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Nonaffine motion in flowing highly polydisperse granular media
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We study the particle-scale motion of highly polydisperse hard disks flowing in a two-dimensional bent
channel. We use various size distributions of particles, in which the largest particles are up to five times larger
than the smallest. The disks are pushed through an L-shaped channel to drive the particle rearrangements.
Although the mean flow is essentially independent of the polydispersity, the motion of individual particles
becomes more nonaffine on average for higher polydispersity samples. We characterize the nonaffine motion,
finding a qualitative difference in the behavior of small and larger particles: the smaller disks have more nonaffine
motion, induced by the larger particles.
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I. INTRODUCTION

The flow of soft amorphous materials has been a subject
of extensive study for decades [1–7]. These amorphous ma-
terials are common, both in nature and in industry, in the
form of colloids, emulsions, granular media, foams, and food
products, among others [8–12]. Much prior research on the
flow and rheological properties of these materials examined
systems with particles or droplets of similar sizes and prop-
erties [5,7–9,13–23]. In contrast with these model systems,
many natural systems and materials have components with a
range of sizes. For example, the size ratio between the largest
and smallest particles can be a factor of 10 or more [24–28].
The presence of disparate-sized particles is known to affect
the flow behavior of various systems, including sand and
gravel deposition [29–32], hopper flow [33–35], and geophys-
ical phenomena such as avalanches, land slides, and glacier
flow [15,27,36–39]. Mixtures of various size components
can also determine consistency and texture in food products
[12,40]. Having a mixture of sizes in a sample is termed
“polydispersity.”

The study of these kinds of systems has led to interest-
ing physical behavior when compared to their monodisperse
counterparts. As an example, polydisperse hard spheres
can phase separate into multiple crystalline phases [41].
In active matter, polydispersity leads to the emergence of
new phases [42]. Experimental and computational studies
on the compression and stretching of particle rafts have
shown that polydispersity greatly affects their structural
properties, such as their compressional yielding thresh-
old [43,44]. In granular materials, force chains become
drastically more heterogeneous in more polydisperse sys-
tems, affecting the material’s jamming point and rheological
properties [45–48]. In particulate suspensions, the polydis-
persity of the particles strongly impacts the viscosity of the
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suspension: for example, adding small particles can lower the
viscosity [49].

Previous studies of sheared soft materials typically wish
to avoid crystalline order, so often a bidisperse mixture of
particles is used, or a single type of particle with mild poly-
dispersity [5–8,14–21]. Polydispersity δ is defined as the
standard deviation of the particle radii divided by the mean
radius. A frequently studied system is bidisperse, with equal
numbers of small and large particles with size ratio 1 :1.4,
yielding δ = 0.17 [16,17,50–52].

Two prior studies examined highly polydisperse emulsions
(δ � 0.5), with the size ratio between the largest and smallest
particles as large as 10 :1 [53,54]. These studies found that
large and small particles play different roles in the flow of
the sample, with large particles moving more smoothly, while
small particles move more erratically. This has implications
for how particles are mixed and also consequences for the
rheological response: highly polydisperse systems have well-
mixed small particles and are easier to flow [53]. These two
studies only considered emulsion droplets at high volume
fractions (above jamming); because the droplets are soft they
can still flow, but leaving unanswered the question as to
whether these prior observations generalize to hard particles
at packing fractions below jamming.

In this paper, we show the effect the particle size distribu-
tion has on the flow of granular materials; in particular, how
individual particle motions deviate from the mean flow pat-
tern, resulting in local rearrangements. The granular particles
used for this work are hard acrylic disks. We use 11 different
particle size distributions with varying polydispersity, ranging
from δ = [0.2, 0.48]. We push mixtures of these disks through
an L-shaped channel to cause the particles to rearrange, and
study individual particle motions during this flow. We find that
large particles are more likely to follow the mean flow, and
more likely to perturb the motion of nearby smaller particles
so that the latter do not follow the mean flow. Our observa-
tions confirm the prior understanding [53,54], extending those
observations to hard particles. We additionally find that the
influence of the perturbation from the larger particles extends
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FIG. 1. Sample image of the C3 distribution illustrating the pro-
cess used for image analysis and particle tracking. (a) Photograph of
the experimental device with particles in place, under normal lighting
conditions. (b) Photograph of the same frame using green/yellow
lighting to highlight the red rectangles painted on the particles. We
have superimposed blue rings to illustrate the results of our particle
tracking. The largest particle on the left has a diameter of 5.7 cm,
with its rectangle being 3.5 cm wide. For more details on the particle
distributions refer to Table I and Fig. 4.

only a short distance from the surface of the large particles,
about two to three small particle diameters.

II. EXPERIMENTAL METHODS

A. Particles and Flow Chamber

Our samples are composed of circular disks, cut from
2.9-mm-thick cast acrylic sheets with a laser cutter. Frosted
rectangles are etched into the center of the disks during the
cutting procedure to facilitate tracking the particles’ positions
and orientations. In practice, we do not see any interesting
results regarding particle rotation, so we ignore the orienta-
tional information for this paper. As a final step, the frosted
rectangles are painted red using a felt-tip marker, to make
particle tracking easier. A sample of the particles is shown in
Fig. 1(a). Here we can see a wide variety of particles with radii
ranging from 0.635 to 2.85 cm. The thickness of the particles
and the smallest radius have been chosen so that the particles
do not tip over when pushed.

