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We study clogging of cohesive particles in a 2D hopper with experiments and simulations. The
system consists of buoyant, monodisperse oil droplets in an aqueous solution, where the droplet
size, buoyant force, cohesion, and hopper opening are varied. Stronger cohesion enhances clogging,
a trend confirmed in simulations. Balancing buoyant and cohesive forces defines a cohesive length
scale that collapses the data onto a master curve. Thus, under strong cohesion, we find that clogging
is governed not by particle diameter, but by the cohesive length scale.

Granular materials display complex, often counterin-
tuitive, behavior under flow. While clogging at nar-
row constrictions is expected, its underlying statistics
and dynamics remain surprisingly rich, with implications
for systems ranging from industrial grain handling to
landslides and lava flows. Clogging is controlled by the
dimensionless hopper opening–to–particle diameter ra-
tio, w/d [1–11]. Other than the hopper opening size,
there have also been extensive studies of how hopper
flow is affected by system properties such as particle
shape [12–15], hopper angle [10, 16–18], gravity [19–21],
friction [22–24], and particle softness [24–30]. In many
cases, granular materials also have cohesive interactions
between particles [31], which can significantly impact
flow [32–34]. For small powders, van der Waals and elec-
trostatics cause cohesion [35] while in larger particles,
cohesion can arise due to liquid capillary bridges [36].
While cohesion is an important parameter, it is typically
difficult to control [31]. Recently, Gans et al. developed
an experimental system to study the impact of cohesion
on properties of granular materials [37, 38]. Their results
indicated that a cohesive length scale that represents the
balance between gravity and cohesion was necessary to
describe granular flow [38], similar to that proposed by
Ono-dit-Biot [39]. Additionally, Zhang et al. investi-
gated the clogging of wet granular materials and found
that liquid bridges enhanced clogging which could be pre-
dicted using an effective aggregate size [40].

The ubiquity of inter-particle cohesion motivates a
deeper understanding of its role in clogging. Here, we
investigate ideal cohesive particles flowing through a 2D
hopper (Fig. 1). Experimentally, we use monodisperse,
buoyant oil droplets in an aqueous solution, varying the
droplet diameter d, hopper opening w, cohesion, and ef-
fective gravity. Simulations complement the experimen-
tal data, and together they show excellent agreement
with a theoretical model.

The experiments are based on previous work by Ono-
dit-Biot et al. who developed a model system using oil
droplets in a surfactant solution to control inter-particle
cohesion of a frictionless system [39, 41, 42]. The sur-
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FIG. 1. a) Schematic of the experimental chamber. Droplets
float into the hopper while the chamber is held horizontal. b)
The chamber is rotated to a desired tilt angle which drives
the buoyant droplets through the hopper. c) Representative
experimental image showing a clog with a false color overlay:
red droplets indicate the clogging arch, blue droplets represent
remaining droplets, yellow droplets remain attached to the
aggregate due to cohesion (w/d = 8.8, w/δ = 2.86± 0.07). d)
Representative simulation image (w/d = 3.25, w/δ = 3.54).
e) An array of images of the final state of the hopper for
20 trials with w/d = 3.0, Cm = 71 mM; here 15 out of 20
experiments clogged, so Pclog = 0.75.

factant serves two functions: it stabilizes the droplets
against coalescence, and, when in excess, forms micelles
that induce attractive depletion interactions [39, 43, 44].
Critically, the surfactant concentration enables precise
control of cohesion by tuning the micelle concentration
in the solution. Ono-dit-Biot et al. proposed a cohesive
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length scale, which is set by a balance between the inter-
particle cohesion and the effect of gravity, similar to that
introduced by Gans et al. [38], given by δ =

√
A/∆ρg

[39]. Here A = Fc/(πR) is the cohesive force per unit
length, with Fc the unbinding force between two droplets
with radius R [45], ∆ρ is the difference in density be-
tween the oil and the aqueous surfactant solution, and
g is the acceleration due to gravity. In a quasi-2D ge-
ometry, where the experimental chamber can be tilted to
adjust the effect of gravity (Fig. 1), this cohesive length
scale is modified to δ =

√
A/∆ρg̃e; where we define the

effective gravitational acceleration as g̃e = g sin θ, with
θ the tilt angle of the chamber [46]. The 2D system en-
ables direct imaging of the droplets and control over the
effective gravitational force, Fb ∝ ∆ρg̃, which drives the
particles though the hopper. We note that by ‘effective
gravitational force’, we mean the sum of the gravity and
buoyancy force acting parallel to the top surface of the
chamber. Previously, the cohesive length-scale, δ, has
been used to describe the spreading of oil droplets in
both 2D and 3D [39, 46].

