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We analyze data from confocal microscopy experiments of a colloidal suspension to validate
predictions of rapid sporadic events responsible for structural relaxation in a glassy sample. The
trajectories of several thousand colloidal particles are analyzed, confirming the existence of such rapid
events responsible for the structural relaxation of significant regions of the sample, and complementing
prior observations of dynamical heterogeneity. Thus, our results provide the first direct experimental
verification of the emergence of relatively compact clusters of mobility which allow the dynamics to
transition between the large periods of local confinement within its potential energy surface, in good
agreement with the picture envisioned long ago by Adam and Gibbs and Goldstein.
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A complete understanding of the molecular underpin-
nings of glassy relaxation (the dramatic dynamical slowing
down that arises when a liquid is rapidly cooled below its
melting point avoiding crystallization), remains a major
challenge in condensed matter physics [1-6]. As long ago
as 1965, Adam and Gibbs [7] proposed an appealing
picture that accounted for this enormous increase in re-
laxation time scales within a narrow temperature window.
They suggested that the dynamics of a glass-forming
supercooled liquid proceeds by means of cooperatively
rearranging regions (CRR) whose size and relaxation
time scale grow considerably as temperature is lowered,
giving the decrease in configurational entropy of the sys-
tem [1-7]. This description suggests that a supercooled
liquid at low temperatures can be decomposed in indepen-
dently relaxing compact subsystems (the CRR) whose
molecules attempt to change configuration, but which
can only undergo a transition when they rearrange in a
concerted manner. Thus each of them (in the words of
Adam and Gibbs [7]) surmounts, essentially simulta-
neously, the individual barrier restricting its arrangement.
In this picture, it is expected that each region of a super-
cooled liquid should be practically “frozen” in a given
portion of configuration space for large times (larger as
temperature decreases given the growing size of the re-
gions and thus of the number of molecules involved in the
rearrangement) and then will relax (asynchronously and
independently of other regions) by having a burst of mo-
bility characterized by the sharp emergence of a compact
cluster of mobile particles [7,8]. Hence, at any given time
the system would present dynamics that would vary sig-
nificantly from one region to another: the dynamics should
then be heterogeneous in space [1-6].

The validity of such a heterogeneous scenario has been
confirmed both experimentally and computationally, since
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the existence of dynamical heterogeneities [9—17] has been
detected. Simulations of model glassy systems have shown
that the more mobile particles are not homogeneously
distributed in space but arranged in (noncompact) clusters
[10]. The time scale for the motion of these more mobile
particles is ¢*, a time scale close to the structural
a-relaxation time, 7,; T, is calculated as the time scale
when the or self-intermediate scattering function has de-
cayed to 1/e. These results have also received experimen-
tal support in colloidal suspensions (experimental models
for glassy relaxation) [12,13].

More recently [18], computational studies have deter-
mined that within any dynamically heterogeneous region
of the system, the relaxation is not gradual but also het-
erogeneous in time, since the « relaxation is almost ex-
clusively governed by rapid sporadic events characterized
by the emergence of relatively compact clusters of mobile
particles (termed as ‘“‘democratic” clusters or d clusters
[18]). These events trigger transitions between local meta-
basins (MB, basins of attraction of the potential energy
surface comprising a group of similar closely-related
structures or local minima [3,18-20] where the system is
confined for long times). These cooperatively relaxing
units or d clusters have been identified in molecular
dynamics simulations of different glassy systems like a
binary Lennard-Jones [18] system, supercooled water [21]
and amorphous silica [22] and represent natural candidates
for the CRR proposed by Adam and Gibbs [7]. A recent
inhomogeneous mode-coupling theory of dynamical het-
erogeneity has related them to the (fractal) geometrical
structures carrying the dynamical correlations at time
scales commensurable with that of the « relaxation
(more compact than the openlike structures expected at
much shorter time scales) [23]. Additionally, a recent
experimental and computational work in a glassy polymer
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provided indirect experimental support to the MB-MB
transitions and d clusters [24]. However, experiments
with molecular glasses lack the level of resolution neces-
sary to directly observe them and thus, no direct experi-
mental information has verified the existence of such
events up to date. Thus, in this work we study a colloidal
suspension (an excellent experimental model of glassy
systems with particles big enough to be directly observed
by confocal microscopy) to provide for the first time a
direct experimental proof that detailed tracking of particle
motions is indeed able to detect the aforementioned kind of
events.

We analyze the data of Refs. [13,14], taken from
confocal microscopy experiments of colloidal samples.
The colloids are sterically stabilized colloidal poly-
(methylmethacrylate) with diameter d = 2.36 um and a
polydispersity of ~5%. They are dyed with rhodamine and
suspended in a density-matching and index-matching sol-
vent mixture of cycloheptylbromide and decalin. In this
solvent, the colloidal particles possess a slight charge, and
exhibit a glass transition at a volume fraction ¢ =~ 0.58. A
confocal microscope rapidly acquires three-dimensional
images once every 10-20 s. The images are post-processed
to locate particle centers with an accuracy of 0.03 pwmin x
and y and 0.05 um in z. Because of the difficulty of
identifying particles near the edges of the images, the
useful data are within a region of size L, = 67 um, L, =
62 um, and L, =9 um, corresponding to several thou-
sand particles. The volume fractions are determined by
counting the particles within a subvolume, and are known
to within =0.01 with the uncertainty mainly due to the
uncertainty of the particle diameter ( = 0.01 um). For
further details, see Refs. [13,14].

