (Ar2-, (ﬁé),
finding C=-0.13, supporting the idea that mobility is slightly
anticorrelated with hexagonal ordering, consistent with prior
work.

For large size ratio systems, we see little hexagonal struc-
ture on average [curves E and F in Fig. 3(b)], but this does
not preclude the possibility that locally there may be hexago-
nal ordering which influences the dynamics. To check this,
we compare the local mobility with local structure. Figures
5(c) and 5(d) show Arjz» and ¢}, for state E, with a much larger
size ratio, and here there is no correspondence (C=0.01).
Overall, for the large size ratio samples (o,/0¢>1.4), we
never observe any ordered structures at any area fraction.
However, we cannot rule out the possibility that there is
subtle ordering that might be present and influencing the
dynamics.

Next, we consider the relationship between the confine-
ment effects and mobility in large size ratio systems. The
confinement effects are composed of both confinement size
effects and confinement surface effects. For confined colloi-
dal suspensions, particle motion was slower in more confined
spaces, but there was no strong influence from the confining
surfaces [60]. Numerical simulations show that the particles
move slowly near rough walls, and quickly near smooth
walls [59]. We thus wish to distinguish between finite-size
effects and interfacial effects. First, we define clusters of
large particles as those large particles separated by a distance
less than 1.40;, and these clusters form walls surrounding
small particles. In some cases, a connected cluster of large
particles completely surrounds a group of small particles, as
sketched in Fig. 7. Within such a region, we compute the
distance R,, from each small particle to the nearest wall par-
ticle. The maximum value of R,, within the confined region
defines R, the effective “confinement pore size.” R,, and R,
are indicated in Fig. 7(a). R,, is calculated per small particle,
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FIG. 7. (Color online) (a) Schematic showing a group of small
particles temporarily confined within a region bounded by large
particles. Each small particle is assigned a value R,,, which is its
closest distance to any large particle (the large particles act as
walls). Within each region, the local maximum of R,, identifies the
confinement pore size R, for that region. Thus, R, is the maximum
radius of a circle that fits within the bounded region. (b) A contour
plot for the mean-square displacement (Ar?) (at fixed Ar=Ar*) as a
function of the effective pore size R. where the given particle is
located, and the distance of that particle from the nearest wall R,
for state E with ¢=0.66. Darker shading corresponds to high mo-
bility. The motion of particles is faster in larger pores (large R,) and
when further from the walls (larger R, for a constant R.). The
length scales are in terms of the small particle diameter. For these
data, R’=3.6; only 10% of regions have R.>R..

and R, per pore; both of these are functions of time. The
dependence of specific particles’ behaviors on R, should
give insight into interfacial effects, and the dependence of
pore-averaged behavior on R, should give a separate insight
into finite-size effects, although of course these two effects
are likely both present simultaneously.

Figure 7(b) shows a contour plot of (+?) as a function of a
(R,,,R.) plane at state E and ¢»=0.66. The results are located
only at the lower right of the graph as R.=R,, from our
definitions. The darker region at the upper right corresponds
to high (r?), showing that the mobility increases inside large
pores (large R.) and far from walls (large R,,). Given the
incommensurate sizes of the large and small particles, it is
difficult for small particles to pack well near the walls [see
Fig. 5(c)], and so not surprisingly our results are consistent
with simulated rough walls [59]. There is also a slight gra-
dient of increasing mobility as a function of pore size R, for
fixed R, <1.5, indicating that there is a finite-size effect in
addition to an interfacial effect. That is, smaller pores
(smaller R,) have more particles close to the pore walls, and
thus experience stronger interfacial effects, but the data indi-
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cate that the influence of the interface on adjacent particles is
less within large pores.

To obtain further evidence for the relationship between
the confinement effects and dynamical heterogeneity, we also
investigate the temporal relationship between local structures
and dynamical heterogeneity. We calculate the intermediate
function F(k,Ar) for small and large particles separately at
fixed k=21r/ o for small particles [thick solid (black) line in
Fig. 8(a)] and k=2m/0; for large particles [thick dashed
(blue) line in Fig. 8(a)]. The structural relaxation time scales
for small and large particles, 7¢ and 7;, are set by F(k,7)
=1/e. We next consider all of the confined regions and the
distribution of region sizes R.. We determine the distribution
of all pore sizes R, (taken over the entire simulation run) and
find the threshold size R, for the top 10% of this distribution.
For each pore at each time, we define W,(1)=1 if R.(t)>R.
and W,(r)=0 otherwise. Typical values of R, range from 2.8
to 5.6. The temporal correlations of the regions are given by
(W(A)W.(0))/{W_(0)?), plotted as the thin solid (red) line
in Fig. 8(a). The typical lifetime of large regions is given as
7. where the correlation drops to 1/e. Similarly, for each
particle we define a parameter Wy, which is equal to 1 if the
particle’s displacement Ar at that time is within the top 10%
of the displacement distribution, and zero otherwise. The
correlation (Wp (A1) Wp(0))/(Wpu(0)?) is plotted as the
thin dashed (green) line in Fig. 8(a), and 7,y is defined by
the 1/e time again; this is the time scale over which particles
exchange between being fast and slow, as mentioned in the
Introduction.