Experimentally, a quasi-2D hopper is made by coating
a glass slide with a ∼100 µm layer of SU-8 photoresist
(Kayaku, USA) and photolithography is used to pattern a
hopper with walls at 45◦ angles. For the experiments, the
hopper opening spanned w ∈ [100, 500]µm, with most
experiments performed at 150 µm and 200 µm. Exper-
imental chambers are constructed by placing a 30 x 20
x 5 mm3 3D-printed spacer between the 2D hopper slide
and a glass microscope slide and imaged with a cam-
era. A schematic diagram of the experiment is shown in
Fig. 1(a) and (b). The setup is placed on a rotation stage
such that the chamber can be tilted to an angle, θ.

Chambers are filled with an aqueous solution of the
surfactant, sodium dodecyl sulfate (SDS), and sodium
chloride (NaCl) to screen ionic interactions. The concen-
tration of SDS varies from 7 mM to 265 mM while the
concentration of NaCl is held constant at 1.5% (w/w).
SDS micelles generate an attractive interaction between
the oil droplets, increasing linearly with micelle concen-
tration, A ∝ Cm where Cm is the concentration of mi-
celles [39, 43, 44]. Glass capillary tubes (OD 1 mm,
ID 0.58 mm, World Precision, USA) are pulled using a
pipette puller (Narishige, Japan) to an opening diame-
ter of ∼ 10 µm. The pipette is inserted into the cham-
ber and light paraffin oil (Supelco, MilliporeSigma, USA)
is dispensed to create near-monodisperse droplets with
d ∈ [52, 67]µm using the snap-off instability (the coeffi-
cient of variation in droplet radius is ∼ 0.5%.) [47, 48].
The buoyant droplets rise and fill the hopper, and be-
cause of their small size and correspondingly high Laplace
pressure, they can be approximated as hard spheres. The
chamber is initially held horizontal and droplets are de-
posited in a loosely packed pattern; see supplemental
video 1 for the filling process.

After 190±5 droplets have been deposited, the pipette

is removed away from the hopper and the chamber is
rotated to a desired tilt angle, which initiates the flow
of droplets through the hopper. Droplets are monitored
over time for the presence of clogs [see Fig. 1(c)]. Once
all the the droplets flow through the hopper, or if a clog
is detected, the experiment is complete and the chamber
is rotated past 90◦ to clear the chamber of the droplets.
Once the hopper is emptied, the chamber is rotated back
to horizontal, and the experiment is automated to repeat
20 times for a specific set of parameters [see Fig. 1(e)].
The probability of clogging, Pc, was measured by dividing
the number of clogs by the number of total trials (see
supplemental video 2 and supplemental video 3).

For the simulations of the hopper we use a quasi 2D
Durian bubble model [49], as modified in Refs. [26, 50].
This model considers soft particles with large viscous
forces acting on them, such that all other forces balance
the velocity-dependent viscous drag force. Thus at each
time step the equations of motion are solved for the ve-
locity rather than the acceleration. For each particle i

the equation to solve is:
∑

j

[
F⃗ cont
ij + F⃗ visc

ij

]
+ F⃗wall

i +

F⃗ grav
i + F⃗ drag

i = 0, where F⃗ cont
ij is the contact force be-

tween droplets i and j, F⃗ visc
ij is the viscous interaction

between two contacting droplets, F⃗wall
i is all forces due to

interactions with walls (attractive, repulsive and viscous

forces [26, 50]), F⃗ grav
i is the effective gravitational force,

and F⃗ drag
i is the viscous drag. Each droplet is modeled

as a sphere: F⃗ cont
ij has a spring-like repulsive force for

spheres that overlap, along with an attractive depletion
force based on the Asakura-Oosawa model [51] and the
depletion free energy for overlapping spheres from J.C.
Crocker et al. [52]. The depletion force is tuned with the
parameter ϕc, the effective volume fraction of the mi-
celles, which is a nondimensional analogue of Cm in the
experiments [26, 50].

The time step in simulations is defined by t0 = BR/f0,
the timescale for two droplets to push apart, limited by
inter-droplet viscous interactions; where B = 1 is the vis-
cous coefficient, R = 1 is the particle radius, and f0 = 10
is the spring constant of a droplet. With the current
parameter choices, the free-fall velocity of an isolated
droplet is proportional to F⃗ grav

i /F⃗ drag
i , and so also to

the force of gravity; we use the nondimensional acceler-
ation due to gravity in the simulations, g̃s, as a control
parameter for the driving force. For further discussion
on the choice of parameters see Refs. [26, 50].

