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Influence of confinement on dynamical heterogeneities in dense colloidal samples
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We study a dense colloidal suspension confined between two quasiparallel glass plates as a model system
for a supercooled liquid in confined geometries. We directly observe the three-dimensional Brownian motion
of the colloidal particles using laser scanning confocal microscopy. The particles form dense layers along the
walls, but crystallization is avoided as we use a mixture of two particle sizes. A normally liquidlike sample,
when confined, exhibits slower diffusive motion. Particle rearrangements are spatially heterogeneous, and the
shapes of the rearranging regions are strongly influenced by the layering. These rearranging regions become
more planar upon confinement. The wall-induced layers and changing character of the spatially heterogeneous
dynamics appear strongly connected to the confinement-induced glassiness.
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I. INTRODUCTION

As a glass-forming liquid is cooled, its viscosity increases
smoothly but dramatically by many orders of magnitude.
The macroscopic divergence in viscosity is related to the
divergence in the microscopic structural relaxation time, or
α-relaxation time. A conceptual explanation is the Adams and
Gibbs hypothesis, which states that the flow in a supercooled
liquid involves the cooperative motion of molecules and that
the structural arrest at the glass transition is due to a divergence
of the size of these cooperatively rearranging regions (CRRs)
[1].

Computer simulations and experiments have explored the
sizes and shapes of regions of cooperatively moving molecules
as a liquid’s glass transition is approached [2,3]. A direct
means of probing the dynamic length scales of glass-forming
liquids is by confining them to smaller volumes, such as within
thin films and nanopores. Confinement can either increase,
decrease, or even maintain a material’s glass transition temper-
ature TG [4,5]. Both simulation and experiment suggest that the
effect on TG depends on the nature of the interaction between
the sample and its confining boundary [6–12]. Attractive
interactions may result in an increase in TG whereas repulsive
interactions may result in a decrease [10,13]. Frustration of
structural ordering, via a rough surface, for example, can also
play a key role, although this can either cause slower or faster
dynamics [7,11,14]. Whether or not the restriction of the length
scales accessible to CRRs is responsible for the variation in
TG remains to be seen due to the inability to directly observe
molecular interactions within glass-forming liquids.

Instead of studying molecular glass formers, we use dense
colloidal suspensions of sterically stabilized micrometer-sized
spherical particles. Colloidal suspensions have often been
used as experimental models of a hard sphere glass [15,16].
We confine our samples within a planar volume formed by
two quasiparallel solid surfaces [17], similar to confined
colloids studied by other groups [11,18,19]. We use high-
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speed confocal microscopy to rapidly visualize and acquire
three-dimensional images of the particle positions [20–23].
Subsequent image analysis lets us track the individual particle
trajectories, providing an accurate picture of the cooperatively
rearranging groups of particles. Near the colloidal glass
transition (φg ≈ 0.58 [15]), particles rearrange in groups
characterized by a length scale of ∼3–6 particle diameters
[22,24].

In this paper we further investigate our results from prior
experiments that studied confined samples, as pictured in
Fig. 1 [17]. Here we focus specifically on the nature of
cooperative rearrangements within the confined sample and
how they relate to the system’s increased glassiness. In
these experiments we found that confinement induces glassy
behavior at concentrations in which the bulk behavior is still
liquidlike. Here, we examine rearranging groups of particles
defined by (1) particles making large displacements at some
moment in time that are also (2) nearest neighbors with
at least one other particle within the group. We show that
confining colloidal liquids within a planar volume results in
cooperatively rearranging groups of particles that are similarly
planar shaped. The flattening shapes of the cooperatively
rearranging groups are correlated with the overall slowing of
the dynamics, suggesting a connection between confinement,
wall-induced structure, and glassy behavior.

Understanding the effects of confinement on the glass
transition may help us understand the glass transition in the
bulk. Perhaps more importantly, understanding the properties
of confined fluids also has direct relevance with lubrication
[25], the flow of liquids through microfluidic devices [26,27],
and the kinetics of protein folding [28].

II. EXPERIMENTAL DETAILS

A. Colloidal samples and microscopy

We use spherical colloidal poly-methyl-methacrylate
(PMMA) particles that are sterically stabilized to prevent
interparticle attraction [15,23]. The particles are suspended
in a mixture of solvents, cyclohexyl bromide and de-
calin, to match both their density and index of refrac-
tion [23]. While our sample is similar to other types of
colloidal suspensions that act like hard spheres [15], the
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FIG. 1. (Color online) Sketch of sample chamber (not to scale).
The small particles are 1.18 μm in radius and are shaded to indicate
their fluorescent dye. The large particles are 1.55 μm in radius and
drawn in white to indicate their lack of dye, making them invisible to
the confocal microscope. One of the boundaries is a coverslip, rather
than a glass slide, indicated by the thinner line.

cyclohexylbromide in our solvent mixture induces a slight
charge on the surfaces of the particles. Thus, the particles
have a slightly soft repulsive interaction in addition to their
hard sphere core. To prevent crystallization, which would
be readily induced by the smooth walls in our thin planar
geometry [29–31], we use a binary mixture of particles
with hydrodynamic radii of asmall = 1.18 μm and alarge =
1.55 μm. The number ratio is approximately NS/NL = 3.5,
and the individual volume fractions are approximately φS =
0.26,φL = 0.16, so the total overall volume fraction is φ =
0.42 ± 0.05. The uncertainty of φ arises from the difficulty in
precisely determining the individual species’ particle size, the
polydispersity of particle sizes (∼5% for both species), and
difficulties in determining the relative volume fractions of the
two species [32]. A study of a similar colloidal mixture found
the glass transition for bulk samples to be at φg ≈ 0.58 [33].