Since at any given time a large system would consist of
several different CRR, we divided the experimental system
into 6 subsystems or portions &, each one with an increas-
ing number of colloidal particles N(£) [see the inset in
Fig. 1(a)]. All portions have the same depth L, and center
(L,/2,L,/2, L,/2). Portion £ comprises the particles that
were initially (r = 0) [25] within the boundaries of the
corresponding rectangular prism of length L,.(£/6) and
height L, - (£/6). For ¢ = 0.56, the number of particles
within each portion is: N(¢& = 1) =77, N(2) = 310,
N(3) =703, N(4)= 1255, N(5)=1962 and N(6) =
2759 particles. We shall present results for ¢ = 0.56 un-
less otherwise indicated, but similar results were obtained
for ¢ = 0.53, ¢ = 0.52 and ¢ = 0.46.

To identify MBs we employed the following ‘““distance
matrix” (A?) function [26]:

N
() = SO @ W
i=1

where r;(f) is the position of particle i at time 7. A*(¢, t')
gives the system normalized squared displacement in the
time interval (¢, 7).
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FIG. 1 (color). (a) Distance matrix A%(¢/, ¢) for portion & = 1.
The gray level corresponds to values of A%(¢, ') that are given
to the right of the figure. Units are wm?. Inset: for the analysis,
we followed the colloidal particles that were initially (r = 0)
within the boundaries of rectangular prisms: & = 6 (blue, the
complete system), magenta, green, yellow, orange and & = 1
(red, smallest region), respectively. All ¢ have the same depth
L,. Colloidal particles are not shown. (b) Averaged squared
displacement 82(¢, #) for all £. Each series (analysis over each
£) is shifted by 0.5 wm? respect the former one. For comparison
we included the corresponding average values of 8%(¢, 6) over all
times, (82(t, 0)) (dashed colored lines, also shifted). The value of
0 is 72 s. Inset: y = |8§(5706 s,0) = (8%(t, 0))¢l/os vs &,
where o is the standard deviation in 82 and 5706 s is the time
of the largest average squared displacement. Subscript & means
that the function was evaluated for molecules in £. A maximum
for £ = 2 is observed. (¢) The function m(z, #) for £ = 1 and its
average value over all times (dashed black line).
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A plot of A? as a function of  and ¢’ can be seen in
Fig. 1(a) for ¢ = 0.56. These results are typical for all
studied ¢ (as an example, in Fig. 2 we show an equivalent
plot for ¢ = 0.46). The darker the shading, the smaller the
distance between the configurations at times # and 7.
From this figure we can learn that the dynamics of this
portion is quite heterogeneous in time in that it stays for a
significant time relatively close to some region in configu-
ration space, dark squarelike regions, before it finds a
pathway to a new region. The value of A(¢, t') within a
MB is around 0.02 um” as compared to values much
larger than 0.04 wm? if the system is in different MBs
(see legend on the right of the figure). If there were no
MBs, the plot would show a dark shadow at the diagonal
" = ' and a gradual decrease in shading perpendicular to
it, as it would be seen at low ¢ (similarly to the case
of structural glasses at high temperature [18]) and/or
large systems; compare Fig. 1(a) (¢ = 0.56) to Fig. 2
(¢ = 0.46). These figures demonstrate that the system
spends large amounts of time exploring the local MB,
and only occasionally moves on to a neighboring MB.
Indeed, we can see that this trajectory resides within a
MB for times much larger than * = 1000 s, the maximum
in the non-Gaussian parameter a,(7) [13,15]. We also point
out that from Fig. 1(a) it is evident that the time for a MB-
MB transition is quite short, on the order of 70 s, which
thus corresponds to about 7% of ¢*. In the lower volume-
fraction data of Fig. 2, the transitions are also rapid
although slightly less distinct. The time scale for the dis-
placements we consider, § = 72 s, corresponds to the
cage-trapping plateau in the mean square displacement
(r(t)?). The time within a MB, #* (or larger), corresponds
to the start of the upturn of (r(¢)?).