As in the experiment, 190 particles are simulated with
a hopper angle of 45◦, and a droplet polydispersity set
at 0.01. The simulation begins with particles randomly
placed in the hopper. They free-fall, settle, and once
static, the hopper exit is opened. The force equation
can be rewritten as a first order differential equation for
the velocity, which is solved using a fourth-order Runge-
Kutta algorithm and a time step of dt = 0.1t0. Simu-

SupplementalVideo-1.mp4
SupplementalVideo-1.mp4
SupplementalVideo-2.m4v
SupplementalVideo-3.m4v
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FIG. 2. Clogging probability of a) experiments with w =
162 µm and d = 56 µm and b) simulations with w/d = 3.0,
for a range of cohesive strengths as a function of the effective
gravitational acceleration (error is calculated based on a finite
number of trials N = 20 and N = 100 for a Poisson process).
Solid lines are fits of Eq. (1) to the data. The effective gravi-
tational acceleration where the probability of clogging is 1/2,
g0, vs cohesive strength for c) experiment and d) simulation.

lations end when all droplets have exited the hopper, or
when the maximum speed of all particles in the hopper
is below 10−12, which defines a clog. For these simu-
lations the choice of parameters for depletion strength
and gravity were made based on previous simulations in-
volving cohesive forces [50], and hopper simulations [26],
with the overall goal of maintaining a range of param-
eters similar to the experiments. In the simulations,
δ =

√
Fc/(ρg̃sπR), where Fc is the force needed to pull

apart two particles from the equilibrium position and
ρ = 3

4π [50]. One set of simulations keeps w/d = 3,
and varies g̃s and ϕc. A second set of simulations keeps
g̃s = 0.01, while varying w and ϕc.
We first investigate the impact of gravity and cohesion

while keeping the width to droplet diameter constant. In
experiments, gravity is tuned by the hopper tilt angle
θ (g̃e = g sin θ) and cohesion by the micelle concentra-
tion Cm. In simulations, g̃s and ϕc control gravity and
cohesion. In Fig. 2(a,b) we show Pc as a function of
the effective gravitational acceleration for constant w/d.
For a constant cohesion strength, as the effective gravita-
tional force increases, the clogging probability decreases.
In addition, increasing cohesion increases the clogging
probability. These results are physically intuitive: in-
creasing the effect of gravity or decreasing cohesion can
destabilize a potential arch, thus decreasing the potential
to clog.

We use a general sigmoidal function to fit the data:

Pc = [1 + exp[(g̃i − g0)/b]]
−1

, (1)

where b is the width of the transition, g0 is the value
of the effective gravitational acceleration that results in
Pc = 1/2, and the subscript i ∈ {e, s} designates the ex-
perimental and simulated values (see Supplemental Table
1 for fit parameters). We plot g0 as a function of Cm and
ϕc in Fig. 2(c,d). Both experiment and simulation show a
monotonic increase, consistent with the expectation that
maintaining a constant clogging probability (Pc = 1/2)
requires a greater driving force with increasing cohesion.

Having investigated the role of the driving force and co-
hesive strength in Fig. 2, we now turn to the impact of the
hopper opening size w/d. We will show how w/d relates
to the clogging probablity Pc and the mean avalanche
size, ⟨s⟩, which is defined as the number of particles
passing through the hopper before a clog. Theoretical
and empirical relations related to the avalanche size and
probability of clogging have been well established [1–9].
Here, the following is inspired by the work of Janda et
al. [5] and the derivations by Durian et al. [7, 8]; we recap
the essential physics and extend to the case of cohesive
particles. If ⟨s⟩ is the number of particles in an avalanche,
then ⟨s⟩+1 particles cause a clog, and the probability of
any particle causing a clog is given by pc = (⟨s⟩ + 1)−1.
We can then write ⟨s⟩ = (1−pc)/pc, which is the ratio of
the probability that a particle passes through the orifice,
1−pc, to the probability the particle causes a clog, pc. A
clog is formed by an arch in 2D or dome in 3D. Assuming
that each grain within the arch or dome can exist in ω
microstates, of which ωc are states that can result in a
clog, then the probability that a particle is in a clogging
state is ωc/ω. Now, it is not enough for a single particle
to be in a clogging state, all particles that form an arch
or dome must also be. We can then write pc = κ(ωc/ω)

n,
where n is the number of particles in the arch or dome,
and κ is a normalization constant.