We use laser scanning confocal microscopy to view the
sample [23]. We can acquire a three-dimensional image of
the sample by scanning a 50 × 50 × 20-μm3 region (equal to
256 × 256 × 100 pixels). We use Visitech’s “vt-Eye” confocal
system which can scan this volume in 2.0 s. This is much
faster than the time for particles to diffuse their own diameter,
which is ∼100 s in our samples. We acquire sequences of
three-dimensional (3D) confocal images every 2.0 s for up
to 45 min. By scanning different locations, we observe the
behavior at different chamber thicknesses ranging from ∼6 μm
to ∼19 μm in addition to the sample’s bulk. Data representing
the “bulk” of our sample is acquired from a 20-μm thick
subvolume in the thicker region of the sample chamber that
is over 15 μm away from the chamber’s walls to avoid any
boundary effects.

The small particles are dyed with Rhodamine dye [23] and
the larger ones are left undyed. Thus the data in our results are
for the smaller particles only. Each image is postprocessed to
find particle positions with an accuracy of 0.05 μm in x and
y (parallel to the walls) and 0.1 μm in z (perpendicular to the
walls, and parallel to the optical axis of the microscope). Given
that the particles do not move much between images, we can
link the particle positions in time to get 3D trajectories of the
particles’ motion throughout the sample volume [23,34].

B. Sample chambers

Our goal is to study our sample with a range of confinement
thicknesses. Here we focus on “thin film” confinement
between two flat surfaces. We achieve this by constructing
a wedge-shaped sample chamber, as shown in Fig. 1. We build
the chamber using a glass slide, a rectangular glass coverslip,

FIG. 2. Typical two-dimensional (2D) confocal microscope im-
age showing particles immediately adjacent to one of the chamber
walls. The circled particles are stuck to the glass, and the others move
freely. There are also undyed particles also stuck to the surface, as
well as undyed mobile particles, which are not visible in this confocal
image. The scale bar indicates 10 μm.

and a narrow piece of a ∼60-μm-thick Mylar film, employing
a method similar to the one used by Refs. [35,36]. Using UV-
curing epoxy (Norland 68) we attach the Mylar film near one
end of one side of the glass slide so that it runs perpendicular
to the slide’s length. Next, the glass coverslip is laid across the
slide so that one end is raised up by the Mylar film. Meanwhile,
the coverslip’s opposite end is clamped down, ensuring the
thinnest gap size possible. We seal the sample chamber shut
with epoxy, except for two small air holes; the sample is added
via one while air escapes via the other. After adding the sample,
the two openings are sealed with epoxy. The chamber’s shape
is described in Fig. 1: a very long chamber with a broad
range of thicknesses. Due to the Mylar film, the glass surfaces
are not parallel but very slightly angled at 0.4◦ relative to one
another. Within our field of view, the change in our sample’s
thickness due to our sample chamber’s slight taper is less than
0.3 μm, which is negligible for all but the thinnest regions.
We do not see any influence of the taper in any of our results,
suggesting it is reasonable to consider the two boundaries as
locally quasiparallel. We define y as the direction along which
the thickness H varies.

When we fill our slides with sample, a small fraction of par-
ticles stick to the sample chamber’s walls. Typically less than
20% of the walls’ area is coated with stuck particles [37]. The
stuck particles are easy to identify as their apparent motion,
due to noise inherent to particle tracking, is much less than
the other particles. An image showing the locations of some
stuck particles is shown in Fig. 2. Other observations confirm
that both large and small particles stick to the walls [37]. We
find that the particles stick to the surfaces of the glass slides
only during the initial loading of the sample chamber with
colloid. The stuck particles remain stuck indefinitely, through
a van der Waals attraction to the glass, and are a permanent
feature of the surface. The mobile particles do not stick to the
sample’s glass boundaries over time—during the experiments
they never are seen to stick, and over several months the
amount of particles stuck to the glass does not appear to
change. In fact, the mobile particles are repelled from the
glass boundaries by a relatively weak Coulombic interaction;
in other words, during the course of the experiment, the
only particle-wall interaction is a weakly repulsive one. In a
sample of dilute colloids, we observe that the concentration
of particles is low at the wall and approaches the bulk
value quickly, within 0.5 ± 0.1 μm, suggesting that the
Debye screening length is ≈0.4 μm at most and more likely
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FIG. 3. (Color online) Measurements of local diffusion constants
as a function of the distance z to the wall, normalized by the
particle radius a = 1.18 μm. The data are from a monodisperse dilute
suspension. The dashed line is Faxen’s Law [40,41]. (Inset) Sketch
indicating that z = 0 corresponds to the particle touching the wall.