  37.7 cm

  20.5 cm

FIG. 2. Top-down schematic of the experimental device, set up
in the “L” configuration. Plungers have been placed at each end of
the flow geometry. this allows us to push the particles back and forth.
The plungers both move at a set speed vp = 0.22 cm/s and maximal
extension of 10.7 cm.

The experimental device we use for this project consists
of a large square aluminum base, with each side measuring
53.3 cm, on which we can screw in several divisions. This
work will focus on the “L” configuration with the dimensions
given in Fig. 2; this geometry is similar to some prior work
[55]. This configuration consists of a track of total length
75.4 cm, bent at a right angle at the 37.7 cm mark, and with
a 20.5 cm width opening. To push the particles through our
experimental setup at a steady velocity, we use mechanical
plungers, with a set speed of vp = 0.22 cm/s and a maximal
extension of 10.7 cm. Particles are added to fill the available
area in the flow channel, with the number of particles ranging
from 164 to 370 depending on the size distribution used.

In order to ensure a two-dimensional flow of the disks
confined to the surface of the device and prevent the particles
from flowing over each other, a transparent acrylic sheet is
screwed on top of the experimental apparatus. This sheet can
be easily removed to facilitate the placement of particles in
the device.

To record the particles, we use a MOKOSE UC70 color
camera with 2100 × 2100 pixel resolution, operating at 6
frames per second. The camera is placed directly above the
experimental device. We light the experiment using an ar-
ray of colored LED lights, diffused through a screen, to
achieve a homogeneous light source. The LED lights are
set to a yellow/green color, to make the red rectangles on
the particles contrast better against the reflective aluminum
background.

We also measure the relevant friction coefficients in the
experiment. The friction coefficients between the particles
and the aluminum base are measured by tilting the surface
until the disks move, and measuring the subsequent velocity
of the sliding disks. We obtain μstatic ≈ 0.5 and μdynamic ≈
0.3. The value of μdynamic combined with the low plunger
speed we use allows us to calculate the stopping time at
�tstop ∼ 7 × 10−4 s. Essentially, when the plunger stops mov-
ing, particles stop instantaneously; inertia is negligible. The
friction coefficients between the acrylic particles themselves
are also measured: μstatic ≈ 0.4 and μdynamic ≈ 0.3.
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FIG. 3. A top-down sketch of the experimental device, set up in
the “L” configuration. Plungers have been placed in such a manner
as to block the outlets and study the sloshing back and forth of a
given particle configuration. The triangles indicate which plunger has
moved at a given stage.

B. Experimental procedure

To initialize the experiment, the particles from a chosen
size distribution are randomly placed in the flow channel,
which we then cover with the previously mentioned acrylic
sheet. The particles are then pushed through the experimental
device in a cyclical manner; a diagram explaining the exper-
imental process is shown in Fig. 3. We start with one fully
retracted plunger to make space for particles to move, and
then the other plunger pushes the particles through the channel
until they almost reach the retracted plunger. We then retract
the previously moving plunger to make room for the next cy-
cle, and then the particles are pushed in the opposite direction
by the previously stationary plunger. In this way, the particles
are forced back and forth around the L-shaped channel. We
repeat this ten times per experimental run. During the first
two cycles, we observe that the area fraction rises nontrivially
due to particle rearrangements. Accordingly, we only analyze
the final eight cycles for which the area fraction has reached
a steady state. Once a run is completed, we remove the top
cover, randomize the position of the particles using a random
number generator for the positions, and carry out the next run
of the experiment using the same procedure. For each size
distribution, we carry out five runs, each with randomized
initial positions.

C. Particle size distributions

Our aim is to study the effect of the particle size distri-
bution P(R) on the flow of our particles. The quantity which
characterizes the size variety is the polydispersity δ:

δ =
√

〈�R2〉/〈R〉, (1)

where R is the radius of a given particle, �R = R − 〈R〉, and
the moments of R (and �R) are given by 〈Rn〉 = ∫

RnP(R)dR
[and 〈�Rn〉 = ∫

�RnP(R)dR].
Specifically, there are a total of nine different radii that

we use. In terms of a = 0.3175 cm (an eighth of an inch),

TABLE I. The disk size distributions used. The first column
shows the name of each distribution, with “T” standing for tridis-
perse and “C” standing for an approximation to a continuous size
distribution. The second and third columns give the size and number
ratios of the disks used, respectively. The fourth column gives the
polydispersity δ of each distribution. For the C1 size ratios are
2:3:4:5:6; for C2 the size ratios are 2:3:4:5:6:7:8; and for C3 the
ratios are 2:3:4:5:6:7:8:9:10. For more information about the number
ratios of C1, C2, and C3, Fig. 4 shows a histogram with the amount
of particles of each size in these distributions.

