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The rheology of dense amorphous materials under large shear strain is not fully understood, partly due to the
difficulty of directly viewing the microscopic details of such materials. We use a colloidal suspension to
simulate amorphous materials and study the shear-induced structural relaxation with fast confocal microscopy.
We quantify the plastic rearrangements of the particles in several ways. Each of these measures of plasticity
reveals spatially heterogeneous dynamics, with localized regions where many particles are strongly rearranging
by these measures. We examine the shapes of these regions and find them to be essentially isotropic, with no
alignment in any particular direction. Furthermore, individual particles are equally likely to move in any
direction other than the overall bias imposed by the strain.
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I. INTRODUCTION

Many common materials have an amorphous structure,
such as shaving cream, ketchup, toothpaste, gels, and win-
dow glass �1–4�. In some situations, these are viscous liq-
uids, for example, when window glass is heated above the
glass transition temperature or a shaving cream foam that has
been diluted by water to become a liquid with bubbles in it.
In other situations, these are viscoelastic or elastic solids,
such as gels and solid window glass �5�. For solidlike behav-
ior, when a small stress is applied, the materials maintain
their own shapes; at larger stresses above the yield stress,
they will start to flow �6–8�. Understanding how these ma-
terials yield and flow is important for the processing of these
materials and understanding their strength in the solid state
�9–11�.

A particularly interesting system to study is a colloidal
suspension. These consist of micron- or submicron-sized
solid particles in a liquid. At high particle concentration,
macroscopically, these are pastes and thus of practical rel-
evance �6�. Additionally, for particles with simple hard-
sphere-like interactions, colloidal suspensions also serve as
useful model systems of liquids, crystals, and glasses
�12–15�. Such colloidal model systems have the advantage
that they can be directly observed with microscopy �16–18�.
Our particular interest in this paper is using colloidal suspen-
sions to model supercooled and glassy materials. The control
parameter for hard-sphere systems is the concentration, ex-
pressed as the volume fraction �, and the system acts like a
glass for ���g�0.58. The transition is the point where
particles no longer diffuse through the sample; for ���g,
spheres do diffuse at long times, although the asymptotic
diffusion coefficient D� decreases sharply as the concentra-
tion increases �19–21�. The transition at �g occurs even
though the spheres are not completely packed together; in
fact, the density must be increased to �RCP�0.64 for
“random-close-packed” spheres �22–26� before the spheres

are motionless. Prior work has shown remarkable similarities
between colloidal suspensions and conventional molecular
glasses �12,19,27–33�.

One important unsolved problem related to amorphous
materials is to understand the origin of their unique rheologi-
cal behavior under shear flow. Early in the 1970s, theory
predicted the existence of “flow defects” beyond yielding
�9�, later termed shear transformation zones �STZ� �34�.
These microscopic motions result in plastic deformation of
the sheared samples �35,36�. Simulations later found STZs
by examining the microscopic local particle motions
�11,37,38�. Recently, fast confocal microscopy has been used
to examine the shear of colloidal suspensions �39� and STZs
have been directly observed �15�. This provided direct evi-
dence to support theoretical work on STZs �9,34,40,41�.

However, questions still remain. First, most of the prior
work has focused on the densest possible samples at concen-
trations which are glassy ����G� �15,39�. Given that the
macroscopic viscosity of colloidal suspensions changes dra-
matically near and above �G �42�, it is of interest to study
slightly less dense suspensions under shear, for which rear-
rangements might be easier �43�. In this paper, we present
such results. Second, prior investigations of sheared amor-
phous materials have used a variety of different ways to
quantify plastic deformation �15,39,44,45�. In this paper, we
will compare and contrast plastic deformations defined in
several different ways. While they do capture different as-
pects of plastic deformation, we find that some results are
universal. In particular, in a sheared suspension, there are
three distinct directions: the strain velocity, the velocity gra-
dient, and the direction mutually perpendicular to the first
two �the “vorticity” direction�. We find that plastic deforma-
tions are isotropic with respect to these three directions, apart
from the trivial anisotropy due to the velocity gradient. The
deformations are both isotropic in the sense of individual
particle motions and in the sense of the shape of regions of
rearranging particles.

II. EXPERIMENTAL METHODS

The experimental setup of our shear cell is shown in Fig.
1 and is similar to that described in Refs. �39,46�. The glass*dchen@physics.emory.edu
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plates are 15 mm in diameter and to the top plate is glued a
small piece of glass with dimensions 5�1 mm2, with the
long dimension oriented in the direction of motion x. The
purpose of this piece of glass is to decrease the effective gap
size. Between the plates are three ball bearings used to con-
trol the gap size; for all of our data, we maintain a gap size of
H=130 �m. Over the 5 mm length of the small pieces of
glass, the gap varies by no more than 15 �m; over the nar-
rower dimension of the small pieces of glass, the gap varies
by no more than 10 �m. Thus, overall, the sample is be-
tween two plates which are parallel to within 1% and in the
direction of shear, they are parallel to within 0.3%.

A droplet of the sample �volume �200 �l� is placed be-
tween the two pieces of glass. The top plate is free to move
in the x direction and the bottom plate is motionless. The
shear rate is controlled by a piezoelectric actuator �Piezo-
mechanik GmbH Co.� driven by a triangular wave signal
with a period ranging from T=150 to 450 s and an amplitude
of A=175 �m. Thus we achieve strains of �0=A /H=1.4.
Prior to taking data, we allow the shear cell to go through at
least one complete period, but usually not more than three
complete periods.

Our samples �Fig. 2� are poly�methyl methacrylate� col-
loids sterically stabilized with poly-12-hydroxystearic acid
�47�. These particles are suspended in a mixture of 85% cy-
clohexybromide and 15% decalin by weight. This mixture
matches both the density and the index of refraction of the
particles. To visualize the particles, they are dyed with
rhodamine 6G �48�. The particles have a radius a
=1.05�0.04 �m, with the error bar indicating the uncer-
tainty in the mean diameter; additionally, the particles have a
polydispersity of no more than 5% �as these particles can
crystallize fairly easily� �12,49–51�.