≈0.2 − 0.3 μm, in agreement with prior observations [38].
The stuck particles are expected to slightly slow adjacent
particles [39], which has been confirmed in our experimental
data [37].

Particles do interact with the wall hydrodynamically. In the
same dilute suspension, we measure particle mobility near the
glass walls, with measured diffusivity shown in Fig. 3 as a func-
tion of the distance z from the wall. The behavior (symbols) is
in good agreement with Faxen’s Law (dashed line) [40,41]
which quantifies the hydrodynamic influence of a planar
boundary. Of course, the hydrodynamic behavior is modified
in confinement approaching quasi-two-dimensional situations,
where the sample chamber thickness H is comparable to the
particle size 2a [42–44]. We do not consider experiments
that are this thin; our observations all have H � 6a. More
significantly, for the larger volume fractions we consider in
this work, the hydrodynamic interaction will be screened by
the other particles, and so will not depend so strongly on the
distance from the wall [44,45].

III. RESULTS

A. Wall-induced structure

We use the positions of the stuck particles to measure the
local thickness of the sample chamber. To do this we find the
number density n(z) as a function of the distance z between
the walls, shown in Fig. 4 for (a) the mobile particles and (b)
the stuck particles. The maximum of each peak in Fig. 4(b)
corresponds to the approximate position of the centers of the
small particles stuck to the sample’s walls. These positions
are marked by the vertical dashed lines in Fig. 4, whose
separation indicate the effective local chamber thickness H .
Since only the small particles are visible to the microscope,
the actual thickness is H + 2asmall = H + 2.36 μm. The mean
particle radii are known only to within ±0.02 μm, while our
uncertainty in their z positions is 0.1 μm. By averaging over
tens of stuck particles we can determine H to within 0.01 μm.

Figure 4(a) shows layering of particles near the sample
walls, which has been seen in both computer simulations
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FIG. 4. (Color online) The number density n as a function of the
distance z between the walls, for the visible (small) particles. (a) All
mobile particles. (b) All immobile particles. The vertical lines in both
indicate the position of the centers of the visible particles stuck to
the walls. For this data, the distance between the two positions is
H = 6.25 μm, the effective local chamber thickness.

[6,46] and experiments [11,30,35,39]. Comparing Fig. 4(a) to
Fig. 4(b) we see that the boundary layers of the mobile particles
are offset from those of the stuck particles. The offset is due
to Coulombic repulsion between the glass walls and PMMA
particles, and is about 0.4 μm in all cases. Using differential
interference contrast (DIC) microscopy, we confirm that the
large particles also form layers, albeit in positions shifted due
to their size. Our results are qualitatively in agreement with
simulations that studied layering of binary mixtures of particles
near walls [47,48], and are fairly similar to observations of
layering in single-component colloidal samples [11,30,39].

Figure 5 displays the way layering changes with H . The
peaks of n(z) are tallest and thinnest next to the walls.
Subsequent layers are shorter and wider, presumably as the
correlations between particle positions become diluted through
the presence of two particle sizes [47]. Note that we do not
see any “quantization” effects for particular values of H [49].
For example, some packing effects were seen in simulations
at H = 2masmall + 2nalarge for integer values m,n, but these
effects are too subtle to be resolved given the relatively few
values of H for which we have experimental data [47].

B. Sample-averaged dynamics

Before we consider the specific influence of the particle
layers on the particle motion, we will quantify the average
motion of the sample. This is done by calculating the mean
square displacement (MSD) as

〈�x2〉 = 〈[xi(t + �t) − xi(t)]
2〉i,t ,
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FIG. 5. (Color online) Number density n as a function of the
distance z between the walls. The thickness H is as labeled (in
microns). The values of H in terms of asmall are 5.30, 5.62, 6.83,
6.86, 10.7, and 13.4. The curves are vertically offset for clarity, where
the offset is proportional to H . Where there is an asymmetry in the
height of the z ≈ 0 peak and the z ≈ H peak, it is due to one wall
having more stuck particles on it, thus decreasing the room available
for mobile particles.

where the average is taken over all particles i and all
initial times t . Analogous formulas apply for 〈y2〉 and 〈z2〉.
Figure 6(a) shows that the motion parallel to the walls slows
dramatically with confinement (decreasing H , as indicated).
For values less than H ≈ 16μm ≈ 14asmall ≈ 10alarge we
observe a systematic slowdown.

The change of shape of the curves in Fig. 6(a) suggest that
confinement induces caging dynamics. This is the inhibited
motion of a particle due to its “cage” of neighboring particles
[50–54]. At the earliest times (�t < 1 s, not shown), particle
motion is diffusive as particles have not moved far enough to
encounter the cage formed by the neighboring particles [55].
As the particle displacement becomes larger, its motion is
impeded by its neighbors which form the cage, resulting
in a greatly decreased slope of 〈�x2〉 for �t < 100 s. For
smaller values of H , the decreasing height of 〈�x2〉 in this
range suggests that the cage size decreases in more confined
samples. This is likely due to the concentration of particles
into the layers (Fig. 5), which crowds them within the layers
and reduces their cage sizes. Returning to Fig. 6(a), the upturn
at larger �t for 〈�x2〉 is the result of cage rearrangements
[7,22,51,53]. The neighbors rearrange and this lets the caged
particle move to a new position. The motion of particles at
longer lag times is diffusive due to the uncorrelated cage
rearrangements [53]; this is not quite seen in our data sets
here as the time scales for this diffusive motion is longer
than our observation times. The results shown are for one
volume fraction; our prior work showed that for larger φ,
the onset thickness H for the confinement-induced slowdown
increases [17].

