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We examine the response of a dense colloidal suspension to a local force applied by a small magnetic
bead. For small forces, we find a linear relationship between the force and the displacement, suggest-
ing the medium is elastic, even though our colloidal samples macroscopically behave as fluids. We
interpret this as a measure of the strength of colloidal caging, reflecting the proximity of the samples’
volume fractions to the colloidal glass transition. The strain field of the colloidal particles surround-
ing the magnetic probe appears similar to that of an isotropic homogeneous elastic medium. When
the applied force is removed, the strain relaxes as a stretched exponential in time. We introduce a
model that suggests this behavior is due to the diffusive relaxation of strain in the colloidal sample.
© 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4773220]

I. INTRODUCTION

Glass is an amorphous solid: despite the lack of long-
range order, a glassy material is elastic rather than viscous.
As a glass-forming material is cooled, its viscosity rises dra-
matically by many orders of magnitude; flow becomes dif-
ficult and slow. The elastic behavior of a glass, then, could
be reframed as the material being probed on time scales too
quickly for liquid-like flow to occur. The origins of this elas-
ticity and the nature of the glass transition are active areas of
research.1–5 A related question is to what extent the macro-
scopic elastic behavior extends to the microscopic scale.
For example, simulations have seen that the elastic moduli
are spatially heterogeneous in some cases.6, 7 Certainly, the
macroscopic elastic response treats the material as a contin-
uum, whereas on a scale of the constituent molecules this
could be a poor approximation.

Colloids are a simple model system which can be used
to study the glass transition and the properties of glassy
materials.8–10 Colloidal suspensions are composed of solid
particles in a liquid. The particles diffuse due to Brownian
motion, but this diffusion is impeded at high particle con-
centration. In many experiments, colloidal particles only have
short-range repulsive interactions, and the particles can be ap-
proximated as hard spheres.11, 12 In such samples the control
parameter is the volume fraction φ and glasses are found for φ

> φg ≈ 0.58.10, 11 Near the glass transition, the viscosity rises
quite dramatically, although some evidence suggests that per-
haps it truly diverges at a point above φg.13 In particular, an
alternative divergence point is “random close packing” (rcp).
This is the largest volume fraction possible for a sample that is
still amorphously packed (rather than crystalline).14 The vol-
ume fraction φrcp is known through simulations and taken to
be ≈0.64, which agrees with early experiments done with ball
bearings.15

Of course, the presence of the continuous liquid sur-
rounding the colloidal particles is important for understand-
ing the flow properties of colloids. Approaching the colloidal

glass transition from φ < φg, samples are viscoelastic.16 Their
properties are described by both viscous and elastic mod-
uli which are frequency-dependent. The viscosity mentioned
above is understood to be the low-frequency limit. Indeed, if
a glass is defined as an amorphous solid—a sample that does
not flow—then it is important to recognize that whether or not
its flow depends on the time scale of observation.10

While macroscopically one considers viscous and elas-
tic behavior, microscopically one considers diffusion. A
molecule or tracer particle in a fluid sample has a nonzero
diffusion constant, which decreases to zero as the glass tran-
sition is approached. The decrease of the diffusion coefficient
is attributed to caging. On short time scales, particles dif-
fuse within a “cage” formed by their neighbors. On longer
time scales, these cages rearrange and particles can move
throughout the sample. As the glass transition is approached,
the cage rearrangements occur less frequently, thus decreas-
ing the diffusivity.17–19 These cages provide a sort of elastic-
ity for individual particles.20–23 Particles which try to move
away from the centers of their cages experience a restoring
force.18–20, 23 If a constant external force is exerted on a parti-
cle, it will slowly move through the colloidal suspension as
cages rearrange, although the force needs to be kept small
when φ is close to φg to avoid nonlinear behavior.24–28 If a
sufficiently high external force is applied to a particle, it can
break the cages and move through the sample more freely
(typically with a nonlinear relationship between the force and
resulting velocity),26, 27, 29–33 disturbing and rearranging parti-
cles as it moves.29, 34