In this work we study several samples with volume frac-
tions � between 0.51 and 0.57. Thus, our samples are quite
dense liquids, comparable to prior work with “supercooled”
colloidal liquids �12,43�. The differences in volume fraction
between samples are certain to within �0.01 and the abso-
lute volume fraction has a systematic uncertainty of �0.06
due to the uncertainty of the particle radius a. However, none
of our samples appear glassy and thus we are confident our
maximum volume fraction is less than �0.6. While the par-
ticles in decalin behave as hard spheres, in our solvent mix-

ture, they carry a slight charge. This does not seem to affect
the phase behavior dramatically at high volume fractions
such as what we consider in this work �see, for example,
�52,53��.

To characterize the relative importance of Brownian mo-
tion and the imposed strain field, we can compute the modi-
fied Peclet number, Pe�= �̇a2 /2D�, where D� is the long-
time diffusion coefficient of the quiescent sample. We
measure D� from mean-square displacement data taken from
the quiescent sample with the same volume fraction. The
large 	t data for the mean-square displacement can be fit
using �	x2�=2D�	t. Roughly, a2 /2D� reflects the average
duration a particle is caged by its neighbors in the dense
suspension.

�̇ is the imposed strain rate 2A / �HT� and a is the particle
size. The extra factor of 2 in �̇ is because we use a triangle
wave and thus the half period sets the strain rate. For our
samples, we find D��5�10−4 �m2 /s and we have �̇ rang-
ing from 0.0060 to 0.0180 s−1; thus Pe��7–20. Given that
Pe��1, the implication is that the motions we will observe
are primarily caused by the strain rather than due to Brown-
ian motion. We use the modified Peclet number based on D�

rather than the bare Peclet number based on the dilute-limit
diffusivity D0, as we will focus our attention on the dynam-
ics at long time scales, which we will show are indeed shear
induced.

Shear-induced crystallization has been found in previous
work �54,55�. As we wish to focus on the case of sheared
amorphous materials, we check our data to look for crystal-
line regions using standard methods which detect ordering
�52,53,56–58�. Using these methods, we find that particles in
apparently crystalline regions comprise less than 3% of the
particles in each of our experiments and are not clustered,
suggesting that the apparently crystalline regions are tiny.
This confirms that our samples maintain amorphous structure
over the time scale of our experiments, although perhaps if
we continued the shearing over many more cycles, we would
find shear-induced crystallization.

We use a confocal microscope to image our sample �the
“VT-Eye,” Visitech� using a 100� oil lens �numerical
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FIG. 1. �Color online� Sketch of the shear cell. A fluorescent
sample �gray, green� is put between two parallel glass plates �dark
gray, blue� with gap H set by three ball bearings, two of which are
shown. The top plate is movable, controlled by a piezomotor driven
by a triangular wave. The bottom plate is fixed and the confocal
microscope takes images from underneath. Note the definition of
the coordinate system, where x is in the velocity direction and z is
in the velocity gradient direction.
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FIG. 2. A 20�20�20 �m3 image of a supercooled colloidal
liquid taken 15 �m away from the fixed bottom plate by our con-
focal microscope in less than 1 s. Scale bar represents 10 �m.
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aperture=1.40� �17,48,59�. A three-dimensional �3D� image
with a volume 50�50�20 �m3 is acquired in less than 2 s;
these images contain about 6000 particles. The 3D image is
256�256�100 pixels, so approximately 0.2 �m per pixel
in each direction. Figure 2 shows a representative image
from a somewhat smaller volume. The 2 s acquisition time is
several orders of magnitude faster than the diffusion for par-
ticles in our high volume fraction sample. To avoid any
boundary effects �60�, we scan a volume at least 20 �m
away from the bottom plate. Particle positions are deter-
mined with an accuracy of 0.05 �m in x and y and 0.1 �m
in z. This is done by first spatially filtering the 3D image with
a bandpass filter designed to remove noise at high and low
spatial frequencies and then looking for local maxima in the
image intensity �61�. Our tracking algorithm is similar to
prior work �48,61,62�, where we first identify particles
within each 3D image, next remove the overall average
shear-induced motion from all of the particles, then track the
particles in the “coshearing” reference frame using conven-
tional techniques �61�, and finally add back in the shear-
induced motion that was previously removed. This is similar
to the “iterated Crocker-Grier tracking” method described in
Ref. �62�. The key idea of this tracking is that particles
should not move more than an interparticle spacing between
each image; this condition is satisfied in the coshearing ref-
erence frame.

Due to the strain, particles that start near one face of the
imaging volume are carried outside the field of view, while
on the opposite face, new particles are brought inside. Thus,
for larger strains, the total number of particles viewed for the
entire duration diminishes. For the data discussed in this
work, we consider both instantaneous quantities and quanti-
ties averaged over the entire half cycle of strain. For the
former, we view �5500 particles, while for the latter, we
typically can follow �3000 particles, which limits our sta-
tistics slightly.

III. RESULTS

A. Locally observed strain

Our goal is to understand if the local shear-induced mo-
tion is isotropic in character. However, first we seek to un-
derstand and quantify the more global response of our
sheared samples.

When shearing disordered materials or complex fluids,
one often finds shear localization or shear banding due to the
nonlinear yielding and relaxation in local regions �6,7,63,64�.
To check for this in our data, we start by taking 3D images
under the applied shear rate �̇macro=0.016 s−1 over a very
large range in z, from 0 to 70 �m away from the bottom
plate, almost half of the gap between two shearing plates. To
allow us to visualize more clearly over such a large depth,
we dilute the dye concentration by mixing dyed and undyed
colloids at a number ratio of around 1:80 and keeping the
desired volume fraction ��0.50. Our sample does indeed
form a shear band, as shown in Fig. 3, which shows the
particle velocity vx in the direction of the shear as a function
of the depth z. The velocity changes rapidly with z in the
range 0�z�20 �m and then more slowly for z�20 �m;

thus, much of the shear occurs adjacent to the stationary
plate at z=0 �m, similar to prior work which found shear
adjacent to one of the walls �6,7,63–65�. Furthermore, the
velocity profile is relatively stable during the course of the
half period, as seen by the agreement between the velocity
profiles taken at different times during this half period �dif-
ferent lines in Fig. 3�. Thus, the shear band develops quickly
inside the supercooled colloidal liquid and remains fairly
steady under the constant applied strain rate. The location
and size of the shear band vary from experiment to experi-
ment.