To compare the mobility in the parallel and perpendicular
directions, in Fig. 6(c) we plot 〈�x2〉, 〈�y2〉, and 〈�z2〉 sepa-
rately for several thicknesses. Not surprisingly, the mobility is
less in the z direction (perpendicular to the wall). Furthermore,
the upturn of the MSD at large �t is barely beginning for
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FIG. 6. (Color online) (a) The mean square displacement for our
sample over a range of thicknesses [17]. The dashed line has a slope of
1.0. (b) Plots of the corresponding non-Gaussian parameter for each
thickness. The x superscript of αx

2 is to indicate that the non-Gaussian
parameter is only calculated using the x displacements (parallel to
the wall, and perpendicular to the slight gradient in H ). The inset is
a magnification of the curves for H � 15.8 μm, with each curve’s
local maxima labeled, corresponding with �t∗ for the data at these
thicknesses. (c) Components of the MSD curves. Light gray (red)
curves are the x and y components of motion (parallel to the walls) and
the dark gray (blue) are the z component of motion (perpendicular).

the z data. The contrast between the parallel (x and y) and
perpendicular (z) motion suggests that cage rearrangements
may favor motions parallel to the walls.

The MSD curves show an overall slowing down due to
confinement, but obscure the influence of the density layers on
the motion. Figure 7(a) shows the number density for one data
set. In panels (b) and (c) we plot the components of the MSD for
fixed values of �t . The dips in 〈z2〉 [Fig. 7(c)] coincide with the
layers in Fig. 7(a) and imply that particles within layers are in
a preferred structural configuration and are less likely to move
elsewhere [6,11,17,46,49]. Meanwhile, the parallel component
of motion shows no variation with z, even for long time scales.
Our observations differ from one prior experiment by Eral et al.
[11]. They found a decreased parallel mobility near the walls
but did not measure perpendicular mobility. One difference
is that they studied a single-component sample with a poly-
dispersity of 8%, whereas we study a binary sample. Another
difference is that their experiment had a spatial gradient in
volume fraction due to nondensity matched particles (they have
a density difference between solvent and particles of �ρ ≈
800 kg/m3, much larger than our value �ρ ≈ 0.3 kg/m3).

Intriguingly, our results shown in Figs. 5, 7 and 8 look strik-
ingly similar to recent experiments by Wonder, Lin, and Rice
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FIG. 7. (Color online) (a) Particle number density nsmall(z) as a
function of distance z across the sample cell. Additional particles are
permanently stuck to the walls of the cell (not shown) which have
centers located at z = 0.00 μm and z = H = 8.06 μm, indicated by
the vertical dashed lines. These data correspond to the H = 8.06 μm
data in Fig. 6. (b) Mean square displacement parallel to the walls
( 1

2 [〈�x2〉 + 〈�y2〉]) and (c) perpendicular to the walls (〈�z2〉) as a
function of the particles’ initial positions z. The displacements are
calculated using a range of �t , as labeled. The dotted lines indicate
the position of the number density maximum of each layer in (a)
while the dashed lines correspond to the approximate position of the
centers of the particles stuck to the glass walls.

[44]. They studied a monodisperse quasi-two-dimensional
colloidal system, where particles were limited to one layer
in z, and further constricted in y analogous to our confinement
in z. They found that their experimental short-time diffusion
coefficients had a similar qualitative behavior to what is shown
in Figs. 7(b) and 7(c) [44]. They did not study long-time
diffusion coefficients.

Our observed reduced particle mobility perpendicular to the
walls is similar to the observations of Dullens and Kegel, who
studied the first layer of colloidal particles at a smooth glass
surface [30,31]. In their work, quasi-two-dimensional (q-2D)
layers of particles formed along the surface of a glass slide in
a bulk polydisperse colloidal suspension, just as we observe.
Their wall-based particles only intermittently exchanged with
the bulk particles [31]. In their q-2D wall layer, particles
exhibited two-dimensional behavior that was fundamentally
distinct from the dynamics of the particles further from the
wall. However, a primary reason for this was that the particles
were fairly monodisperse, and thus could form ordered 2D
phases [30,31]. While we have pronounced layers near the
walls for small H experiments, our samples are binary. DIC
microscopy confirms that our two particle sizes remain well
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FIG. 8. (Color online) (a) Particle number-density nsmall(z) as a
function of distance z across the sample cell. Additional particles are
permanently stuck to the walls of the cell (not shown) which have
centers located at z = 0.00 μm and z = H = 16.0 μm, indicated by
the vertical dashed lines. These data correspond to the H � 15.8 μm
data in Fig. 6. (b) Mean square displacement parallel to the walls
( 1

2 [〈�x2〉 + 〈�y2〉]) and (c) perpendicular to the walls (〈�z2〉) as a
function of the particles’ initial positions z. The displacements are
calculated using a range of �t , as labeled. The dotted lines indicate
the position of the number density maximum of each layer in (a)
while the dashed lines correspond to the approximate position of the
centers of the particles stuck to the glass walls.

mixed in these layers and do not form ordered 2D phases. In
addition, Figs. 7 and 8 show that slowing is not restricted to
these layers alone. Note that the hydrodynamic interaction of
particles with nearby walls diminishes as the volume fraction
is increased [45].