Size Distribution Size Ratio Number Ratio δ

Bidisperse 3:2 1:1 0.20
T1 4:3:2 1:8:8 0.23
T2a 6:3:2 1:24:24 0.27
T2b 6:3:2 1:18:18 0.29
T2c 6:3:2 1:11:11 0.32
T2d 6:3:2 1:9:9 0.35
T3 8:3:2 1:26:26 0.35
T4 10:3:2 1:28:28 0.42
C1 6 to 2 1 to 25 0.31
C2 8 to 2 1 to 50 0.40
C3 10 to 2 1 to 55 0.48

the smallest particles have a radius R0 = 2a = 0.635 cm, and
the other radii are defined by Rn = (n + 2)a, up to R8 =
3.175 cm. Table I contains information on the size ratio, num-
ber ratio, and polydispersity of each size distribution, which
are composed of subsets of these particles. The simplest size
distribution is the bidisperse distribution with equal numbers
of R0- and R1-sized particles, which avoids hexagonal order-
ing [56]. This distribution is similar to the “canonical” 1 :1.4
size ratio often studied in previous works [16,17,50–52]. The
tridisperse distributions, labeled T1 through T4, are built using
the bidisperse distribution with an added third particle species
of greater size. These are useful for probing the effect of
changing the polydispersity (up to δ = 0.42), or for distri-
butions T2d and T3 cases, fixing δ = 0.35 but changing the
largest particle size. The three “continuous” size distributions
are built from a range of discrete particle sizes; Fig. 4 shows a
histogram of the particle counts for these distributions. They
vary by the largest included size, which also affects their
polydispersity, as given in Table I.

D. Image analysis

The first step in our image analysis is to split each frame
of a recording into its corresponding red/green/blue values.
We subtract the green channel from the red channel, which
results in the red rectangle of each particle being strongly
highlighted against a dark background. We threshold the re-
sulting image and identify all groups of connected pixels
above the threshold. From each group of pixels, we find the
center of mass, area, and aspect ratio. Knowing that the valid
features are rectangles of specific known sizes allows us to
filter out falsely identified particles, as is frequently done in
particle tracking [57]. After we have identified the particles in
each frame, we track their trajectory using standard software
[57]. In Fig. 1(a) we show an example of a raw image of our
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FIG. 4. Histogram for the three continuous distributions of parti-
cles, C1, C2, and C3. These distributions are built using particle sizes
“continuously,” starting from R0 and R1.

particles using natural lighting. Figure 1(b) shows the same
particles but using the lighting conditions described above
and postprocessing the image to highlight the rectangles. In
Fig. 1(b), we also show superimposed rings from the results
of our particle identification method.

III. RESULTS

A. Mean flow

We first consider the mean flow properties of our samples.
We start by calculating the displacements of the particles
using a timescale �t = 5 s which corresponds to roughly a
tenth of the total duration of a cycle (the disks moving in one
direction as one plunger pushes on them). During this time in-
terval, the plunger moves �rp = vp�t = 1.1 cm, slightly less
than the diameter of the smallest particles (1.27 cm). We then
spatially bin the data with a resolution �w = 1.6 cm, which is
the mean diameter of the two particle species in the bidisperse
sample. Within each bin, we find the mean displacement vec-
tor, averaging over all particles and all times. To compute this
average, we also exploit the symmetry of the back-and-forth
motion in the “L” (Fig. 3), and thus reorient the data so that the
active plunger is always at the lower-right corner. The result
is the vector field ��rmean(x, y) shown in Fig. 5. We see plug-
like flow on the lower-right inlet, corresponding to the active
plunger, which enforces that all particles contacting it move
with the plunger velocity Vp. In the corner region of the “L”
particles change the direction of their motion. The particles
in the lower-left corner barely move on average, whereas the
particles in the middle of the corner region move significantly,
resulting in a velocity gradient. In the upper outlet region, the
motion of the particles is slightly slower near the sidewalls. To
conserve particle flux, this means that particles near the center
of the outlet region are moving slightly faster than the plunger
speed.

Note that Fig. 5 is averaged over all particle size dis-
tributions. We separately compute the mean flow field for
each particle size distribution and find that the different

FIG. 5. Mean displacement field ��rmean(x, y). The displace-
ments are calculated using �t = 5 s. The bold line on the scale bar
indicates �rp = vp�t = 1.1 cm, the displacement corresponding to
the plunger motion over �t . On the lower-right inlet, we observe
a pluglike flow closer to the plunger, which then turns into a more
shearlike flow as the particles turn the corner. Closer to the lower-left
corner we see an area with almost no displacements, signified by the
shorter arrows with the darker color.

flow fields are nearly the same within the noise, with no
systematic variation. Accordingly, to reduce the noise, we
consider ��rmean(x, y) as a useful reference mean flow for all
experiments.

B. Nonaffine displacement and local particle rearrangement

Of course, the flow field shown in Fig. 5 is averaged over
all particles and all times; at any specific moment, individual
particles are often found moving in different directions, and it
is only their average which is a smooth function of space. As
an example, we can look at Figs. 6(a) and 6(b) which show
the displacement of particles for two different distributions,
bidisperse and T4, for a single frame. The T4 distribution is
constructed by adding five large particles to the bidisperse
distribution, where the large particles are five times larger
than the smallest particles. In Figs. 6(a) and 6(b), the length
of the arrow and also the color of the particle signify the
magnitude of the displacement, with darker colors for larger
displacements.