Given the existence of a shear band, the applied strain is
not always the local strain. In this work, we wish to focus on
the motion induced by a local strain rather than the global
formation of shear bands. Thus, for all data sets presented
below, we always calculate the local instantaneous strain rate
�̇meso�t�=

vx�z+	z,t�−vx�z,t�
	z . Here, 	z=20 �m is the height of

the imaged volume. Related to �̇meso, we can calculate the
total local applied strain by integrating �̇meso�t�,

�meso�t� = 	
0

t

�̇meso�t��dt�. �1�

Furthermore, we verify that for each data set considered be-
low, vx�z� varies linearly with z within the experimental un-
certainty and thus �̇meso is well defined even if globally it
varies �Fig. 3�.

While the shape of the shear band is essentially constant
�Fig. 3�, in many cases the local strain rate varies slightly
with time. As our forcing is a triangle wave, over any given
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FIG. 3. �Color online� Shear profile vx�z� within a 50�50
�70 �m3 volume, measured at different times during one half pe-
riod T /2=84 s. The total macroscopic strain applied in 84 s is 1.35.
The sample has a volume fraction ��0.50 and the global applied
shear rate is �̇macro=0.016 s−1 controlled by the piezomotor. If there
was not a shear band, one would expect to observe a linear velocity
profile as indicated by the lower thick diagonal line. The four
curves represent different times during the half period as indicated.
Note that these data are obtained using a coarse-grained image ve-
locimetry method �62� rather than particle tracking. Here we take
rapid images over the full volume with a spacing of z=1 �m in the
vertical direction. For each value of z, we cross correlate subsequent
images to obtain a mean instantaneous velocity vx with a resolution
of 0.05 �m /s, set by the pixel size and the time between images
�see Ref. �62� for further details�.
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half cycle the global applied strain rate is a constant. We can
measure the local strain rate for each data set; a typical ex-
ample is shown in Fig. 4. This figure shows the local instan-
taneous measured strain rate within the region 20 �m�z
�40 �m over one full period. After the shearing starts,
�̇meso quickly rises up to 0.015 s−1, implying that the shear
band has formed. Subsequently, the local strain rate contin-
ues to increase up to 0.030 s−1 over the rest of the half
period. The small fluctuations of �̇meso are due to the micro-
scopic rearrangements of particles, which can be somewhat
intermittent. Given that the local instantaneous strain rate is
not constant �despite the constant applied strain rate�, we will
characterize our data sets by the time-averaged local strain
rate defined as

�̄̇meso =
�meso�t�

t
, �2�

typically using t=T /2, the half period of the strain. That is,
we consider �̄̇meso as one key parameter characterizing each
data set, although we will show that we see little dependence
on this parameter. In the rest of the paper, the choice t
=T /2 will be assumed, except where noted when we wish to
characterize the mesoscopic strain for time scales shorter
than T /2.

At this point, we have defined the key control parameters,
which are measured from each experimental data set: the
strain rate �̄̇meso and the strain amplitude �meso. We next con-
sider how these variables relate to the magnitude of the
shear-induced particle motion.

B. Individual particle motions

Because of our large local strains �measured to be �meso
�0.3 for all cases�, we observe significant particle motion,
as shown Figs. 5�a� and 5�b�. In the laboratory reference
frame, the microscopic velocity gradient is obvious either in
the raw trajectories �Fig. 5�a�� or in the large displacements
�Fig. 5�b�� measured between the beginning and end of the
half period. However, in a sense, much of this motion is
“trivial;” we wish to observe what nontrivial local rearrange-

ments are caused by the strain. To do this, we consider the
nonaffine motion by removing averaged particle displace-
ments at the same depth z from the real trajectories of par-
ticles �38,39,44,66,67�

x̃i�t� = xi�t� − 	
0

t

�̇meso�t��zi�t��dt�, �3�

where the removed integral represents the shearing history of
the particle i. To be clear, the shearing history is based on the
average motion within the entire imaged region and the re-
maining motion of particle i is caused by interactions with
neighboring particles due to the shear. This motion is shown
in Fig. 5�c�, showing the x̃z plane rather than the xz plane;
the particles move shorter distances. Their overall displace-
ments in this “desheared” reference frame are shown in Fig.
5�d�. A few trajectories are up to 2 �m long, comparable to
the particle diameter. These nonaffine displacements shown
in Fig. 5�d� are much smaller than the raw displacements of
Fig. 5�b�, but much larger than thermally activated Brownian
motion, which takes more than 1000 s to diffuse over a
1 �m distance in our dense samples �comparable to the par-
ticle radius a�. These nonaffine motions x̃ reflect shear-
induced plastic changes inside the structure.

To quantify the amount of this nonaffine motion x̃, one
could calculate the mean-squared displacements �MSD� of-
ten defined as
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FIG. 4. Typical example of a measured local instantaneous shear
rate over one period of shearing in a gap of 20–40 �m away from
the fixed bottom plate. The sample has volume fraction �=0.51,
the applied strain rate is �̇macro=0.013 s−1, and the period is
T=200 s.
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FIG. 5. Trajectories of colloids in an xz slice �5 �m thick in the
y direction� �see Fig. 1 for the coordinate axes�. The sample has
�=0.51 and the data shown correspond to a locally measured ac-
cumulated strain �meso=0.43 over 45 s of data, so the effective
strain rate is �̄̇meso=�meso /	t=0.0096 s−1. �a� Trajectories in a ref-
erence frame comoving with the average velocity vx�z=20 �m�.
�b� Displacements corresponding to data from panel �a�, where the
start point of each particle is marked with a circle and the end point
is marked with an arrowhead. �c� The same data, but with the affine
motion removed; this is the x̃z plane. �d� Displacements correspond-
ing to panel �c�.
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�	x̃2��	t� = ��x̃i�t + 	t� − x̃i�t��2�i,t �4�

where the angle brackets indicate an average over time t as
well as particles i. Thus, this identity assumes that environ-
mental conditions remain the same for all the time since it
does not depend on t. However, as shown by Fig. 4, the shear
rate �̇local�t� depends on the time. Therefore, we use an alter-
nate formulation

�	x̃2��t� = ��x̃i�t� − x̃i�t = 0��2�i, �5�

where the angle brackets only indicate an average over par-
ticles and t is the time since the start of a half period of shear.
Figure 6�a� shows mean squared displacement �MSD� of the
nonaffine motion 	r̃2=	x̃2+	y2+	z2 as a function of t for
five different experiments with different strain rates �̄̇meso,
from 0.02 to 0.006 s−1. In each case, the curves nearly reach
a slope of 1 on the log-log plot, indicating that shear quickly
facilitates particles’ rearrangements. The magnitude of the
motion is 	r̃2�1 �m2, indicating that the original structure
is mostly lost �68�.