We now turn to the number of particles, n, that form
an arch or dome, which must depend on the size of the
opening. It has been suggested and empirically veri-
fied [3, 5, 7, 53] that n ∝ (w/d)α, where α = 2 for
an arch, and α = 3 for a dome. First of all, we stress
that while this scaling is valid for cohesionless particles,
it must be modified when cohesion is important, as we
will do below. Second, we wish to clarify the dependence
on the dimensionality of the system, because it is often
assumed that an arch is a string of particles and a dome
is a sheet of particles (i.e. α = 1 for an arch and 2 for
a dome). An arch or dome alone must be stabilized by
neighboring particles (i.e. a 1D arch of marbles is not
stable). Thus, these structures have some thickness to
them, and the natural scale for this is the width of the
opening. There are two parts to this argument: 1) an
arch or dome must have a “thickness” to it; and 2) that
thickness must scale with the width of the opening, re-
sulting in a self-similar clog structure. For the 2D case
studied here, α = 2, and n = β(w/d)2, with geometric
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prefactor β. Then ⟨s⟩ =
[
κ (ωc/ω)

β(w/d)α
]−1

− 1. The

constant κ = (ωc/ω)
−β , which follows from ⟨s⟩ = 0 at

w/d = 1. Then,

⟨s⟩ = exp {C [(w/d)α − 1]} − 1, (2)

with constant C. This expression is properly normalized
and of a similar form to that used by others [5, 7, 8].

The probability of some particular particle causing a
clog is (⟨s⟩+ 1)−1; thus the probability of N particles in
the hopper not clogging is [1− (⟨s⟩+1)−1]N . Conversely,
the probability of clogging with N particles is Pc(N) =
1−[1−(⟨s⟩+1)−1]N = 1−exp[−N ln(1+⟨s⟩−1)]. Making
the approximation that ln(1 + ⟨s⟩−1) ≈ ⟨s⟩−1, we can
write the probability of clogging with N particles as:

Pc(N) ≈ 1− exp (−N/⟨s⟩) , (3)

where ⟨s⟩ is given by Eq. (2). Thus, we have related ⟨s⟩
and Pc to w/d via Eqs. (2) and (3) with α = 2 for our
2D system, N = 190 for our number of droplets, and C
as the sole fitting parameter.

This discussion has neglected cohesion. For strong
inter-particle cohesion, we propose that the critical
length scale that determines clogging is not the droplet
diameter d, but rather the cohesive length scale δ. This
assumption is consistent with observations made by Gans
et al. [38] and other works [39, 41, 46, 50]. Conceptu-
ally, with increasing cohesion, the relevant size is that
of cohesively stabilized aggregates of size δ, not individ-
ual droplets. This effectively renormalizes w/d to w/δ
in Eq. (2). In our experiments, d ∈ [52, 67] µm, while
δ ∈ [30.5± 0.3, 260± 10] µm [39]. At low cohesion, clog-
ging depends on d, but our focus is on regimes where δ
dominates. The probability of clogging, Pc, as a func-
tion of w/δ is shown in Fig. 3(a,b) for 91 experiments
each consisting of 20 trials (5 droplet radii and 5 cohe-
sion strengths) and for 51 simulations each consisting of
100 trials (w ∈ [1.75d, 6d] and 4 cohesion strengths). Re-
markably, all data collapse onto a single master curve
which is well fit by Eq. (3) with C = 0.76 ± 0.01 (ex-
periment) and C = 0.690 ± 0.004 (simulation), confirm-
ing that the dimensionless length scale w/δ captures the
clogging behavior of cohesive particles. Given that δ > d
for the cases we are considering, clogging occurs for larger
opening sizes w than could clog for cohesionless particles.

To further investigate the importance of w/δ to our
system, plots of ⟨s⟩ as a function of w/δ are shown in
Fig. 3(c,d). Again, the data collapse onto a single mas-
ter curve. Since the number of particles in the hopper
was limited to N ∼ 190, the plots in Fig. 3(c,d) plateau
at ⟨s⟩ ∼ N . The plateau does not imply that we have
reached a critical value for which clogging never occurs,
rather we have reached a region where the probability of
clogging for 190 particles vanishes. We compare Eq. (2)
to the data of Fig. 3(c,d) with the same fit values for

b)

c) d)

a)

FIG. 3. Probability of clogging as a function of w/δ for (a)
experiments and (b) simulations. The solid lines represents a
fit to Eq. (3). (c) Mean avalanche size before a clog occurs
as a function of w/δ for experiments and (d) simulations.
Solid lines are Eq. (2) fit to the data. Dashed lines show
a plateau at 190 droplets. Error bars on Pc are calculated
based on a finite number of trials N = 20 for experiments and
N = 100 for simulations for a Poisson process. Error bars on
⟨s⟩ represent standard error on the mean. Error bars on δ are
representative of experimental data measuring the cohesive
strength between droplets [42]. For these data, smaller w/δ
represents a smaller opening or stickier droplets, both of which
make clogging likelier.