Starting with the displacement of the bidisperse case shown
in Fig. 6(a), we observe many of the characteristics high-
lighted in Fig. 5. These characteristics include pluglike flow
near the plunger inlet and shearlike flow on the outlet side. Of
course, Fig. 5 shows the mean displacement field �rmean(x, y),
which is an average over data such as Fig. 6(a). At the
specific time shown in the latter, the lower-left corner has
very small displacements, with some particles at the corner
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FIG. 6. Snapshots showing the different quantities measured in the flow for the bidisperse size distribution (left column panels) and the
T4 size distribution (right panels). From top to bottom: (a) and (b) display the displacement of each particle, (c) and (d) show the nonaffine
displacement, and (e) and (f) show D2

min for each disk. The plunger at lower right enforces that contacting particles move with velocity vp,
and thus have displacements �rp = 1.1 cm. For the bidisperse distribution, regions of higher nonaffine motion (�rNA or D2

min) are typically
associated with locations of higher strain. For the tridisperse distribution, the largest particles generally have less nonaffine motion, but nearby
smaller particles often have more nonaffine motion. For both distributions, the flow near the moving plunger (lower right) is plug flow, thus no
shearing and no nonaffine motion.

being completely still. There are also a few particles with
displacements larger than that of the plunger, �rp = 1.1 cm.
Another interesting feature is the difference in displacements
between neighboring particles: in contrast to Fig. 5 where the
colors change smoothly as a function of space, for the discrete

particles there are instances in Figs. 6(a) and 6(b) where a
region has a mixture of colors.

To quantify these behaviors of individual particles at indi-
vidual moments in time, we consider nonaffine displacements
of the particles, ��rNA. Affine motion occurs when the particle
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displacements are a smooth function of their positions. To
define the nonaffine motion of our particles, we subtract the
displacement calculated from the time- and particle-averaged
flow field from the displacements ��ri(t ) of specific particles i
at specific times t :

��riNA(t ) = ��ri(t ) − ��rmean(x, y). (2)

Here ��rmean(x, y) is the mean displacement at the initial
position (x, y) of particle i. Similar measures of nonaffine
motion have been used in previous work to characterize flow
in amorphous soft materials [8,9,53,54,58–61].

Figures 6(c) and 6(d) show a vector map for the nonaffine
displacements for the data corresponding to panels (a) and
(b). As we did for Figs. 6(a) and 6(b), the arrows are the
nonaffine displacements, and darker particle colors indicate
a larger magnitude of �rNA. We see that most particles with
high nonaffine displacements occur closer to the central area
and close to the walls in the upper section. In the bidisperse
flow this occurs due to the rearrangement of particles as the
flow changes from pluglike flow to shearlike, and the particles
need to navigate the turn around the corner. For the more
polydisperse sample, this behavior is still present. However,
the flow is also disrupted by the larger particles. This is
seen as most instances of nonaffine motion now occur around
the larger particles, other than the lower-right region where
there is pluglike flow. Another interesting note is that while
large particles cause a disruption in the surrounding flow,
these large particles themselves have small �rNA values com-
pared to their neighbors.

A simple way to explain this behavior is to picture a large
particle as it moves around the corner. The mean flow is shown
in Fig. 5, and for a sufficiently large particle near the top-right
corner, it would exist in regions where the mean flow changes
both in magnitude and direction. Given that the large particle
feels forces from a variety of adjacent smaller particles, it
makes sense that the large particle will, on average, still follow
the mean flow expected for the large particle’s center. How-
ever, any nearby smaller particles will try to move according
to the local flow field they experience. If a smaller particle is
close to the larger particle but in a normally faster section of
the flow field, the smaller particle will need to move around
the larger particle. In contrast, a small particle in a slower local
flow will be pushed out of the way by the larger particle [53].

Of course, it is possible that large particles could locally
induce a smooth flow of themselves and their neighboring
particles. To look for this, we consider an alternate definition
of nonaffine motion introduced by Falk and Langer in 1998
[1] and widely used since then [8,18,21,62,63].

The key idea is to examine a local group of particles and
fit their displacements to a strain tensor using a least-squares
fit. The least-squares fit error, D2

min, then quantifies the extent
to which that local group of particles is not well described
by a simple strain tensor, and thus serves as a measure of the
nonaffine motion of that group of particles. To compute this
quantity, we select a particle n = 0 and a set of its nearest
neighbors and fit the displacements of all of these particles at
a specific time t to a local strain tensor εi j . The fitting is least

(a)

(b)

FIG. 7. (a) The mean magnitude of the nonaffine motion
|�rNA|/〈R〉 and (b) D2

min/〈R〉2, both as a function of the normalized
particle size R/〈R〉. Smaller particles have higher |�rNA| and D2

min

than larger particles. This is because larger particles are more likely
to follow the mean flow, which forces smaller particles to maneuver
around these large particles. To have enough data for a meaningful
result, we average the observations of the three largest particles in
C3 together. The error bars are calculated from the statistical error.
Where no error bar is shown, the error is smaller than the symbol
size. The error is treated similarly in all subsequent figures.

squares where we find εi j to minimize the quantity

D2(t,�t ) =
∑

n

∑
i

{
ri

n(t ) − ri
0(t ) −

∑
j

(δi j + εi j )

× [
r j

n (t − �t ) − r j
0 (t − �t )

]}2

, (3)

where n indexes the neighbors of the reference particle with
the index n = 0. The indices i, j refer to the spatial co-
ordinate components, εi, j is the best least-squares fit strain
matrix characterizing the region, and δi j is the Kronecker
delta. The residual error after least-squares fitting, D2

min, is our
measure of local nonaffine motion [1]. Here, rather than defin-
ing the affine flow through the space- and time-averaged flow,
the affine flow is determined locally in space and time.