Figure 6�a� also shows that 	r̃2 is larger for faster strain
rates at the same t. We find that this motion is determined by
the accumulated strain, as shown in Fig. 6�b�, by replotting
the MSD as a function of �meso �Eq. �1��. In this graph, the

curves are grouped closer together and there is no obvious
dependence on �̄̇meso.

It suggests that the accumulated strain is an important
parameter in the structural relaxation, which was also found
in previous work on shear transformation zones �67,69� and
is similar behavior to that seen for athermal sheared systems
�70�. Additionally, Fig. 6�b� shows that the slopes of the
curves are close to 1 when �meso�0.1, confirming that the
accumulated strain in our experiments is large enough to
rearrange the original structure in a supercooled colloidal
liquid. We stress that the rough agreement between the
curves seen in Fig. 6�b� is based on the locally measured
applied strain and not the macroscopically applied strain.

An earlier study of steady shear applied to colloidal
glasses by Besseling et al. �39� found that the diffusion time
scale 
 scaled as �̇−0.8 and simulations also found power-law
scaling �37,38�. The collapse of our MSD curves �Fig. 6�b��
seems to imply 
� �̇−1.0. It is possible that the disagreement
between these results is too slight to be clear over our limited
range in �̇ �less than 1 decade�. Also, we study supercooled
fluids whereas Ref. �39� examines colloidal glasses. Further-
more, our maximum local strain is �meso=1.6, while Ref.
�39� considers steady strain up to a total accumulated strain
of 10. Another recent study of sheared colloidal glasses �71�
implies a result similar to ours, 
� �̇−1.0, but did not discuss
the apparent difference with Ref. �39�.

To better understand the mean-square displacement
curves �Fig. 6�, we wish to examine the data being averaged
to make these curves. We do so by plotting the distributions
of displacements 	r̃ in Fig. 7. To better compare the shapes
of these distributions, we normalize these displacements by
the strain and thus plot P�	s�, where 	s
	r̃ / ��meso

0.5 �; this
normalization is motivated by the observation that at large
�meso, we have �	r̃2���meso �Fig. 6� �67�. Furthermore, we
normalize P�	s� so that the integral over all vectors 	s� is
equal to 1, similar to Ref. �67�. Figure 7 shows that the
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FIG. 6. �Color online� �a� Mean-square displacement of the non-
affine motion 	r̃ as a function of the time t since the start of shear.
�b� The same data plotted as a function of the accumulated strain
�meso=�0

t �̇meso�t��dt�. The five curves represent five data sets with
the same volume fraction �=0.51 but three different shear rates
�̄̇meso as indicated in the figure. The total accumulated strain is the
final point reached by each curve in panel �b�.
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FIG. 7. �Color online� Probability distribution function of 	s
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0.5 , the nonaffine displacement 	r̃ scaled by the local strain
�meso

0.5 . Data shown are from one experimental run using portions of
the data corresponding to strain increments �meso=0.01, 0.02, 0.10,
and 0.43. These correspond to time intervals 	t=1.5, 4.5, 16.5, and
45 s. P�	s� is normalized so that the integral over all vectors 	s� is
equal to 1, similar to Ref. �67�. For small strains, the curves have
large exponential tails and for larger strain, the tails become smaller
and appear more Gaussian. Dashed line is Gaussian fit for �meso

=0.43. For this sample, data and parameters are the same as Fig. 5.
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distributions corresponding to small strains are much broader
than those corresponding to large strains. For the smallest
strain, the distribution has a large exponential tail over 3
orders of magnitude. For larger strains ��meso�0.1�, the
curves are no longer exponential and the tails are shorter,
indicating fewer extreme events. These curves appear more
like Gaussian distributions. At the larger strain values
��meso�0.1�, the distributions collapse; this is the same
strain regime for which the mean-square displacement be-
comes linear with �meso �Fig. 6�b��. As Ref. �67� suggests, the
exponential tail for small strains is similar to what has been
seen for individual plastic events �66,72�, while the distribu-
tions for larger strains are consistent with successive tempo-
rally uncorrelated plastic events drawn from the exponential
distribution. However, it is possible that these events are spa-
tially correlated, which will be seen below.

The mean-square displacement data we have shown �Fig.
6� treat all three directions equivalently, with the exception
that the x displacements have had their nonaffine motions
removed. However, the three directions are not equivalent
physically: the x direction corresponds to the shear-induced
velocity, the y direction is the vorticity direction, and z is the
velocity gradient direction. To look for differences in motion
between these three directions, we plot the probability distri-
bution of the displacements �	x̃ ,	y ,	z� in Fig. 8. The three
distributions agree with each other and in fact are symmetric
around the origin. This suggests that the shear-induced mo-
tions are isotropic. Furthermore, they are well-fit by a Gauss-
ian, suggesting that the shear-induced motion liquefies the
sample �at least at the large �meso considered for Fig. 8�. This
seems natural in the context of jamming, where adding more
strain moves the sample farther from the jammed state �5�.
Of course, in our raw data, the 	x data show a significant
bias in the direction of the shear-induced velocity; but it is
striking that the nonaffine displacements 	x̃ show no differ-
ence from the displacements in y and z as also found in
sheared colloidal glass �38,39�.