One explanation for the slower dynamics might be that the
volume fraction is larger in confinement. We first consider an
observation from our experiment: The pair correlation function
g(r) changes slightly upon confinement, as shown in Fig. 9.
This function indicates the likelihood of finding a particle
a distance r away from a reference particle at r = 0, and
so the first peak position indicates a typical spacing between
nearest neighbor particles. For ideal hard spheres this first peak
position is always at contact (rmax = 2asmall). Our particles
are slightly charged, so the first peak shifts to larger values.
The peak is additionally rounded by our finite resolution and
the particle polydispersity [33]. Given the particle charges, an
approximate expectation is that φ ∼ r−3

max. The inset to Fig. 9
shows that confinement causes rmax to shift to lower values,
which would correspond in an increase of φ from 0.42 to
0.49. One explanation for this is that, given the layering of
particles, the local volume fraction within a layer is higher
than 0.42, and g(r) is reflecting this local volume fraction
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FIG. 9. (Color online) The pair correlation function g(r) for a
range of H . Darker curves correspond with thinner samples. The
curves are from samples with thickness H equal to 6.25, 6.63, 8.09,
12.6, 15.8, and 18.9 μm, along with one curve for the sample’s bulk
(the lightest color curve). The inset shows the position of the first
peak as a function of H . The red horizontal dashed line indicates rmax

for the bulk sample, while the diagonal dotted black line is a guide to
the eye.

[which would be more heavily weighted in the average used
to calculate g(r)]. Another possible explanation is that the
sample chamber is effectively thinner than we believe, due to
the interactions between the particles and the walls. As noted
above, the particle concentration is diminished within 0.4 μm
of the walls. At the thinnest regions we study, H ≈ 6 μm;
if the true value is ≈5.2 μm, this would correspond to an
increase of φ from 0.42 to 0.42 × (6/5.2) ≈ 0.48, consistent
with the estimate from the g(r) data. However, an effective
volume fraction increase from 0.42 to 0.49 seems unable to
explain all of the dramatic slowing of the dynamics seen in
Fig. 6(a). Consider the data at �t = 100 s: 〈�x2〉 drops by a
factor of ∼40 going from the bulk to H = 6.25 μm. A study
of an unconfined binary suspension similar to ours found a
drop of ∼3.7 for a change of φ from 0.42 to 0.49 [33]. Thus
we are left with a factor of 10 in additional slowing which is
not due to a possible volume fraction change. This agrees with
the conclusions of Eral et al. [11].

C. Defining cooperatively rearranging regions

The features of our 〈�x2〉 curves resemble those of bulk
supercooled colloidal liquids, where cage rearrangements play
a significant role in the material’s underlying dynamics. The
process of cage rearrangements leads to a liquid’s overall
structural relaxation [56,57]. Adam and Gibbs were the first
to hypothesize the existence of “cooperatively rearranging
regions” (CRRs) as a supercooled liquid’s means of increasing
its configurational entropy [1]. Prior simulations [2,58,59] and
experiments [21,22,60] found cooperatively moving regions,
defined as groups of neighboring molecules or particles that
collectively rearrange their positions. The connection between
these observations and the CRRs of Adam and Gibbs is perhaps
problematic [61]. Nonetheless, it is certainly intriguing that
spatially heterogeneous dynamics have been seen in a wide
range of glass-forming systems [3]. We wish to see how the

character of spatially heterogeneous motions changes upon
confinement.

The precise definition of a cooperatively rearranging region
is open to interpretation. Our definition is described below,
and comprises of three key elements: (1) the time scale used
to determine displacements, (2) the threshold for considering
a displacement to be a “rearrangement,” and (3) the definition
of which particles are adjacent, such that their motion is
“cooperative.”

We first define the time scale of interest. Prior work found
that a good choice is based on the shape of the probability
distribution of displacements. Rearranging particles have
displacements which are larger than normal, and thus lie
in the tails of the distribution [21,22,60,62,63]. The size
of the distribution tails is quantified by the non-Gaussian
parameter α2,

α2(�t) = 〈�x4〉
3〈�x2〉2

− 1,

from Ref. [64]. The maximum of α2 defines the cage rear-
rangement time scale �t∗. We plot α2(�t) in Fig. 6(b): Both
the maximum value of α2 and the time scale �t∗ increase with
decreasing H , similar to prior observations on a monodisperse
sample [19]. For data from H � 15.8 μm, the levels of noise at
low values of �t manifest as a false increase of α2, so we ignore
this peak. For �t > 10 s there are secondary local maxima of
α2 that we consider to be a better determinant of �t∗ [see the
inset plot of Fig. 6(b)]. We plot �t∗ versus H in Fig. 10(a),
which decays roughly exponentially with H until H ≈ 20 μm,
at which it reaches the bulk value. Simply put, as H decreases
the displacement distributions become less Gaussian-like, and
the time scale �t∗ for which the distributions are most extreme
grows.