For random packing of highly polydisperse particles, D2
min

is strongly dependent on the number of nearest neighbors
included in the sum over n in Eq. (3): more neighbors allow for
more deviations from the mean strain matrix, increasing D2

min
[53]. Following prior work by Jiang et al. [53], we use the
Nnbs = 15 closest particles as the nearest neighbors, defining
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(a)

(c)

(b)

(d)

FIG. 8. �rNA is shown in (a) and (c) and D2
min in (b) and (d), both as a function of distance (d0i) from the edge of a reference particle with

radius R to all other particles. The top panels (a) and (b) correspond to the bidisperse distribution, and the bottom panels (c) and (d) to the T4
distribution. At d0i = 0, there is a valley for all cases, corresponding to particles in direct contact to the reference, resulting in low �rNA and
D2

min, due to the tight packing. There is another valley at d0i = 2R0, which in this case corresponds to a buffer of one R0 between the particles,
but are otherwise in close packing, causing the minimum. In between these valleys we find a peak at di j ∼ 0.75 cm. These peaks are a good
tool to measure the effect the reference particle has on its closest neighbors. This measurement is affected by particle size, an effect that can be
seen for all distributions shown here, with larger particles having higher peaks. This can be seen by the differently colored curves. As shown
by the labels, the blue curve corresponds to the R8 particles, while red and black to R0 and R1, respectively. The dashed line shows the average
value for all particles.

the distance between particles as surface to surface:

d0n = |�rn − �r0| − Rn − R0, (4)

where, as before, �r0 is the position of the reference particle, �rn

the position of neighbor n, and R0 and Rn their respective radii.
Using Eq. (4), particles in contact are at distance d0n = 0 cm.
This definition allows us to fairly compare the D2

min of parti-
cles of different sizes and across multiple size distributions.
Using Nnbs = 15 guarantees a full layer of neighbors around
the largest particles and roughly two layers of neighbors for
the particles in the bidisperse case. Figures 6(e) and 6(f)
show the particles shaded according to their value of D2

min,
where darker colors indicate higher values. A similar behavior
to Figs. 6(c) and 6(d) is observed for D2

min. For the bidisperse
case [Fig. 6(e)] the highest values for D2

min occur close to
the upper-right corner where particles navigate the turn. The
region with the second highest levels of D2

min is in the central
zone. In Fig. 6(f), corresponding to the T4 case, the larger
particles are again seen to have an effect on the flow. Here,
the particles with the largest D2

min are small particles that are
close to large particles, showing that large particles disrupt
the displacements of their neighbors. The proximity to the
upper-right corner appears less relevant. The large particles,
while enhancing the D2

min of their neighbors, have a lower
D2

min value themselves.

Our goal is to understand the role of particle size, and
Figs. 6(d) and 6(f) suggest that larger particles have less
nonaffine motion. We know that the flow pattern is spa-
tially heterogeneous, as will be discussed in more detail in
Sec. III D. Nevertheless, we wish to find the average non-
affine motion as a function of particle size. To do this, we
pick a particle radius from a given experimental condition.
We calculate the values of �rNA/〈R〉 and D2

min/〈R〉2 for all
particles of that size and all times. We then find the mean
values of these as a function of (x, y), similar to how we find
the flow field ��rmean(x, y). Finally, we average the resulting
fields over (x, y). We do this for all particle radii and all
particle size distributions, with the results shown in Fig. 7. The
one exception to this procedure is for the three largest particle
sizes in the C3 particle size distribution, for which their small
numbers do not give us adequate statistics. Accordingly, we
average the observations of these three particle sizes together
to calculate the nonaffine motion as a function of (x, y), and
then plot the (x, y) averaged results at the mean radius of the
three particle sizes. Figure 7 shows that the smaller particles
have higher values of �rNA and D2

min, whereas the larger
particles have smaller values. This points to the previously
given explanation, where large particles move according to
the average displacement field to which they are subjected but
cause other particles either to have to detour around them or
be bumped out of the way.
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To study how large particles affect the motions of their
neighbors, we measure the mean values of �rNA and
D2

min conditioned on the distance a particle has from a particle
of a specific size. These results are plotted as a function of the
edge-to-edge distance di j in Fig. 8. Figures 8(a) and 8(b) show
the results for the bidisperse distribution. There is a minimum
at contact between the particles, followed by a peak, and then
a valley at di j = 2R0. These oscillations are more pronounced
for the neighbors of particles with radius R1, the larger of the
two species in the bidisperse distribution [the top red curves
in panels (a) and (b)]. Similar trends are stronger for the
tridisperse distribution T4, shown in Figs. 8(c) and 8(d). Here,
the largest particles (size R8) strongly increase the nonaffine
motion of their neighbors [the top blue curves in panels (c) and
(d)]. These results confirm the conceptual picture sketched
above that the large particles act as obstacles moving with the
“wrong” velocity for some of their neighbors, forcing those
neighbors to move nonaffinely. For larger separations di j , the
measures level out towards the average (albeit with noise).
The “signal” of the perturbation appears to be short-ranged
and is within the noise for di j � 3 cm, a distance equal to
2.4R0 = 1.6R1 in terms of the two smallest particle sizes. This
short-ranged influence is comparable to that seen in a prior
experiment which studied the oscillatory shear of emulsions
[54], although simulations of a two-dimensional emulsion
model found longer range influences out to approximately five
particle diameters [53].