Thus far, we have established that shear-induced particle
displacements are closely tied to the total applied strain �meso
�Fig. 6�b��. We then introduced the nonaffine motion 	r̃

which we find to be isotropic on the particle scale: individual
particles are equally likely to have shear-induced displace-
ments in any direction �Fig. 8�. While the distributions of
displacements are isotropic, this does not imply that dis-
placements are uncorrelated spatially. To check for this, we
calculate two displacement correlation functions as defined
in Refs. �73–75�

Sr��R,	t� =
�	r̃�i · 	r̃� j�

�	r̃2�
, �6�

S�r�R,	t� =
��r̃i�r̃ j�
���r̃�2�

, �7�

where the angle brackets indicate an average over all par-
ticles �see Refs. �73,75� for more details�. The mobility is
defined as �r̃= �	r̃�− ��	r̃��, in other words, the deviation of
the magnitude of the displacement from the average magni-
tude of all particle displacements. The correlation functions
are computed for the nonaffine displacements using 	t
=45 s to maximize the “signal” �nonaffine displacements�
compared to the “noise” �Brownian motion within cages on a
shorter time scale�.

The two correlation functions are shown in Fig. 9 for a
representative data set. These functions are large at short
separations R and decay for larger R, suggesting that neigh-
boring particles are correlated in their motion. In particular,
the vector-based correlation Sr� has a large magnitude at small
R, showing neighboring particles have strongly correlated
directions of motion even given that we are only considering
the nonaffine displacements. The two correlation functions
decay somewhat exponentially, as indicated by the straight
line fits shown in Fig. 9, with decay constants �r�=6.4 �m
=6.1a and ��r=2.5 �m=2.4a �in terms of the particle radius
a�. The larger the slope, the more localized the correlation is.
�r� is similar to that found previously for supercooled colloi-
dal liquids and ��r is slightly shorter than the prior results
�73�. Overall, these results confirm that the shear-induced
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FIG. 8. �Color online� Probability distribution functions for non-
affine motions in each direction, 	x̃ �filled cycle�, 	y �hollow
circle�, and 	z �hollow triangle�. Red curve is a Gaussian fit to the
	x̃ data. For this sample, parameters are the same as Fig. 5 ��
=0.51, �meso=0.43, �̄̇meso=0.0096 s−1 , 	t=45 s�.
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FIG. 9. �Color online� Spatial correlation functions Sr� and S�r

characterizing particle motion. Data are the same as Fig. 5 ��
=0.51, �meso=0.43 over 45 s of data, and �̄̇meso=�meso /	t
=0.0096 s−1�. Solid and dashed lines correspond to Sr� and S�r av-
eraged over all the particles in the sample. Dotted lines �red� cor-
respond to exponential fits with length scales �r�=6.4 �m and ��r

=2.5 �m.
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particle motion is spatially heterogeneous, quite similar to
what has been seen in unsheared dense liquids �43,73,75–79�
and granular materials �80,81�. The length scale may be
equivalent to the correlation length scale for fluidity dis-
cussed in Refs. �35,36�. For example, an experimental study
of sheared polydisperse emulsions found a fluidity length
scale comparable to 1–2 droplet diameters near the glass
transition �35�.

Considering all of our data sets, we do not find a strong
dependence on either the strain rate �̇ or the total strain � for
the ranges we consider ��̄̇meso=0.006–0.02 s−1 , �meso
=0.3–1.6�. We do not have a large amount of data with
which to calculate the correlation functions; unlike prior
work, we cannot do a time average �73�. If we use an expo-
nential function to fit our different data �different strains,
strain rates, and volume fractions�, the mobility correlation
S�r yields a length scale ��r�1.8–3.9 �m and the vector
correlation Sr� yields a length scale �r��3.2–7.5 �m. To
check this, we also calculate

�� =
�RS�R��
�S�R��

, �8�

where the angle brackets indicate averages over R; for a
perfect exponential, we would have ��=�. Using this
method, we find more consistent length scales of ��r�
��3.0–4.0�a and �r����3.5–4.3�a. Our data do not suggest
any dependence of these length scales on the control param-
eters over the range we investigate. Of course, as �̇→0, we
would expect to recover the original unstrained sample be-
havior �37�. Similar samples in this volume fraction range
were previously found to have length scales with similar
values, ��r�4a–8a and �r��6a �73�. However, the time
scales for this motion are much longer than that for our
sheared samples.

C. Defining local plastic deformation

We wish to look for spatially heterogeneous dynamics,
that is, how the shear-induced motion takes place locally and
how particles cooperate in their motion. Several prior groups
have examined local rearrangements in simulations and ex-
periments �15,34,35,45� but have used differing ways to
quantify the motion. We will discuss those quantities to-
gether and compare them using our data. We have two goals:
first, to understand how different measures of local rear-
rangements reveal different aspects of the motion and sec-
ond, to see if the spatial structure of rearranging groups of
particles exhibits any particular orientation with respect to
the shear direction.

For all of these definitions of rearranging groups of par-
ticles, it is useful to define a particle’s nearest neighbors. Our
definition of a particle’s nearest neighbors is that those are
the particles within the cutoff distance r0 set by the first
minimum of the pair-correlation function g�r�.

We start by quantifying the local strain seen by an indi-
vidual particle, which is based on the average motion of its
neighbors. For a particle i with center at r�i�t�, the relative
positions of its neighbors j are d� ij�t�=r� j�t�−r�i�t�. These

neighboring particles move and their motions over the next
interval 	t are given by 	d� ij�t�=d� ij�t+	t�−d� ij�t�, as shown
in Fig. 10.

The strain tensor Ei for this region around particle i is
then determined by minimizing the mean squared difference
between the actual relative motions 	d� ij�t� and that predicted
by Ei, in other words, choosing Ei to minimize

Di,min
2 = min

 j�	d� ij�t� − Eid� ij�t��2� . �9�

The error, Di,min
2 , quantifies the plastic deformation of the

neighborhood around particle i after removing the averaged
linear response Eid� ij�t� �34�. Thus, Di,min

2 is one way to quan-
tify the local nonaffine rearrangement, “local” in the sense of
an individual particle i and its neighbors. We term Di,min

2 the
“plastic deformation.” Note that the sum is computed over
the ten nearest particles j to particle i, otherwise the value of
Di,min

2 would depend on the number of neighbors. In practice,
most of these neighboring particles are within 3.0 �m of
particle i, which is comparable to the first minimum of the
pair-correlation function g�r�, which motivates our choice of
ten neighbors.