To define the length scale which separates a “rearranging”
displacement from a “caged” displacement, we use a mobility
threshold �r∗. Both experiments [22,65] and simulations [66]
have used a displacement threshold to define mobility such that
over time, some percentage of the particles have displacements
|��r| � �r∗ [2,66], although at any given time the fraction
may not be exactly this percentage. Thresholds of the top 5th
percentile [22,66], 8th percentile [53], 10th percentile [65],
and 20th percentile [67] have all been used to define �r∗.
From examining distributions of �x and �y for our data for
each H , we find that the slowest 90% of the displacements
are well described by a Gaussian distribution, whereas the top
10% are more probable than a Gaussian distribution would
predict. Thus, we define our mobility threshold as the top
10% of the most mobile particles. Displacements in the z

direction, however, vary significantly with H , making their
inclusion in the calculation of our threshold impractical. As
is the case with prior studies [2,22], our choice of �r∗ is
somewhat arbitrary and our results are robust to some variation
of �r∗.

To complete our identification of CRRs we must identify
which highly mobile particles are simultaneously nearest
neighbors. Similar to other work, we define neighbors as those
particles whose separation is less than a cutoff distance set by
the first minimum of the pair correlation function g(r) [53].
Our distributions of g(r) do not vary substantially with H ,
as shown in Fig. 9. We use the average position of the first
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minimum (3.87 μm) to define particles which are nearest
neighbors.

One problem we face is the selective visibility of the
colloidal particles. As discussed earlier, only the smaller
particles of our binary suspension are fluorescent meaning that
the larger species of particles are not visible to our confocal
microscope. Despite this limitation we can still draw some
reasonable conclusions. For example, in a study of a binary
colloidal suspension similar to the one studied here, Lynch
et al. showed that the cooperative dynamics of one species
were similar to that of the other [67]. Mobile particles of
one species were usually near mobile particles of the other
species. Therefore, it is reasonable to draw some conclusions
about cooperative motion from the small particles alone. One
other related limitation is that small rearranging particles may
not be nearest neighbors, but may be part of the same CRR,
connected by unseen large particles. This may simply limit
the apparent sizes of CRRs without otherwise changing their
character.

D. Shapes of cooperatively rearranging regions

We first visualize these CRRs to develop a qualitative
understanding of their nature. Figure 11 depicts clusters of
mobile particles in a sample with H = 15.8 μm and 6.63 μm
[Figs. 7(a) and 7(b), and Figs. 7(c) and 7(d), respectively).
For clarity, bonds have been drawn between particles that are
nearest neighbors (i.e., within a cluster). Groups of mobile
particles can be seen for both thicknesses. The size of these
mobile clusters in the unconfined sample is small, as expected
for this low volume fraction (φ = 0.42) [22]. Despite their
small size, these mobile clusters are the primary means for
particle rearrangements in the sample. The sample can be
considered as composed of the slowest 90% particles which
are caged at a given moment, and the rearranging fastest 10%.
If the nature of the fastest 10% changes in confinement—for
example, if those rearrangements occur less frequently—then
the overall sample diffusivity will decrease.

Confinement induces slower dynamics, and in the bulk
slower dynamics are associated with larger CRRs [21,22].
Perhaps confinement induces a similar larger size of CRRs
[19]; but at first glance, comparing Figs. 11(a) and 11(c) might
suggest that the cluster sizes are smaller upon confinement.
However, recall that the particles shown are the most mobile
10%; the thinner sample has fewer particles in the imaged
volume, and thus 10% of this smaller number results in fewer
mobile particles to show without necessarily implying that the
CRRs are smaller. To quantify the size of CRRs we calculate
the mean number of particles in a CRR NC as a function of H ,
plotted in Fig. 10(b). Figure 10(b) shows that CRRs involve
roughly the same number of particles, regardless of thickness.
The mean CRR size is between three and four particles, but
this is only slightly larger than the minimum size of three
particles. The small size may be because the bulk sample,
with φ = 0.42, is liquidlike and only has small CRRs [22].
Alternatively, as noted above, we cannot see the large particles
which are almost certainly part of CRRs [67]. With the data
of Fig. 10(b), we cannot say clearly if the CRRs are larger or
smaller upon confinement. There is a very slight downward
trend in 〈NC〉 with decreasing H , but this could be due to poor
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FIG. 10. (Color online) (a) Values of �t∗ that maximize α2 for
a range of thicknesses H . The horizontal dashed line indicates the
value of �t∗ for the bulk sample. (b) Plot of the mean number of
particles within cooperatively rearranging regions, as a function of
H . Only NC � 3 are considered to avoid trivial rearrangements that
consist of one or two particles. The dashed line indicates 〈NC〉 for
the sample’s bulk. (c) Plot of the average extent of cooperatively
rearranging regions parallel (crosses and circles correspond to x and
y, respectively) and perpendicular (triangles, z) to the sample’s walls.
The difference between the x and y data is an indication of the amount
of uncertainty in our data. The upper and lower horizontal dashed lines
indicate the mean horizontal and perpendicular extent of data from
the sample’s bulk, respectively. In principle these should be the same
(the behavior should be isotropic in the bulk); in practice the lines
may differ due to finite data or anisotropy in the imaging volume
(50 μm in x and y but only 20 μm in z). (d) Value of the mean square
displacement 〈�r2〉 at the time scale �t = 100 s. The horizontal
dashed line indicates the value of the bulk sample. In panels (a), (c),
and (d), the dotted lines are guides to the eye.