The heights of the first peak in Fig. 8 are a good measure
of the effect a particle has on the flow of its neighbors. We can
then characterize this disturbance of flow caused by particles
of size R by calculating the difference in value between these
peaks and the average �rNA and D2

min, for each particle size R,
and for every size distribution. Here we will nondimensional-
ize all lengths by the mean radius 〈R〉 for the relevant particle
size distribution. Figure 9 shows the normalized differences
in peaks for (a) �rNA and (b) D2

min as a function of size R,
and with the different symbols corresponding to the different
size distributions studied. As hinted both by Figs. 6 and 8,
the larger a particle, the larger the effect it will have on its
neighbors, clearly shown in the growth of �rNA and D2

min for
larger R/〈R〉. The imperfect data collapse suggests there may
be influences of the particle size distribution, although there is
no clear trend.

The data shown in Figs. 7 and 9 show opposite trends
as a function of R, and these opposite trends emphasize
our conceptual story. Larger particles are subjected to the
mean flow of all of their surrounding neighbors, resulting
in less nonaffine motion, confirmed in Fig. 7. These larger
particles thus disrupt the flow of their neighboring smaller
particles, forcing these smaller particles into a competition
between following the mean flow and following the mo-
tion of their larger neighbor. Thus, the larger particles cause
more nonaffine motion for their neighbors, confirmed in
Fig. 9. These results agree with prior observations of softer
particles [53,54].

Our story focuses on the larger particles and it is plau-
sible that the larger those particles are, the more strongly
the overall particle motion is affected. We test this conjec-
ture by calculating the mean values of the spatial averages
of �rNA and D2

min for all particles as a function of the

(a)

(b)

N
A

FIG. 9. These graphs show how particles of size R/〈R〉 influ-
ence the motion of their neighbors. (a) Peak (�rNA − 〈�rNA〉)/〈R〉.
(b) Peak (D2

min − 〈D2
min〉)/〈R〉2. The symbols correspond to distinct

particle size distributions, given by the legend in (a). The peak height
is measured from data similar to that shown in Fig. 8, where the
peak is measured for d0 j < 2R0 from the reference particle. Larger
particles have stronger influences on their neighbors. Error bars are
only shown when the error bar is larger than the scatter symbol.

polydispersity δ of the corresponding size distribution, plot-
ted in Fig. 10. Surprisingly, �rNA/〈R〉 is not affected by
changes in polydispersity. The values for the distributions
studied average to 〈�rNA/〈R〉〉 = 0.37 ± 0.01. Comparing
this to the data shown in Fig. 7, it appears that the smaller
nonaffine motion for the few larger particles is balanced by
the increased nonaffine motion of the more numerous smaller
particles. On the other hand, Fig. 10(b) shows that D2

min/〈R〉2

has a positive relation with polydispersity. We fit the
data using

D2
min/〈R〉2 = mδ + b (5)

with slope m = 0.11 and intercept b = 0.09. We note that this
behavior is affected primarily by the polydispersity of a size
distribution and not the size ratio itself, as evidenced by the
T2 family of distributions. All T2 distributions have the same
size ratio but their 〈D2

min〉/〈R〉2 values correlate mainly to
their polydispersity. Conversely, two distributions with similar
polydispersity but different size ratios Rmax/Rmin, T3 and T2d,
have similar values of 〈D2

min〉/〈R〉2. We also use simulations
(Ref. [56]) to calculate φRCP for each of our particle size
distributions. The correlations between φRCP and our mea-
sures of nonaffine motion are weaker than the correlations
between polydispersity and these measures. Furthermore, we
experimentally measure the area fractions φexpt and consider
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(a)

(b)

N
A

FIG. 10. (a) �rNA/〈R〉 and (b) D2
min/〈R〉2, as a function of the

polydispersity for each size distribution. For �rNA/〈R〉, we see no
relation to polydispersity, averaging to a value of 0.37. On the other
hand, D2

min/〈R〉2 shows a positive relation with polydispersity. The
dashed line is a least-squares fit to the data (see text for details).

(φRCP − φexpt ) and φexpt/φRCP as potential measures of free
area; however, neither of these provides a better correlation
with the nonaffine motion than the polydispersity.