Of course, quite often Ei is different from the overall
strain over the imaged volume, which in turn is different
from the macroscopically applied strain. In practice, given
that the shear is applied in x direction with the velocity gra-
dient along z, we only treat the xz components of Eq. �9�;
that is, d� ij and Eij can be written as

d� ij = �xij

zij
�, Ei = ��i

xx �i
xz

�i
zx �i

zz � . �10�

To better understand this local strain tensor Ei, we follow
the method of Refs. �15,34�. If the particle-scale local strain
was identical to the imposed strain, we would expect �i

xz

=�meso and the other matrix elements to be zero. We find that
these expectations are true on average �for example, ��i

xz�
=�meso� but that for individual particles their local environ-
ment can be quite different. For each experiment, the distri-
butions of all four matrix elements have similar standard
deviations and examining different experiments, the standard
deviations are between 24% and 39% of �meso.

ri (t)
ri (t+∆t)

rj (t+∆t)
rj (t)

dij (t)
dij (t+∆t)

∆dij (t)

FIG. 10. �Color online� Sketch illustrating the definition of the
motion of the relative position vector 	d� ij of two neighboring par-
ticles, red and blue �dark and light gray�. r�i�t� represents the posi-
tion of particle i at time t, d� ij�t� is the relative position between
particles i and j at time t, and 	d� ij�t� is how the vector d� ij changes
over the time interval �t , t+	t�.
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To quantify the measured particle-scale strain, we define
the “local strain”

�i,micro = �i
xz + �i

zx �11�

�using the definition of the strain tensor which is related to E
�82��. That is, this quantity is a local approximation to the
strain �

�ux

�z +
�uz

�x �. The local strain �i,micro is now a second way
to quantify the local rearrangement of the neighborhood
around particle i in addition to Di,min

2 . The diagonal elements,
�i

xx and �i
zz, relate to the dilation of the local environment. In

particular, the local environment stretches by a factor of �1
+�i

xx� in the x direction and likewise �1+�i
zz� in the z direc-

tion. If these matrix elements are zero, then the local envi-
ronment remains the same; positive matrix elements corre-
spond to expansion and negative matrix elements correspond
to contraction. We define the overall dilation as �ei= �1
+�i

xx��1+�i
zz�−1, which is a third way to quantify the local

rearrangement around particle i.
A fourth way to consider local particle motion is the pre-

viously defined nonaffine displacement, 	r̃2. The key differ-
ence is that Dmin

2 , �micro, and �e all are derived from the
actual particle motion 	r, whereas 	r̃2 removes the motion
caused by �meso �through Eq. �3��.

To demonstrate how neighboring particles rearrange and
result in larger values of these various parameters, Fig. 11
shows an example using real trajectories. The original posi-
tions of the particles are shown, along with displacement
vectors indicating where they move after the sample is
strained with �meso=0.58. The overall strain is seen in that
particles near the top move farther than those at the bottom;
however, the red �dark� particle in the middle has an unusual
motion, moving downward in the −z direction. Figure 11�b�
shows the motion of the surrounding particles as seen in the
reference frame attached to the red �dark� particle. It is these
displacements that are used in the calculation Eq. �10�. Fig-
ure 11�c� shows the predicted final positions of the particles
�drawn large� based on Ei, as compared to the actual final
positions �drawn small�; the red �dark� particle is considered
“particle i.” This local region experiences both shear and a
strong dilation in the z direction, both captured by Ei. The
differences between the predicted and actual final positions
result in a moderately large value of Dmin

2 =56 �m2. In par-
ticular, note that Dmin

2 is defined based on vectors pointing
from the red �dark� reference particle to the other particles
and because the red particle moves downward, the vectors
are all greatly stretched and this increases Dmin

2 . Finally, Fig.
11�d� shows the positions of the same particles after the
strain has been applied, where now the box represents the
mesoscopic strain �meso=0.58. The large spheres represent
the expected positions if the motion was affine and the small
spheres show the actual positions. Differences between the
expected and actual positions result in large values of the
nonaffine displacement 	r̃. For the red �dark� particle, 	r̃
=2.97 �m. Overall, the anomalous motion of the central
particle i is because under the large local strain, this particle
makes a large jump out of its original cage. It is these sorts of
unusual motions that result in large plastic deformations
within the sample.

D. Collective particle motions

To investigate the relationships between these quantities,
a 3-�m-thin y slice of a sample with volume fraction �
=0.51 is shown in several ways in Fig. 12. In panel �a�, the x
displacement is shown, making the strain apparent. Panel �b�
shows the original Voronoi volumes for each particle at t
=0. The Voronoi cell for each particle is defined as the vol-
ume closer to the center of that particle than to any other
particle. In subsequent panels, the darker colors indicate
larger local rearrangements, as measured by the nonaffine
displacement 	r̃2 �panel �c��, plastic deformation Dmin

2 �panel
�d��, local strain �micro �panel �e��, and dilation �e �panel �f��.
It can be seen that the darker-colored particles cluster to-
gether, indicating that for each of these measures of local
rearrangement, the motions are spatially heterogeneous �15�.
This is a real-space picture showing conceptually what is
indicated by the correlation functions in Fig. 9 that neighbor-
ing particles have similar motions. These pictures are quali-
tatively similar to those seen for thermally induced cage re-
arrangements in supercooled liquids �43,77,78,83,84� and
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FIG. 11. �Color online� These four sketches show different por-
trayals of a particle with unusual motion. �a� Particle motion as seen
in the laboratory reference frame. Arrows indicate displacement
vectors. �b� Similar to �a� except the motion are in the reference
frame where the central red �darker� particle is motionless. �c�
Large spheres correspond to the expected positions of the particles
and the smaller spheres correspond to the actual positions of the
particles. The distortion of the box and the expected positions of the
particles are calculated based on the measured local strain tensor Ei,
where red �darker� particle is particle i. For this local neighborhood,
we have �micro=0.73 and a dilation primarily in the z direction
��xx=−0.1, �zz=0.5, and �e=0.35�. �d� The positions of the same
particles after the strain has been applied, where now the box rep-
resents the mesoscopic strain �meso=0.58. The large spheres repre-
sent the expected positions if the motion was affine and the small
spheres show the actual positions. For all panels, to show the dis-
placements in three dimensions better, the radii of the large spheres
are 0.5 of the real scale. Data correspond to a sample with �

=0.51, �meso=0.58, �̄̇meso=0.014 s−1, and 	t=40 s.
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glasses �81,85–88�. Furthermore, by comparing these im-
ages, it is apparent that particles often have large values of
several quantities simultaneously; in particular, compare pan-
els �c� and �d�, and panels �e� and �f�. While the correspon-
dence is not exact, it suggests that all four of these ideas are
capturing similar features of rearranging regions. However, it
is also clear that there are differences between �c� and �d� as
compared to �e� and �f�. In the latter two panels, the region of
high activity is spread out over a larger area; more of the
particles are deforming by these measures at the same time.
Nonetheless, in all four cases, the particles around x
�2–4 �m are experiencing the most extreme deformations.