In this paper we probe the elastic response of a dense col-
loidal suspension by locally exerting a small force on a mag-
netic bead. Our studies are conducted on a time scale faster
than the sample can relax due to diffusion. We find that the
sample responds elastically, with a Young’s modulus E that
rises as the glass transition is approached, and a Poisson ra-
tio σ equal to 1/2. We also study the relaxation of the mag-
netic bead after it has been displaced and the force removed.
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This relaxation is faster for higher volume fraction samples.
We present a model that captures the stretched exponential
character of the relaxation, by assuming that in our colloidal
sample stress diffuses away to infinity at long times.

II. EXPERIMENTAL METHODS

The colloidal suspensions are made of poly-
(methylmethacrylate) particles, sterically stabilized by a
thin layer of poly-12-hydroxystearic acid.35 The particles
have a radius a = 1.55 μm, a polydispersity of ∼5%, and are
dyed with Rhodamine.36 The uncertainty of the mean particle
radius is ±0.01 μm. The particles are slightly charged, but
their glass transition is still at φg = 0.58 ± 0.01, signaled by
the diffusion of particles going to zero on experimental time
scales (several hours). The colloidal particles are suspended
in a mixture of cyclohexylbromide/cis- and trans-decalin,
which nearly matches both the density and the index of
refraction of the colloidal particles.36 The density of this sol-
vent is 1.232 g/cm3, the index of refraction is 1.495, and the
viscosity is η = 2.18 mPa s. The particles are fluorescently
labeled for visualization.36 Before beginning experiments, we
stir the sample with an air bubble to break up any pre-existing
crystalline regions, then wait 20 minutes before taking data.

A small quantity of superparamagnetic beads (Dynal
M450, coated with glycidyl ether reactive groups) with a ra-
dius of 2.25 μm is added to the colloidal suspension. We do
not observe attraction or repulsion between the colloidal par-
ticles and the magnetic beads, in either dilute or concentrated
samples. The beads are not completely monodisperse in their
magnetic properties, and our calibration finds the variability
in the effective magnetic force applied to different beads to
be less than 10%. Also, the magnetic beads are not density
matched, and their effective weight is 0.1 pN. This is a factor
of ten smaller than the smallest horizontally applied magnetic
forces in our experiments. We study isolated magnetic beads
at least 35 μm from the sample chamber boundary and from
other magnetic beads.

For some of the data (Fig. 1, in particular), we use a
conventional Leica DMIRB inverted microscope with a CCD
camera. A magnetic bead appears as a large dark circle in

FIG. 1. The solid line indicates the applied force as a function of time. The
points show the measured displacement �x of the magnetic bead. (Inset)
Same data plotted as �x against F. The dashed line is a fit to the data, with
the slope leading to an effective spring constant k = 6.8 ± 0.1 pN/μm, offset
vertically for clarity. The arrows indicate locations where the force was held
constant. The volume fraction is φ = 0.55.

our images and its position as a function of time is found us-
ing standard particle tracking techniques.37 For these exper-
iments, the typical image size is 15 × 40 μm2, with images
taken at a rate of 30 frames per second. The magnetic bead
position is resolved to within 0.04 μm.

For other data, we use a ThermoNoran Oz confocal mi-
croscope. With this microscope, we acquire images of area
80 μm × 75 μm at a rate of 30 frames per second (256
× 240 pixels2). The magnetic beads are not fluorescent and
thus appear black on the background of dyed colloidal parti-
cles (see Fig. 3). Our particle tracking resolution is 0.05 μm
for the magnetic beads. With either the confocal microscope
or the video microscope, we only track the motion of particles
in 2D: for the experiments in this paper, the magnetic par-
ticle position always remains with the imaging plane of the
microscope.

We additionally use the confocal microscope to take
three-dimensional images of these samples to determine
the volume fraction.36 We count the particles within the im-
aged volume, and convert from the measured number density
n to volume fraction φ using φ = (4π /3)na3. Due to our un-
certainty of the mean value of the particle radius a, we have
a systematic uncertainty of 2% of our φ values.38 That is, our
φ values are fairly accurate when compared with each other,
but a reported value of φ = 0.50 is uncertain by ±0.01.