C. Timescale dependence

All of the results above have used a set timescale �t0 = 5 s
for calculating displacements. To briefly investigate the in-
fluence of this choice, we study how the results of Fig. 10
depend on �t . We compute the average values for �rNA/〈R〉
and D2

min/〈R〉2 for different �t/�t0. Here, to enhance the
signal, we take the averages only over particles in the central
region of the channel (the square region between the inner
and outer corners of Fig. 5). The data are plotted in Fig. 11 for
all time intervals. All size distributions show a similar growth
in values for increasing time intervals. The data in Fig. 11(a)
for �rNA/〈R〉 nearly superimpose on each other, which is
expected as seen in Fig. 10(a): this measure of nonaffine
motion is not sensitive to polydispersity, and this fact holds
true for all �t . On the other hand, in Fig. 11(b) the D2

min/〈R〉2

are slightly separated by polydispersity, in agreement with
Fig. 10(b). The differences with polydispersity are more ap-
parent in Fig. 10(b); the logarithmic axis of Fig. 11(b) reduces
the distance between the curves.

(a)

(b)

slop
e=0

.74

slop
e=1

.47

FIG. 11. Average �rNA/〈R〉 (a) and D2
min/〈R〉2 (b) for the cen-

tral zone for various time intervals, on log-log scale, for all size
distributions. The lines indicate power-law scaling with exponents
as labeled. All distributions share similar exponents and their corre-
sponding curves do not cross each other for the observed �t .

The timescale dependence of the nonaffine motion is well
fit by power laws:

�rNA/〈R〉 ∼
(

�t

�t0

)α1

, (6)

D2
min/〈R〉2 ∼

(
�t

�t0

)α2

(7)

with α1 = 0.74 and α2 = 1.47. Given that �rNA has units
of length and D2

min units of length squared, it is reasonable
that α2 ≈ 2α1. Given that these power laws well describe the
data for each individual particle size distribution, we conclude
that our observations of the character of the nonaffine motion
are fairly robust over timescales �t up to the duration of our
experiments.

D. Strain clock

For the bidisperse sample, we have noted throughout the
previous subsection that there is more nonaffine motion near
the top-right corner, where there is more shearing. Given
that the strain rate is not spatially homogeneous, one can
conjecture that the data are confounded by the specific lo-
cations of the particles. To quantify this, we need to define
a local strain rate. We can then compare the data which
uses the fixed time interval �t0 = 5 s to define displace-
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FIG. 12. Color maps for (a) �t = 5 s, (b) |DF (�t = 5 s)|, and (c) D2
min(�t = 5 s)/〈R〉2 on the top row. On the bottom row we show

the same quantities but with (d) �t (x, y), such that (e) |DF (�t (x, y))| ≈ df0. (f) D2
min[�t (x, y)]/〈R〉2. We see in the top row that D2

min is
strongly correlated to |DF (�t = 5 s)|, while in the case for �t (x, y), considering fixed strain increments (e) lead to a somewhat more spatially
homogeneous nonaffine motion pattern in the central area in (f). For each panel we mark the position of the highest value, lowest value, and
mean value with a star, circle, and diamond, respectively, with values as given next to each image.

ments and the data calculated using a fixed strain increment.
We will first consider our fixed �t0 and examine the local
strain rate.

The starting point is the mean displacement field
��rmean(x, y,�t ) where now we explicitly include the �t de-
pendence. We then use the following equation to calculate the
strain tensor:

DFi, j (x, y,�t ) = ∂�ri(�t )

∂r j
, (8)

where i, j are the spatial coordinate indices and �ri(�t ) is the
displacement in the i coordinate for a time step �t . This tensor
contains information on the strain of the flow of the particles
and is the nonsymmetric version of the Cauchy strain tensor.
To measure the total strain at a given position, we calculate
the Frobenius norm of the strain tensor:

|DF (x, y,�t )| =
√√√√∑

i, j

(
∂�xi(�t )

∂x j

)2

. (9)

This then is a scalar which quantifies the amount of strain
occurring over the timescale �t at each location (x, y).

Figures 12(a)–12(c) show the results for fixed �t . Panel
(a) shows �t and is uniform, reflecting that �t is constant.

Panel (b) shows that there are regions of high strain, especially
near the upper-right corner. The lower-right inlet region is not
shown, as this region is mostly plug flow and uninteresting
(|DF | ≈ 0). Panel (c) then shows that for fixed �t , indeed
much of the nonaffine motion measured by D2

min/〈R〉2 is lo-
cated in the regions with large |DF |. The diagonal from the
lower-left corner to the upper-right corner has more strain:
as shown in Fig. 5, the velocity is changing direction and
magnitude in this diagonal region. Naturally, particles will be
required to rearrange, and Fig. 12(c) confirms that D2

min/〈R〉2

is larger here.
To consider the case of constant strain interval rather than

constant time interval, we return to the |DF (x, y,�t )| data.
We then define �t (x, y) through |DF (x, y,�t )| = df0 = 0.1,
where df0 is a small strain. The choice of df0 is somewhat
arbitrary, but is chosen so that a good portion of �t (x, y) is
a comparable order of magnitude to �t0 = 5 s. �t (x, y) is
quantized by our imaging rate (six images per second), so in
practice we find the �t (x, y) that minimizes the difference be-
tween |DF (x, y,�t )| and df0. �t (x, y) is shown in Fig. 12(d),
where a strong dependence on position is apparent. Near the
bottom right where there is plug flow, and near the top left
where there is also a small region of pluglike flow, �t must be
large to achieve any significant local strain. By allowing �t
to depend on the position, we achieve our goal |DF | ≈ df0, as
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(b)

(a)

N
A

FIG. 13. (a) �rNA/〈R〉 and (b) D2
min/〈R〉2 as a function of poly-

dispersity for all size distributions. In this figure �rNA/〈R〉 and
D2

min/〈R〉2 are calculated for each particle using �t (x, y). In contrast,
Fig. 10 shows similar results using a fixed �t = 5 s. The dashed line
in (b) is a least-squares fit to the data (see text for details).

shown in panel (e), with residual noise due to the quantization
of �t .