Figure 8(b) shows the ¢ dependence of these time scales
(g, 71, T.» Tpy> and Ar*). The fastest time scale is 7 (filled
circles), and the large particles are much slower (7, open
circles). What is more notable is that 7; = 7,; in other words,
large particle motions relate to the relaxation of confined
regions. This is further evidence that the large particles form
walls. Furthermore, 7.~ 7y is observed, connecting the
confinement-induced dynamics with the dynamically fast
particles. Faster particles exchange identities with slower
particles when the confining walls rearrange.

If the spatial dynamical heterogeneity is actually induced
by the confinement effect, we would expect to see 7= T,
=~ Tpy, and the correspondence should be strongest for large
size ratio systems. Figures 8(c) and 8(d) show these time
scales normalized by 7g as a function of the size ratio o/ oy
at ¢;/pg=2.0 and 0.5, respectively; the data are for ¢
=0.66. Indeed, for o;/03=1.5, we find that 7; is similar to
7. and Tpy. Not surprisingly, the relaxation time scale 7, for
the confinement effect is governed by the relaxation time 7,
for the large particles which define the pores; more signifi-
cantly, the lifetime of dynamically heterogeneous regions is
also connected to the behavior of the large particles.

On the other hand, we find 7;,/7¢— 1 when o;/0g—1,
which is to be expected. In these cases, 7py remains large,
showing that here the dynamical heterogeneity is less influ-
enced by the relaxation of the large particles. However, 7py
is of same order as the lifetime of hexagonal order, as seen in
Figs. 8(c) and 8(d) by comparing the triangles (75,) with the
filled hexagons (73,,). This new time scale, 7,,, is defined in
a similar way as the other time scales: particles with ¢
>(.8 are considered hexagonal, and the correlation time for
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FIG. 8. (Color online) (a) The time dependence of F(k,Ar) for
small particles [thick solid (black) line; k=27/ 0] and for large
particles [thick dashed (blue) line; k=27/0;] at state E and ¢
=0.66. The thin solid (red) line indicates the breakup of the largest
confined regions, and the thin dashed (green) line indicates when
the most mobile particles become less mobile. (b) The typical struc-
tural relaxation time 7g for small particles (filled circles), the struc-
tural relaxation time 7; for large particles (open circles), the con-
finement lifetime 7, (diamonds), the dynamical heterogeneity
lifetime 7y (triangles), and the peak time for the non-Gaussian
parameter Ar* (squares). The data are for state E. (¢) Five time
scales (77, 7., Tpg, Af*, and 7,,,) normalized by 7g as functions of
oyl og at ¢/ pg=2.0 at $=0.66. 7, is the lifetime of hexagonal
order and corresponds to the filled hexagon symbols. (These data go
through state points A, C, and E; see Fig. 2.) (d) Five time scales
(77, Ts Tpms At*, and 7,,,) normalized by 7 as functions of o /0y
at ¢/ ps=0.5 at »=0.66. (These data go through state points B, D,
and F.) There are only a few confinement regions when o;/og
< 1.5, preventing a clear determination of 7., so those curves are
clipped in (c) and (d).

having ¢>0.8 is 7. This time scale is only relevant for
samples with reasonable amounts of hexagonal order [com-
pare Figs. 5(b) and 5(d)], and so is only shown for samples
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with small size ratios. [This is why it is not shown in Fig.
8(b), which has o;/0o¢=2.5.] It is further evidence that local
hexagonal order influences the dynamics in similar size ratio
systems. In these cases, the confinement effect is more likely
due to hexagonal regions composed of both particle species,
rather than networks formed by only the large particles, and
thus 7, becomes ill defined and we do not show it in Figs.
8(c) and 8(d).

The competition between hexagonal ordering and crowd-
ing due to large particles likely accounts for the cases in
Figs. 8(c) and 8(d) where 7> 7;.. For example, states with
o;/0¢=1.5 still have regions of hexagonal ordering com-
posed of both particle sizes. In these cases O is small [see
Fig. 2(d)] and the confinement effect is weak. Another ex-
ample where 15> 7 is the state with 0;/09=3.0, ¢;/ g
=0.5 [Fig. 8(d)]. The large particles are scarce, but result in a
strong confinement influence; however, the more numerous
small particles can themselves form hexagonal patches, in-
fluencing their mobility. We expect that for 3D glass formers,
local crystalline order is much less significant, and so con-
finement effects would more strongly determine 7,y in all
cases.