In Fig. 1(b) we also show, for all ¢ and same time
interval, 6%(t, #), the averaged squared displacement of
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FIG. 2. Similar to Fig. 1(a), but for ¢ = 0.46 and for a
(rectangular prism) region of approximately the size of & = 1.
At this ¢, N(1) = 44 and 1" = 300 s.

the particles within a time interval @ (solid curves). This
function is defined as

N
852(,0) = A2(r, 1 + 0) = % ; () — (e + O, )

A comparison of 8% with the distance matrix shows that
62 is showing pronounced peaks exactly when the system
leaves a MB. Thus we see that changing the MB is indeed
associated with a rapid significant particle motion as mea-
sured by 82. Also included are the average values of
52(t, 0) for all & over all times, (52(t, 6)), represented by
dashed lines. It is clear that the larger systems have a lower
relation between fluctuations in 62 at the MB transitions
and its average value: This ratio in Fig. 1(b) for the peak at
time ¢t = 5706 s is maximum at & = 2 (see inset), thus
providing an indication of the size of the MB-MB transi-
tion event.

To understand the motion of the particles when the
system leaves a MB we have calculated the function
472G, (r, 1, 1 + 0), the distribution of displacement r of
the particles for a given time difference 8 = 72 s. [Note
that the average of 47Tr2(A?S(r, f,t+ 60) over r gives
47r’G,(r, 0), the self-part of the van Hove function]. An
average of this distribution is shown in Fig. 3 (blue curve)
for different values t within a MB [t/s = 378, 2898, 3474,
4626, 6210, and 7506 for the case of Fig. 1(a)]. Also
included is the self-part of the van Hove function (black
curve) and we can see that both curves are (within the noise
of the data) identical, thus showing that in a MB the system
moves basically the same as on average. We also show the
distribution (magenta curve) for ¢t = 5706 s in which
the system is about to leave a MB. For this value of ¢ the
distribution is clearly displaced to the right with respect to
47r’G,(r, #), showing that in this time regime the motion
of the system is much faster than on average. Thus we can
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FIG. 3 (color online). Radial probability distribution functions
P(r) for £ =2 and @ = 72 s. The black curve is 47r>G,(r, 0),
the self-part of the van Hove function, and the gold curve is a
Gaussian with the same value of (r2(6)). The crossing point of
these two curves at r = 0.23 um is used as a threshold to
identify the democratically moving particles. The blue and
magenta curves are the average of 472G (r, 1, t + 0) for differ-
ent values of 7 in which the system is inside a MB (see text for
details), and a transition (TR) from # = 5706 s to t + 6.
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FIG. 4 (color online). Position of democratic particles for:
(left) a MB-MB transition from ¢ = 5706 s to ¢ + 6 and (right)
t=17290s to t+ 6 inside a MB. The data are for & = 2,
0="72s, ¢ =0.56.

conclude that the peaks of the 8% are not due to the
presence of a few fast moving particles, but instead to a
democratic movement of many particles. That is, rather
than being 5—8% of the particles (as considered previously
[10,13-15]), rearrangements involve as many as 25% of
the particles in a local region, as suggested by Figs. 1(c)
and 4(left); and given that the whole displacement distri-
bution is shifted (Fig. 3), likely even the other 75%
participate in a fashion as well.

To further demonstrate that this is indeed the case and to
explore the spatial distribution of mobility, we have defined
as democratic all those particles that in the time interval
6 = 72 s have moved more than ry = 0.23 um (a value
very close to 0.25 wum, the size of the cage formed by
particles surrounding a single particle [ 14]), and denote the
fraction of such particles by m(z, 6). We take the value of
ra as the second intersection between 47r°G(r, §) and a
Gaussian (see Fig. 4, gold curve) with the same value of
(r*(#)) (however, other threshold choices yield similar
results). In Fig. 1(c) we have included the fraction m of
democratic particles for £ = 1 as a function of time (ver-
tical bars). A comparison of this data with 6% shows that m
is indeed large whenever 82 increases rapidly. This fraction
is on the order of 20% of the particles and thus significantly
larger than expected from 477G (r, 0) if one integrates this
distribution from ry, to infinity and which gives 0.051. In
turn, Fig. 4 (left) shows the 3D location of the democratic
particles involved in a typical MB-MB transition for £ = 2
(for the event at r = 5706 s in Fig. 1 but other cases display
similar results). We can see that the particles are not
homogeneously distributed in space (as is indeed the case
in Fig. 4 (right) for t = 7290 s inside a MB) but arranged
in a relatively compact cluster.

In summary, the experimental results shown in this work
for a colloidal system provide direct validation to the
picture of glassy relaxation previously shown by MD
simulations of several glassy systems [18,21,22,24]: The
dynamics spends large times confined within a metabasin,
interspersed with rapid bursts in mobility characterized by
the emergence of relatively compact clusters of democratic
particles which trigger the structural or « relaxation. While

the experimental particles are not perfect hard spheres, the
major contribution to the free energy landscape is expected
to come not from potential energy but from entropic con-
siderations. Metabasins correspond to regions of phase
space with many possible microstates, while the saddles
between them involve regions with fewer ones (this might
correspond to particles locally moving close together to
allow another particle to rearrange, which would be an
unlikely microstate but which would allow a metabasin
transition). Systems closer to the glass transition have more
distinct metabasin transitions that occur more infrequently
[compare Fig. 1(a) to Fig. 2]. Thus, this behavior conforms
to the scenario put forth long time ago by Adam and Gibbs
[7] and Goldstein [8].
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