statistics. It is possible that the influence of confinement on the
size of CRRs would be clearer in a sample with a larger value
of φ, although such samples are very difficult to load into our
thin sample chambers (as has been noted by others [68,69]).
Likely some of the difficulty in loading the samples is due to
their increasing glassiness in confined spaces. Results from
another confocal microscopy experiment on a monodisperse
sample suggested that the length scale for CRRs grows upon
confinement [19]. The difference from our results may be due
to our use of a binary sample.

An alternate way to quantify the size of a CRR is through
its spatial extent. We define the spatial extent of the CRRs as
xextent = max(xi) − min(xi), where i ranges over all particles
within a given CRR. Similar definitions apply for the y and
z directions. We plot the mean CRR extent in the x, y, and

041401-7



KAZEM V. EDMOND, CAROLYN R. NUGENT, AND ERIC R. WEEKS PHYSICAL REVIEW E 85, 041401 (2012)

(a)

0 µm

(c)

(b) (d)

0.4

0.4

1.18

1.18

H 16 µm H 6.6 µm

FIG. 11. (Color online) Three-dimensional renderings of the top
10% most mobile particles in two different sample thicknesses. The
bonds between particles are drawn only to indicate nearest neighbors
and do not imply physical connections. Only groups with NC � 2
particles are drawn. The colors correspond to the magnitude of
displacements in the z direction, normal to the confining boundaries.
The experiment’s field of view, and the effective position of the
confining boundaries, are indicated by the light gray bounding boxes.
The sample on the left [(a) and (b)] has a thickness of H = 15.8
μm and the one on the right [(c) and (d)] has H = 6.63 μm. The
top row of images [(a) and (c)] view the sample normal to the
confining boundaries, while the bottom row [(b) and (d)] provide
a parallel view. Black and white indicate displacements of at least
asmall over a �t = 23 s and 250 s for the thicker and thinner sample,
respectively.

z directions separately in Fig. 10(c). We find that the CRRs
maintain a constant size in the direction parallel to the walls.
However, the amount of distance that the CRRs extend in the
direction perpendicular to the walls is significantly smaller
than H , and decreases as H decreases. In the z direction, then,
clusters are smaller, perhaps trivially because CRRs have to fit
into a thinner sample chamber. Comparing this result with the
〈Nc〉 data of Fig. 10(b) suggests that the CRRs are becoming
more compact in z with the same number of particles. This
suggests that perhaps they are fractal in the bulk with a fractal
dimension larger than 2 (as seen previously in Ref. [22])
and become more planar upon confinement (fractal dimension
approaching 2).

The onset of flatter or more planar CRRs coincides with the
sample’s overall slowing. In Fig. 10(d) we plot the MSD values
from Fig. 6(a) for �t = 100 s against the corresponding range
of H . We observe that the MSD values of Fig. 10(d) begin
to deviate from those of the bulk, indicated by the horizontal
dashed line in (d), at approximately the same H that the z

extents of the CRRs first begin to flatten relative to the z extent
from the bulk, the horizontal dashed line in Fig. 10(c). This
is the strongest evidence linking the changing CRRs to the
slowing dynamics. The overall concept is that confinement
modifies the structure from that of the bulk, and this changed
structure leads to slower dynamics [48].

To more carefully quantify the shapes of the CRRs, we
consider the probability distributions of the extents in the three
directions. These distributions are shown in Fig. 12 for a bulk
sample (a) and a confined sample (b). In the unconfined sample
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FIG. 12. (Color online) Extent of mobile groups of particles. Dark
and light gray (red and orange online) indicate the perpendicular and
parallel extents, respectively. CRRs in the bulk (a) of the sample are
more isotropic in shape than when confined (b) to H = 6.63 μm.
Note the difference in vertical scales used by the two plots. Only
CRRs consisting of at least three particles are considered in the data
shown.

the distributions for the x, y, and z directions are approximately
the same, as should be expected; these CRRs are spatially
isotropic. Differences in the z are most likely due to minor
particle position errors which are larger in z, as discussed in
Sec. II. Figure 12(b) looks quite different. The extent in z is
nearly zero for a majority of CRRs [red (dark gray) curve in
Fig. 12(b)]; these are planar CRRs and are overwhelmingly
more probable than in the unconfined case. A small subset
of confined CRRs do extend into the z direction by one to
two particle diameters. The clusters of rearranging particles
along the walls in Figs. 11(c) and 11(d) seem to be the most
planar in shape. Thus we are led to conclude that the CRRs in
the confined cases are qualitatively different than those of the
unconfined sample.