The Voronoi volume �Fig. 12�b�� has previously been
found to be slightly correlated with particle motion in un-
sheared colloidal supercooled liquids �68,89�; that is, par-
ticles with large Voronoi volumes have more space to move
and thus are likely to have larger displacements than average.
Here it appears that there is no correlation between the
Voronoi volume and the particle motion, suggesting that for
these strained samples, the local volume is not a crucial in-
fluence on the motion �38�. This is probably because in the
end, all cages must rearrange for the strain to occur.

To demonstrate the relationships between the measures of
plastic deformation more quantitatively, we compute two-
dimensional �2D� histograms comparing pairs of the vari-
ables, shown in Fig. 13. The darker color indicates larger
joint probability and the dotted line represents the mean
value of the quantity on the vertical axis corresponding to the
quantity on the horizontal axis. Figure 13�a� shows that on

(e) �micro

(a) �x

(f) e�

(b) Voronoi
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(d) Dmin
2

x

z

FIG. 12. �Color online� A 3-�m-thin cut through the sample,
showing the xz shear plane; axes are as labeled in �a�. The particles
are drawn in their location at t=0, the start of this strain half cycle.
�a� Darker particles have larger values of 	x, thus indicating the
applied strain. The top particles �large z� are moving left �dark
colors� and the bottom particles are moving right �light colors�. �b�
Darker particles have larger Voronoi volumes at t=0. �c� Darker
particles have larger values of the nonaffine motion 	r̃2. �d� Darker
particles have larger values of the plastic deformation Dmin

2 . �e�
Darker particles have larger values of the local strain �micro. �f�
Darker particles have larger values of the dilation �e. The sample is
the same as the data shown in Fig. 5 �see that figure caption for
details�.
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FIG. 13. �Color online� 2D histograms of �a� Dmin
2 and 	r̃2, �b�

�micro vs dilation �e, and �c� �micro and Dmin
2 . The sample has the

same parameters as Fig. 5 �see that caption for details�. In these
histograms, darker colors stand for the larger probability. Dotted
lines are the average values of the y axis corresponding to each
value on the x axis. The correlation coefficients between each pair
of variables are �a� C=0.43�0.11, �b� C=0.42�0.09, and �c� C
=0.17�0.05 �see text for details�.
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average, particles with a large plastic deformation Dmin
2 are

also much likelier to have a large nonaffine displacement
	r̃2. This is suggested by the specific example shown in Figs.
11�c� and 11�d�. Similarly, Fig. 13�b� shows that a particle’s
microscopic strain �micro is well correlated with the dilation
�e. For these data, the mesoscopic strain is �meso=0.43; par-
ticles with �micro��meso are more often in local environ-
ments that contract ��e�0� and vice versa. As a contrast,
Fig. 13�c� shows a somewhat weaker correlation between
Dmin

2 and �micro. The Pearson correlation coefficients between
these quantities are C�Dmin

2 ,	r̃2�=0.43�0.11, C��micro ,�e�
=0.42�0.09, and C��micro ,Dmin

2 �=0.17�0.05. The uncer-
tainties are from the standard deviations of the correlation
coefficients from the nine different experiments we con-
ducted.

Overall, Fig. 13 suggests that Dmin
2 and 	r̃2 both capture

the idea of plastic deformation �66�. The correspondence be-
tween these two variables is nontrivial, given that 	r̃2 is
based on trajectories with the overall strain removed �the
strain computed from all observed particles�, whereas Dmin

2

only accounts for the very localized strain of the neighboring
particles. In contrast, �micro and �e are well suited to examine
particles moving in atypical ways; typical particles have
�micro��meso and �e=0. These two separate ideas �plastic
deformation and atypicality� are only weakly correlated.
Other than the three specific comparisons shown in Fig. 13,
all other comparisons are even less correlated ��C��0.1�. We
also examined the quantities ��micro−�meso� and ��e� as ways
to measure the deviations from typical behavior; these quan-
tities are also only weakly correlated with the other measures
of deformation.

We now return to the question of the isotropy of the mo-
tion. Figure 8 indicates that the distribution of all particle
motions is isotropic, but it is possible that the spatially het-
erogeneous groups of highly mobile particles shown in Fig.
12 are themselves oriented along a preferred direction. To
investigate the 3D structures of these relaxation regions, we
quantify the sizes of these active regions in the x, y, and z
directions. To start, we define connected neighboring par-
ticles as those with separations less than r0, the distance
where pair-correlation function g�r� reaches its first mini-
mum. �Note that this is slightly different from the neighbor
definition used for Eq. �9�; see the discussion following that
equation.� For a given quantity, we consider active particles
as those in the top 20% of that quantity, similar to prior work
�37,43,77,85�. We then define the active region as a cluster of
connected active particles. For example, Fig. 14 shows a
cluster of particles with large nonaffine displacements �panel
�a�� and a cluster with large plastic deformations �panel �b��.
Each cluster is drawn from the same data set and the par-
ticles drawn in red �darker� are common to both clusters.
�Note that clusters drawn based on �micro and �e are smaller.
In Figs. 12�e� and 12�f�, more regions have large values of
these parameters, but the top 20% most active are not clus-
tered to the extent they are in Figs. 12�c� and 12�d�.�

We wish to understand if the shapes of such clusters show
a bias along any particular direction. It is important that the
experimental observation volume not bias the result, so from
within the observed 3D volume, we consider only particles
that start within an isotropic cube of dimensions 15�15

�15 �m3. The size of this cube is chosen to be the largest
cube for which all the particles are within the optical field of
view for the full half cycle of shear for all experiments. �See
the related discussion at the end of Sec. II�. Within this iso-
tropic volume, we consider the largest cluster from each ex-
periment and for each considered variable. We then define
the extent of that cluster in each direction from the positions
of each particle within the cluster as xextent=max�xi�
−min�xi� and similarly for y and z.