Furthermore, we consider the relationship among Ar* and
other time scales [Figs. 8(c) and 8(d)]. As a reminder, Ar* is
the time scale at which the small particle displacement dis-
tribution is the most non-Gaussian. This time scale is used to
define the mobility of particles and so is part of the definition
of a “mobile” particle and thus 755 Ar*>7¢ shows that
small particles move at appreciable distances during the time
Ar*. That is, the non-Gaussian displacements are over signifi-
cant distances, enough to relax the small particle structure,
and this becomes truer at larger size ratios, although this
motion is all localized within a region defined by nearby
large particles. In all cases 7> A¢" showing that slow and
fast regions do not change identities with each particle rear-
rangement, but rather take longer times to change. Particles
may rearrange several times confined within a large pore
(several Ar*) before the pore rearranges and the particles
change their mobility. An important caveat is that these ob-
servations are for the average behavior of particles, and we
are not implying that the connections between pore sizes and
dynamics are strongly deterministic. Nonetheless the hierar-
chy of time scales in Fig. 8 is suggestive of nontrivial con-
nections between the spatial arrangements of the large par-
ticles and the long-lived lifetimes of dynamically unusual
regions, both fast and slow.

C. Aging

Next we investigate aging dynamics in binary samples
with large size ratios. We study state E at ¢=0.72 where it is
in a glassy state (¢,~ 0.68 for this state). Figure 9(a) shows
(Ar?) for small and large species separately at waiting times
t,=10% 10% 10°, and 10°. At short time scales (Az<5000),
(Ar?) is independent of f,. Particles move within cages
formed by their nearest-neighbor particles. At longer time
scales Ar>5000, (Ar?) increases as the cages rearrange and
allow particles to move to new positions. This upturn in
(Ar*) decreases with increasing t,,, indicating the aging of
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FIG. 9. (a) (Ar?) as a function of lag time At for small particles
(solid lines) and for large particles (dashed lines) at ,,=103, 10%,
10°, and 10° at state E and ¢=0.72. The mobility of both particle
species decreases with respect to aging time. (b) The dark black
lines correspond to (Ar?) at Ar=10° as a function of aging time ¢,
for small particles (solid) and large particles (dashed). The smooth
curves are fits with a stretched exponential, and we find that the
decay time of large particles is slightly shorter than that of small
particles. The gray line shows the waiting time dependence of 0,
the correlation between the displacements of a large particle and its
surrounding small particles. The choice of Ar=10° is arbitrary al-
though (a) shows that this is a reasonable choice to capture the
slowing dynamics.

the system, similar to what has been seen in experiments
[18-20]. Figure 9(b) shows the #,, dependence of (Ar?) at
fixed Ar=10°. Although the results at small ¢, (z,,<At) are
hard to interpret as the dynamics change during Af, we can
observe the clear temporal change of (Ar?) for both particle
species. For “old” systems, the plateau of (Ar?) extends over
a large range of time scales, with the plateau height corre-
sponding to the cage size. Within our uncertainty, the large
and small particles age almost at the same rates, as suggested
by the similar shapes of (Ar?) curves [Fig. 9(a)]. Again, these
observations are consistent with experiments in binary col-
loidal glasses [20].

We wish to know a reason for the slowing dynamics with
respect to the waiting time. First, we confirm that the overall
structure is unchanged with age: we compute the pair-
correlation function g(R) at £,=1000 and 10° and cannot
observe any difference between them, similar to prior obser-
vations in simulations [63] and experiments [19,20]. g(R) is
a spatial average over the whole system, so we next consider
the relation between local structure and local mobility. We
use the confinement pore size R. to characterize the local
structure of the particles within a given confining region.
Figure 10 shows (Ar?) and the probability distribution P(R,),
both as functions of R, at #,=1000 and 10°. We find that
P(R,) does not change at all, and this is further evidence that
the structure does not change. However, the mobility de-
creases with age with the dependence on R, relatively un-
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FIG. 10. (a) The probability distribution P(R.) of confinement
pore sizes at £,,=10% (black line) and #,,=10° (superimposed white
line), showing that the distributions are essentially identical. This is
for state E with ¢p=0.72. (b) Mean-squared displacements (Ar?) for
fixed Ar=10° as a function of the confinement pore size R, at 1,
=10? (circles) and 7,,=10° (squares), for the same state as (a). The
upward trend (faster motion for larger pores) is similar to what is
seen in equilibrated liquids [Fig. 7(b)]. For these data Ar=10° to
capture time scales over which the dynamics age [see Fig. 9(b)].

changed other than the amplitude. This implies that the mo-
bility decrease is not due to local structural changes, but
rather an average slowing of the whole system [19].