C used in Fig. 3(a,b). The ability of the data to col-
lapse onto a master curve as well as the goodness of fit
to Eq. (2) further confirms that the critical parameter
describing clogging is given by w/δ. This also validates
the assumptions made in the derivation of Eqs. (2) and
(3): in particular, the number of particles stabilizing an
arch (in a two-dimensional system) scales as w2, as seen
in prior work with cohesionless particles [3, 5, 7, 53].

Lastly, we return to the empirical trends shown in
Fig. 2(c,d) for the relationship between the driving force,
Fb ∝ g0, and cohesion strength for which Pc = 1/2.
We see from Eq. (3) that Pc = 1/2 corresponds to w/δ
being some constant: when Pc = 1/2, w ∝ δ. Since
δ =

√
A/∆ρg̃, we obtain g̃w2 ∝ A. With Eq. (1)

and setting Pc = 1/2, we have g0 = g̃. We then ob-
tain g0w

2 ∝ A, where A is proportional to Cm (experi-
ment) and ϕc (simulation). The data in Fig. 2(c,d), where
the opening width is fixed, follow this linear relationship
closely, providing independent confirmation that δ is the
relevant length scale governing clogging for cohesive par-
ticles.

In conclusion, we have observed the clogging of fric-
tionless cohesive particles in a 2D hopper and outlined
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the impact of the cohesive strength on the ability of the
particles to flow. We find a clear dependence of clog-
ging on the cohesive strength of the particles. Further-
more, we have demonstrated that a fundamental cohesive
length scale δ is critical to describing clogging, which
can be obtained by balancing the cohesive strength with
the effective gravitational force. When plotting both the
mean avalanche size and the clogging probability as a
function of a dimensionless ratio w/δ, our data collapse
on master curves (Fig. 3). The collapse matches theory
using δ as the key length scale, underscoring the impor-
tance of cohesion. Remarkably, this allows clogging to
occur even with large hopper openings such as in the ex-
periments shown in Fig. 1(c), for which clogging would
not be possible for a cohesionless system [26]. Under
strong cohesion, clogging is governed not by particle di-
ameter but by a cohesive length scale.
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b)

c) d)

a)

FIG. 4. Probability of clogging as a function of w/d for (a) experiments and (b) simulations. (c) Mean avalanche size before a
clog occurs as a function of w/d for experiments and (d) simulations. Dashed lines show a plateau at 190 droplets. Error bars
represent standard error on the mean. For these data, we see that simply plotting as a function of w/d does not nicely collapse
our data which contains different cohesion strengths. In short, d cannot normalize the data, while δ does.
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TABLE II. Values of g̃e (experiment) and g̃s (simulation) with corresponding values of δ. Left: experimental results for
concentrations Cm. Right: simulation results for depletion strength ϕc.

Experiment Simulation

Cm (mM) g̃e (m s−2) δ (µm) ϕc g̃s δ

6

0.88 86.9

7.5×10−5

0.015 0.733
1.67 61.5 0.01 0.898
2.55 50.4 0.009 0.946
3.33 43.8 0.007 1.07
4.9 36.3 0.005 1.27
6.96 30.5

35

0.88 120

1×10−4

0.03 0.603
1.67 84.3 0.02 0.739
2.55 69.0 0.015 0.853
3.33 60.0 0.01 1.04
4.9 49.7 0.009 1.10
6.96 41.8 0.0075 1.21

71

0.88 150
1.5×10−4

0.02 0.920
1.67 106 0.015 1.06
2.55 86.7 0.01 1.30
3.33 75.5
4.9 62.4
6.96 52.5

108

0.88 175

2×10−4

0.03 0.882
1.67 124 0.025 0.967
2.55 102 0.02 1.08
3.33 88.5 0.015 1.25
4.9 73.2 0.01 1.53
6.96 61.6

TABLE III. Fit parameter C for Eq. (5) in the main text: ⟨s⟩ = exp
{
C
[(

w
d

)α − 1
]}

− 1. Left: experimental results for
concentrations Cm. Right: simulation results for depletion strength ϕc. Uncertainties represent one standard deviation.

Experiment Simulation

Cm (mM) C ϕc C

6 1.23 ± 0.08 7.5×10−5 (7.7 ± 0.1)×10−3

35 3.21 ± 0.15 1×10−4 (10.1 ± 0.2)×10−3

75 5.94 ± 0.12 1.5×10−4 (14.7 ± 0.3)×10−3

108 7.30 ± 0.10 2×10−4 (18.8 ± 0.2)×10−3
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