We use a strong neodymium permanent magnet mounted
on a micrometer positioner to control the force applied to the
magnetic beads. The micrometer accurately reproduces the
magnet position and thus our uncertainty in the force between
different experiments is limited by the magnetic bead variabil-
ity, rather than the magnet positioning. For many experiments,
a computer-controlled stepper motor attached to the microme-
ter allows us to slowly and controllably vary the applied force
over two orders of magnitude.

For other experiments, we want to apply a short-duration
magnetic force. We mount the magnet on a linear actuator
(Ultra Motion D-A.25-HT17). The magnet is then brought
close to the magnetic bead resulting in a high force acting on
the magnetic bead for a short time; the details are discussed
below.

Our experiments are controlled-force experiments, in
contrast to controlled displacement.39, 40 For example, this
means that particles do not necessarily need to move in the
direction of the applied force, although we discuss below
that they appear to always do so. Prior work by other groups
used laser tweezers to move probe particles through colloidal
suspensions at a controllable velocity,41–44 finding many in-
teresting results such as anisotropy of the disturbed region
around the moving particle41 and a decoupling of structural
and hydrodynamic influences on the particle motion.44 These
prior experiments studied probe particles as they moved over
long distances, in contrast to our experiments described below
where the magnetic bead always remains close to its equilib-
rium position.

III. LINEAR ELASTIC RESPONSE

In our earlier work, we applied a constant force and ob-
served the steady-state motion of the magnetic bead.30 For
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large forces, the velocity of the magnetic bead grew nonlin-
early with increasing force, consistent with shear-thinning.
We also observed that the velocity was essentially zero be-
low a threshold force. The threshold force grew dramatically
as the glass transition was approached.30

To test the behavior of the sample below the threshold
force for motion, we vary the magnetic force within a range of
forces that are below the threshold force for motion. To ensure
that the forces used are below the threshold force for motion,
each increase in the force was followed by a waiting period of
160 s to observe the subsequent motion of the magnetic bead.
The applied force as a function of time is shown in Fig. 1 by
the solid line. In this situation, the magnetic bead has a finite
displacement, rather than a finite velocity; the displacement
is shown by the dots in Fig. 1. As the figure shows, by ap-
propriately rescaling the units, the displacement of the mag-
netic bead from its original position is linearly proportional
to the applied force. Additionally, during each of the pauses
at constant force, the magnetic bead exhibits slight fluctua-
tions around its equilibrium position. Some of this is due to
Brownian motion, and some of this is due to the uncertainty
in identifying the position of the magnetic bead (∼0.04 μm).

Further evidence for the linearity is seen in the inset of
Fig. 1, showing the displacement data plotted as a function of
the applied force. The data are linearly related, and a fit to the
data leads to an effective spring constant k = 6.8 pN/μm. The
arrows shown in the figure indicate locations where the mag-
netic force was constant. This spring constant is quite large: a
reasonable comparison can be made with the thermal energy
kBT and the radius of the colloidal particles a, and working
through the change of units 6.8 pN/μm = 4000kBT/a2.

IV. PARTICLE DISPLACEMENT FIELDS

Unfortunately, the results of Fig. 1 are atypical in one
important respect: for many experiments lasting longer than
O(100 s), the magnetic bead experiences a cage rearrange-
ment and does not return to its original position. The spring
constant before and after any such displacement is always the
same, to within our uncertainty. Accordingly, to complement
the slow experiments of Fig. 1, we conduct experiments with
intermittent and short pulses of force to see the instantaneous
response of the sample on a time scale quicker than cage re-
arrangements. A nondimensional way to consider this is the
modified Peclet number.30 Pe* is the ratio of the time it would
take for a colloidal particle to diffuse its own size to the time
scale for the perturbation. The diffusive time scale is ∼400–
5000 s for the samples we study (φ > 0.4), and the perturba-
tion time scale is 0.25 s. Thus, Pe* ≈ 2000–20 000, signifying
that Brownian motion is unimportant on the time scales we
study: particles do not substantially rearrange their positions
during our experiment. The recovery to the perturbation (dis-
cussed in Sec. V) takes O(10 s), which is still in the high Pe
limit.