E. Details of rearrangements

We next investigate the behavior of particles within CRRs.
In Fig. 11 the particles are colored in correspondence with their
amount of perpendicular motion, as shown in the key. In the
confined situation mobile particles displace horizontally more
frequently than otherwise, as suggested by the greater number
of orange (medium gray) particles in Figs. 11(c) and 11(d),
This makes sense: A rearrangement consisting of particles
within a single layer does not require the particles to move
vertically for the rearrangement to occur. Occasionally we
do see particles which jump between layers or even swap
between layers; one example is near the bottom right corner
of Fig. 11(c).

To compare the amount of parallel versus perpendicular
displacements, we calculate the directions of motion for
all particles and then repeat the comparison for different
confinement thicknesses. Using a spherical coordinate system
we determine the polar angle of a given particle displacement.
The polar angle θ spans a range from 0◦ to 180◦, which
corresponds to motion toward or away from the nearest sample
chamber wall, respectively. That is, we exploit the symmetry
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FIG. 13. (Color online) Polar plots of the probability distributions
of the directions of particle displacements for H = 6.63 and H =
15.8 μm as indicated. (a) and (b) Data for the two thicknesses,
considering only particles away from the walls. (c) and (d) Data
for particles in the layers immediately adjacent to a wall. The
displacements from one wall are reversed, so that 180◦ always means
motion away from the nearest wall. In all panels, the light blue
curve (light gray) is the distribution for the most mobile 10% of the
particles, while the dark blue curve (dark gray) is the distribution
for all particles. Displacements are measured over �t = 250 s
and �t = 23 s for the H = 6.63 μm and H = 15.8 μm data,
respectively.

between the two walls. We first compute the polar angle θ

relative to the +z axis, and then use 180◦ − θ for the data
in the lower half of the sample chamber. Comparing the data
separately for the top and bottom half, we find no difference
in the results. For isotropic motion, the distribution of θ is
proportional to sin θ , so we divide our measured histograms by
sin θ to remove this dependence. The distributions are plotted
in polar coordinates, shown in Fig. 13, for thicknesses of
H = 6.63 μm and H = 15.8 μm. The dark curves are for all
particles, and the light curves are for the top 10th percentile of
displacements, providing insight into the directions that tend
to permit higher mobility. The top panels show the motion
of the particles in the interior of the sample, and the bottom
panels show the motion of the particles immediately adjacent
to the walls.

In both the 15.8-μm and 6.63-μm samples, the particles in
the outer layers along the walls tend to move parallel to them
(θ ≈ 90◦) rather than perpendicularly [Figs. 13(c) and 13(d)].
The effect is even more pronounced for the fastest particles,
whose distribution suggests that fast particles move almost
exclusively along the walls. This agrees with our observations
from Figs. 11(b) and 11(d), where the particles layered along
the walls are almost all orange (medium gray), indicating
they are moving primarily horizontally. The distributions
in Figs. 13(c) and 13(d) do show some data at θ = 180◦,
indicating that some particles move away from the walls, and
less data at θ = 0◦, indicating that some particles make slight
motions toward the walls.

The situation changes markedly for the inner layers
[Figs. 13(a) and 13(b)]. Considering only the full distribution

of all particles we see that the displacements are more isotropic,
although there is still a slight bias in the θ ≈ 90◦ direction. The
distribution of directions for the most mobile interior particles
is similar. There are bumps in these distributions near θ = 0◦
and 180◦, suggesting that particles that move in z have a slight
increased probability to make large motions in z, hopping
between layers.

Overall, the particle dynamics in the thicker region are
far more isotropic than the ones from the confined region
[compare Figs. 13(a) and 13(c) with 13(b) and 13(d)]. In the
H = 15.8 μm case, there are appreciable signs of anisotropic
behavior only along the walls.

IV. CONCLUSION

The smooth quasiparallel walls confining our sample
induce the formation of density layers within the colloidal
sample’s volume. The most dense layers form along the
sample chamber’s glass surfaces, as shown in Fig. 5 and
also observed in other experimental work that used single-
component colloidal samples [11,30]. The structural inhomo-
geneities induced by the density layers result in corresponding
inhomogeneities in the system’s dynamics, as described by
the plots in Figs. 7 and 8. Particles move most easily within
their layer, but this is still slower than they would move
in unconfined samples. The layered particles cooperatively
rearrange within the layer but rarely with adjacent layers;
the cooperative rearrangements occur in more planar-shaped
groups of particles. Given that even in unconfined samples,
particles need to move cooperatively if they wish to have large
displacements, the change in the character of the cooperatively
rearranging regions seems to explain the slowing dynamics.
In short, the thickness at which we begin to observe the
slowing in the sample’s average dynamics corresponds with the
confinement length scale at which cooperatively rearranging
regions begin to become planar in shape [Figs. 10(c) and
10(d)]. Our prior work suggests that the observed increase
in rearrangement time scales and the thickness at which these
regions begin to flatten will both grow with higher volume
fractions [17].

It is likely if the walls were roughened, the results might
change. Simulations [6,7,10] and experiments [11,39] showed
that behavior is often glassier with rough walls. With rough
walls, layering is greatly diminished or prevented entirely,
or perhaps becomes more subtle. For example, particles
might form a corrugated layer wrapping around the local
wall texture. This could then lead to other shapes for
the cooperatively rearranging regions, the main point being
that structure that departs from the bulk results in slower
dynamics [48].
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