Next, we calculate ��rNA/〈R〉 and D2
min/〈R〉2 for all par-

ticles and use the entire range of timescales �t . Finally, we
examine D2

min(x, y)/〈R〉2 where at each (x, y) we use the data
calculated with �t = �t (x, y) to ensure the strain increment
is df0. The results for D2

min(x, y)/〈R〉2 are shown in Fig. 12(f).
The resulting D2

min is a smoother function of (x, y).
For much of the channel, this confirms that D2

min/〈R〉2

is to an extent determined by the amount of strain that oc-
curs at a given position. The exception is the top-left region,
which has a patch where little strain occurs: the particles
in this location tend to move in a group at constant veloc-
ity. This causes D2

min to be larger nearby and within this
group. To exclude this region from the subsequent analy-
sis, we will restrict our attention to locations with �t �
17 s. This excludes the plug-flow region at the bottom-right
inlet location, as well as the center of the dark patch in
Fig. 12(d).

As just discussed, having �t (x, y) we can calculate
��rNA/〈R〉 and D2

min/〈R〉2 for all particles based on a fixed
strain increment df0. We then average over all particles within
a given sample and plot these averages as a function of
the polydispersity of the corresponding size distribution in
Fig. 13. Similar to Fig. 10(a), �rNA/〈R〉 is not dependent
on polydispersity. Similar to Fig. 10(b), D2

min/〈R〉2 shows

a positive relation with polydispersity. In this case we find
D2

min/〈R〉2 = mδ + b with m = 0.09. The different value from
the Fig. 10(b) result is because the magnitude of D2

min depends
strongly on the choice of �t (or df0), as shown in Fig. 11(b),
so we do not expect a strict equivalence here. The point, in-
stead, is that analyzing the data using a fixed strain increment
leads to a similar result as the analysis with a fixed time
increment and shows that the spatial heterogeneity of our flow
is not a critical confounding factor..

IV. CONCLUSION

In this paper we have explored how polydispersity affects
nonaffine displacement and particle rearrangement in granu-
lar flows. Consistent with previous work that studied similar
systems [53,54], we find that large particles tend to move
similarly to mean flow, as they average over the forces from
the many discrete particles they are contacting. This then dis-
rupts the flow of smaller neighboring particles, which need to
navigate around the larger particles, thus causing the smaller
particles to move nonaffinely.

These observations are true even for the bidisperse case,
highlighting that even when the two particle sizes are quite
similar (size ratio 1 :1.5 in our case), there is nonetheless a
measurable difference in their nonaffine motion. Increasing
the polydispersity of the particle size distribution quanti-
tatively increases the observable effects. As polydispersity
changes from 0.20 to 0.48, D2

min/〈R〉2 increases by nearly
30% [Fig. 13(b)]. For broad size distributions with parti-
cle sizes varying by a factor of 5, Fig. 7 shows the largest
particles have on average a magnitude of nonaffine motion
|��rNA| that is 16% smaller than that of the smallest parti-
cles; and likewise while the data are noisier, D2

min is smaller
for the larger particles. Finally, Fig. 9 shows that the small-
est particles barely perturb the motion of their neighbors,
whereas the largest particles significantly enhance the non-
affine motion in their immediate vicinity. The range of this
enhancement is fairly short, about two to three small particle
diameters.

Our analysis shows some differences between globally
nonaffine motion (��rNA) and locally nonaffine motion (D2

min).
The former compares particle motion to the spatially smooth
mean flow, whereas the latter compares particle motion to
a flow defined locally in space and time. The globally non-
affine motion is not significantly influenced by the particle
polydispersity, suggesting that enhanced nonaffine motion for
smaller particles is balanced by a decreased nonaffine mo-
tion for the larger particles. The locally nonaffine motion
has the dependence on sample polydispersity. Both types
of nonaffine motion are strongly enhanced in the presence
of large particles. As noted in prior work, this implies
that mixing can be enhanced in these mixtures of particle
sizes [53].

We also see that while large and small particles play differ-
ent roles, it appears that polydispersity is the most significant
factor determining the results; the size ratio Rmax/Rmin be-
tween the largest and the smallest particles matters less. This
is seen in the comparison of tridisperse distributions with fixed
particle sizes but differing polydispersity, where polydisper-
sity changes the results in a predictable way. In contrast, data
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from size distributions with different Rmax/Rmin but matched
polydispersity have essentially equivalent results.

In summary, we find that the flow of highly polydis-
perse materials is dramatically more complex than the flow
of less polydisperse materials. This suggests that models of
localized rearrangements in the flow of amorphous mate-
rials may need to be adjusted to account for the roles of
particle size and overall polydispersity [1,55]. Not all par-
ticles are equivalent; not all particle size distributions are
equivalent.
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