To discover the origin of the linear restoring force, we
examine the response of the colloidal particles surrounding
the magnetic bead. To produce reproducible initial strains, we
attach the external permanent magnet to a linear actuator as
described in Sec. II, and move the magnet toward the sam-

FIG. 2. Applied force as a function of time, for the three largest maximum
forces (see Table I). For all curves, F(t) = 0 for t < 0 s.

ple and then away at maximum speed. The force applied is
ramped up to a maximum value and then just as rapidly re-
duced. To calibrate the force as a function of time, F(t), we use
this procedure to exert a force on magnetic beads suspended
in glycerol. Such beads move with velocity v(t), from which
we deduce the force F(t) using Stokes’ Law, F = 6πηaMBv,
with the viscosity of glycerol η = 0.934 Pa s. The resulting
F(t) data are plotted in Fig. 2 for the three largest Fmax. These
correspond to the cases where the external magnet is moved
the closest to the sample. For example, the top curve in Fig. 2
takes longer to reach its peak and longer to return to F = 0, as
the magnet has farther to move.

The peaks of the curves, Fmax, are confirmed by measur-
ing the velocity of magnetic beads in glycerol while the ex-
ternal magnet is fixed in its closest distance to the sample for
a given forcing protocol. Those results agree quite well with
the values measured from the F(t) data. In the results that fol-
low, we refer to the different F(t) by their maximum values
Fmax which are listed in Table I. An additional way to quan-
tify the F(t) is by their time integral, I = ∫

F(t)dt, yielding an
impulse which is applied to the magnetic bead. These values
are also listed in Table I. In each case, the ratio I/Fmax = 0.25
± 0.03 s, suggesting that our choice of using Fmax is correctly
representing I as well, and that the effective pulse duration
is a quarter of a second. This time scale is short compared
to the Brownian time scale a2

MB/DMB = 110 s. (To compute
this time scale, we use DMB = kBT/6πηaMB with η being that
of the solvent, that is, we are using the φ → 0 value for the
diffusion constant.)

The response of the sample to a pulse is shown in
Fig. 3(b). This is a difference image formed by subtracting the
raw image before the pulse (such as Fig. 3(a)) from the raw
image after the pulse. In this case, the magnetic particle has

TABLE I. The five different maximum forces applied, and the integrated
impulse I = ∫

F(t)dt. The calibration procedure (described in the text) has an
intrinsic Fmax uncertainty of ±0.05 nN and an I uncertainty of ±0.005 nN s.
Due to variability between different magnetic beads, for a given magnetic
bead there is also an overall systematic uncertainty of ±10%. Graphs of F(t)
for the three largest values of Fmax are shown in Fig. 2.

Fmax (nN) I (nN s)

0.042 0.011
0.077 0.020
0.13 0.036
0.29 0.068
0.75 0.17
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(a) (b)

(c) (d)

FIG. 3. (a) Raw image of particles, before the force is applied. (b) Difference
between “before” and “after” a single force pulse is applied. (c) Difference
between two “after” images for two subsequent pulses. (d) As the images are
reproducible, a sequence of eight “before” pictures is averaged together, and
likewise eight “after” pictures. This picture is the difference between these
average images. For all pictures, the scale bar is 10 microns long, the volume
fraction is φ = 0.49, and the applied force is Fmax = 0.29 nN.

moved to the left, as indicated by the white crescent on its left
side. Because the magnetic bead is black and the colloids are
white, the colloidal motion is indicated by the direction of the
black crescents, and is also clearly leftward. Furthermore, the
overall disturbed region of colloids is a fairly smooth func-
tion of space. Adjacent colloids move similar distances in
Fig. 3(b).