Anisotropic cluster shapes would be manifested by sys-
tematic differences in the relative magnitudes of xextent,
yextent, and zextent. We compare these in Fig. 15 for clusters of
particles with large nonaffine motion 	r̃2 �panel �a�� and
large plastic deformation Dmin

2 �panel �b��. The comparison is
made by using the ratios yextent /xextent and zextent /xextent, thus
normalizing the extent in the y and z directions by that of the
shear velocity direction x. Thus, if a cluster has the same
extent in x and y, yextent /xextent should be equal to 1, along the
vertical dashed line. Similarly, for the same extent in x and z,
points should be along the horizontal dashed line with
zextent /xextent=1. If the extent is the same for y and z, the
points should be along the diagonal line with yextent /xextent
=zextent /xextent. For an isotropic cluster with same size in all
dimensions, the point should be in the center �1,1�.

As shown in Fig. 15, for all of our data, we find no sys-
tematic anisotropy; the cluster extent ratios are mostly clus-
tered around the isotropic point �1,1�. Due to random fluc-
tuations, no cluster is perfectly isotropic, yet the points seem
fairly evenly distributed around the three dashed lines. Thus,
while the shear-induced rearrangements take place in local-
ized regions �Fig. 12�, data indicate that these regions on
average have no directional bias. This seems true for both the
nonaffine displacements 	r̃2 in Fig. 15�a� and the plastic
deformation Dmin

2 in Fig. 15�b�.

(a) ∆r cluster~2

Zextent

Xextent Yextent

(b) Dmin cluster
2

FIG. 14. �Color online� Cluster of neighboring particles with
large values of �a� nonaffine motion 	r̃2 and �b� plastic deformation
Dmin

2 . To avoid biasing the cluster shape, the particles are drawn
from within a 15�15�15 �m3 cube �solid lines�. Dashed lines
indicate the spatial extent of the two cluster shapes in each direc-
tion. The cluster in �a� is 14�12�11 �m3 and the cluster in �b� is
8�14�10 �m3. Red particles are common between the two clus-
ters and the black bonds indicate neighboring particles; particle
sizes are drawn 0.8 times the actual scale to make the connections
more visible. In each case, the particles shown are the top 20% for
the parameter chosen. Data corresponds to the same parameters as
in Fig. 5 �see that caption for details�.
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IV. DISCUSSION

We examined the microscopic plastic deformations occur-
ring in several sheared dense colloidal suspensions. Our first
main observation is that on average, individual particles have
no bias in their direction of motion other than that trivially
imposed by the strain. When this imposed motion is removed
from the particle trajectories, the remaining shear-induced
motion is isotropic: particles are equally likely to move in
any direction. Our second main observation is on the shape
of groups of particles undergoing plastic rearrangements.
There are several ways to determine which particles are re-
arranging and we have shown that all of these are useful for
highlighting local regions of deformation. Furthermore, the
shapes of these regions are also isotropic. However, we can-
not rule out that with more data and subtler analysis, we
might find anisotropies in particle motion �90�.

In our results, we find little dependence on the overall
volume fraction �, total strain, or strain rate. For the volume

fraction, all of our samples are dense liquids with ���G. At
significantly lower volume fractions, presumably particles
would not be caged and the shear-induced rearrangements
might be quite different �70�. At higher volume fractions �
��G, prior work has seen similar results �15,39� although
not examined the shapes of the rearranging regions in detail.
It is possible that results in glassy samples might be different
given that near �G, slight changes in volume fraction have
large consequences �42�, but we have not seen clear evidence
of that in our data. For the total strain, we have not examined
a wide range of parameters. In all cases, we are studying
sufficiently large enough strains to induce irreversible, plas-
tic rearrangements. For the strain rates, all of our strain rates
are fast enough such that the modified Peclet number Pe� is
at least 7, so that thermally induced diffusive motion is less
relevant. It is likely that at slower strain rates �lower Peclet
numbers�, different behavior would be seen �37�.

Previous work �54,91–93� found that oscillatory shear can
induce crystallization of concentrated colloidal suspensions.
The “induction time” of this crystallization is strain depen-
dent: a larger strain amplitude results in shorter induction
time. In our experiments, we studied only a limited number
of oscillations and our strain amplitude �1. We did not ob-
serve crystallization in any of our experiments. It is likely
that were we to continue our observations for much longer
times, we could see the onset of shear-induced crystallization
and so we note that our experiments are probably studying a
nonequilibrium state. Additionally, Fig. 4 shows that our
strain rate takes a while to stabilize after flow reversal, which
again suggests that our results are not in steady state. Thus, it
is possible that our primary observation, that the shear-
induced particle rearrangements are isotropic in character, is
limited only to the transient regime we observe. It is still
intriguing that in this regime, particle motion is so isotropic.
For example, Fig. 4 shows that the sample takes a while to
requilibrate after shear reversal, yet there is no obvious sig-
nature of this in the particle motion or the configurations of
the particles. Likewise, presumably the long-term crystalli-
zation will be caused by anisotropic motion �and result in
further anisotropic motion�, but no signs of this are present in
the early-time amorphous samples we study. It would be in-
teresting to conduct longer-term experiments to relate the
particle rearrangements to those resulting in crystallization.
Alternatively, it would be also interesting to use a cone-and-
plate geometry shear cell capable of indefinitely large strains
�62� to reach the steady-state constant shear regime.
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FIG. 15. �Color online� Comparison between the cluster extent
in x, y, and z based on different variables. �a� Particles with the
largest nonaffine motion 	r̃. �b� Particles with the largest plastic
deformation Dmin

2 . Symbols represent different volume fractions:
�=0.51 �circles�, 0.56 �triangles�, and 0.57 �squares�. Colors �or
grays from light to dark� represent different accumulative strains
�meso=0.3–0.9. The clusters are comprised of the top 20% of the
particles with the given characteristic.
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