Next, we focus on the importance of confinement which
strongly influences the dynamics of our equilibrated large
size ratio binary systems. As noted above, the confinement
strength depends on the confinement size R, and the effective
rigidity of the walls, that is, 0. In aging systems, P(R,) does
not change with respect to t,,, but ® could depend on t,, since
is a dynamical property rather than a structural property.
We compute O(z,,) at fixed At=10°, shown as the gray line in
Fig. 9(b). The behavior of ® looks similar to the mobility
change of both particles. Figure 11 shows a scatter plot of the
mean-square displacement (Ar?) as a function of ©, for all
large particles and all waiting times ¢,,. We can clearly see
the correlation between the mobility and ®. When © de-
creases, the cooperative motion between small and large par-
ticles is less; in other words, the rigidness of walls increases.
This result implies that confinement effects become stronger
during aging, and it may help to explain the slowing down of
the mobility. However, we do not know why ® decreases as
the sample ages.

IV. CONCLUSION

We have examined the glass transition in binary mixtures
with a large size ratio, finding results that are distinct from
binary mixtures with smaller size ratios. Systems with

041402-8



GLASS TRANSITION OF TWO-DIMENSIONAL BINARY...

0.05k . . . d
0.4 0.5 0.6 0.7 0.8

FIG. 11. (Color online) Scatter plot of the mean-square displace-
ment (Ar?) as a function of @ at state E and ¢=0.72, using At
=10°. Each point corresponds to a different ¢,,, the time since the
start of the simulation. The solid line is a least-squares fit. The data
indicate that mobility is linked to the correlation of the motion
between large particles and their nearest neighbors.

smaller size ratios are often studied, and the utility of using
two particle sizes in those cases is to frustrate the packing
and prevent crystallization. Crystals are also frustrated in our
simulations with large size ratios, and in addition we find
several unique results. First, we have investigated fragility of
binary systems. The fragility of binary systems with size
ratios close to 1 (o,/0¢<1.4) is related to the growth of
ordered regions: more fragile liquids show dramatic in-
creases in hexagonal order as the glass transition is ap-
proached [22-24]. However, systems with larger size ratios
do not show this relation. Both types of systems have fragili-
ties which are related to the growth of a dynamical length
scale ¢, although the sign of this correlation is opposite for
the small and large size ratio systems.

The data show that in large size ratio systems, large par-
ticles act as quasi-immobile walls which confine the small
particles and slow the dynamics overall. The large particles
define regions with a range of sizes. Small particles in large
regions find it easier to move, even if within that region they
may be adjacent to a large particle at the boundary of the
region. Small particles in smaller regions are much less mo-
bile. In addition to these finite-size effects, there are interfa-
cial effects: small particles near large particles move slower
than those farther away. Those results are what are often seen
in experiments and simulations of confined supercooled lig-
uids. Furthermore, as is often observed in simulations and
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experiments, we find some particles that are unusually mo-
bile. Our observation is that the length of time which these
particles stay unusually mobile is connected to the lifetime of
the confinement effect and thus the relaxation time of the
large particles.

Finally, we also investigate aging dynamics in large size
ratio systems. Below the glass transition, the mobility de-
creases with respect to the waiting time, although we cannot
observe any structural change. We find that in “younger”
systems the motion of large particles is correlated with the
motion of their neighbors, but that in “older” systems this
correlation is markedly smaller. This correlation (or lack of
it) relates to the confinement effect, suggesting that the large
particles become more rigid confiners in older samples.

It is important to note that simulations of softer particles
with a charged (Yukawa) potential find results different from
ours, pointing out that our results are not completely gener-
alizable. In simulations with a size ratio of 1:5, the large
particles crystallized [46]. In these cases, the large particles
did not rearrange but rather moved on their lattice sites, and
small particles could only move by diffusive hopping mo-
tions between the crystal interstices. This is in contrast to our
simulations where the large particles are always able to rear-
range (albeit more slowly than the small particles).

Overall, our results suggest that in binary soft-sphere sys-
tems, the effect of the large particles to induce finite-size
effects within the sample plays an interesting role in the dy-
namics. Two relevant variables are the finite sizes of regions
between large particles and the effective rigidity of the large
particles. While our simulation studies 2D systems, the re-
sults are similar to prior observations in 3D binary colloidal
experiments [20,64] with moderate size ratios. While the ef-
fects are easiest to see with large size ratios, one implication
of our simulations is that these effects may be relevant al-
though less obvious in binary systems of smaller size ratios.
Indeed, one of the goals of our simulations was to understand
the effect of structure by using systems where structural het-
erogeneity is more obvious. These results may also have im-
plications for studies of nanocomposites, where inclusions
into polymer glasses can dramatically affect the properties of
materials [65,66].
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