This displacement field is highly reproducible, as is
shown by creating a difference image in Fig. 3(c) between
two images both taken when the colloids are maximally dis-
placed from their equilibrium positions. The difference image
is nearly completely gray showing that the displacements are
virtually the same. Slight local variations are due to Brownian
motion of particles within their cages, but no rearrangements
occur over the duration of the experiment. Due to the repro-
ducibility of the experiment, it is reasonable to average the
images “before” and the images “after” to reduce the vari-
ability caused by Brownian motion. The resulting difference
image is shown in Fig. 3(d) and emphasizes the smoothly spa-
tially varying displacements of the colloids. It can be seen that
the applied force is not exactly on the x-axis of the image; this
is dealt with in the analysis below.

To quantify the images shown in Fig. 3, we perform parti-
cle image velocimetry (PIV) on the pairs of “before” and “af-
ter” images. This method is frequently used in experimental
fluid mechanics, and does not depend on identifying or track-
ing individual particles.45 A small window in the first image
is taken, and cross-correlated with the same size window in
the second image. By moving the second window around in
the second image, we find which piece of the second image is
best correlated with the piece from the first image. The shift

required for this maximum correlation is a displacement vec-
tor reflecting how the particles have moved between the two
images, and, in particular, represents the displacement vec-
tor for the center of the window. We use a window size that
roughly encompasses two particles, although our results are
not sensitive to this choice. The technique is merely correlat-
ing the images and the particles provide contrast to help this
work. A typical displacement field is shown in Fig. 4(a), cor-
responding to the images shown in Figs. 3(a) and 3(b). For
the PIV analysis, we use the individual raw images such as
Fig. 3(a) which leads to Fig. 3(b), rather than the averaged
images which lead to Fig. 3(d). After computing the PIV anal-
ysis for each individual pulse, we average the PIV fields over
the pulse sequence for a given Fmax and φ to do the subsequent
analysis.

The smoothly varying appearance of the displacement
field seen in Fig. 4(a) suggests trying to fit the strain field to
a simple functional form. As noted previously, the response
of the magnetic bead to a constant force is a simple linear
function, and so a natural choice is to treat the colloidal sus-
pension as a homogeneous elastic medium. In such a medium,
the strain field �u around a point force �F applied at the origin
is given by46

�u = 1

8πEr

1 + σ

1 − σ
[(3 − 4σ ) �F + n̂(n̂ · �F )], (1)

where E is the Young’s modulus, σ is the Poisson ratio,
and n̂ is a unit vector pointing away from the origin. Using
n̂ = x̂ cos θ + ŷ sin θ and �F = F x̂, the equation can be
rewritten as

�u = 1

16πr

(
F

E

) (
1 + σ

1 − σ

)
[(7 − 8σ + cos 2θ )x̂ + (sin 2θ )ŷ],

(2)
which highlights the key spatial dependence of the strain field:
it decays as 1/r, and has a periodic dependence on 2θ , due to
the symmetry of the problem about the x-axis. θ = 0 corre-
sponds to the direction of the force.

To test this, we rescale the displacements ux and uy (mea-
sured from PIV) by r. This collapses the data reasonably well,
as shown in Fig. 5. Here the data are plotted as a function of
θ , showing the characteristic modulation in Eq. (2). The solid
line in Fig. 5 is a fit to the equation. The amplitude of both fit
curves is constrained by the model to be the same, which is in
slight disagreement with the raw data, where uxr is somewhat
larger in amplitude than uyr. This is seen in most of our data
sets. The curve for uxr is vertically offset from zero, and it can
be seen from Eq. (2) that the magnitude of the offset is related
to the Poisson ratio σ .

The fit has several parameters. First, the direction for
θ = 0 is chosen to be the average direction of all of the dis-
placement vectors to correct for the imperfect magnet align-
ment. Second, the two physical parameters to the fit are σ and
E. A difficulty in determining E is that the true value of F
is unknown: the model assumes a steady F, whereas we ap-
ply a pulse. If the force was held at Fmax, the magnetic bead
would move with a velocity and would not return to its orig-
inal position, given the large values of Fmax we use.30 Fortu-
nately, �u scales reasonably well with Fmax and thus leads to
a consistent value for the Young’s modulus E, even if its true
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(a) (b)

FIG. 4. (a) Displacement field based on data shown in Fig. 3(b). The arrows indicate displacements of the colloidal particles. (b) Residual displacement field
after subtracting off the fit to Eq. (2). The arrows are magnified by a factor of 5; in reality, the longest displacement vectors in panel (b) are 0.3 μm. The central
region near the magnetic bead is removed for clarity. For both panels, the circles indicate the initial and final positions of the magnetic bead, which moved
from right to left, and are drawn to scale. The scale bar is 10 microns long. The data correspond to Figs. 4 and 5: φ = 0.49 and Fmax = 0.29 nN. Note that a
displacement vector is calculated for every pixel in the raw images; here, only every 6th vector is drawn.

magnitude cannot be deduced from our fits. Third, we allow
for the location of the origin (x = 0, y = 0) to vary. It is not
obvious if the origin should be at the starting position of the
magnetic bead, the ending position, or elsewhere, especially
given that the magnetic bead is a finite-sized disturbance and
the model assumes a point-sized disturbance. We adjust the
origin so that the model has the best fit to the data; this typi-
cally puts the origin within 0.3 μm of the starting position of
the magnetic bead. A final parameter to our fitting algorithm
is above what radius r0 from the magnetic bead the fitting is
conducted. Sufficiently close to the magnetic bead, its finite
size begins to distort the strain field from the model. We fix
r0 = aMB, and in practice our results are not sensitive to our
choice.

Despite the slight disagreements between the raw data
and the model shown in Fig. 5, overall the model is remark-
ably successful. For a few samples, we find that the Young’s
modulus E increases slightly with increasing Fmax, but more

FIG. 5. Rescaled displacement vectors as a function of θ ; compare with
Eq. (2). The points are the data and the solid line is the fit to the equation. The
data correspond to Figs. 3(b) and 4(a), using only data with r > r0 = aMB.
For this fit, σ was constrained to be 1/2.

often we find E is independent of Fmax and accordingly for
each sample we average E over the different trials with dif-
ferent Fmax. The resulting data are plotted in Fig. 6, and E in-
creases by a factor of ∼8 as the glass transition is approached.
Simulations and theory show that elastic moduli diverge near
the jamming transition as B ∼ (φc − φ)−β with φc ≈ 0.64, the
volume fraction of random close packing.47–50 The exponent
β depends on the details of the interparticle interaction and
on which modulus is considered. The inset of Fig. 6 shows
E plotted as a function of (φc − φ) with behavior consistent
with a power-law, although our data extend over only half a
decade of (φc − φ). Our exponent is β = 1.84 ± 0.40, similar
to results for the bulk modulus of hard spheres (β = 2) and
shear modulus of hard spheres (β = 3/2).50

FIG. 6. Young’s modulus E as a function of volume fraction φ. Due to an
inadequately defined applied force, E is overestimated although this affects
all points equally (by a multiplicative factor) and does not change the shape
of the curve; see the text for a discussion. The inset shows the same data
plotted as a function of φc − φ with φc = 0.64. The lines in the main plot
and the inset are the fit to the data using E = E0(φc − φ)−β with E0 = 0.4 Pa
and β = 1.84 ± 0.40. The symbol size indicates the uncertainty.
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Our values of E are quite similar to those found in a
classic study of viscoelastic shear moduli of colloidal super-
cooled liquids,16 although that is a coincidence. On the one
hand, Eq. (2) assumes the sample is in equilibrium for the ap-
plied force, which is certainly not the case. Using Fmax over-
estimates E. On the other hand, our particles are 7.4 times
larger than those of Ref. 16, so our moduli should be smaller
by a factor of 7.43 = 400. We can estimate the correct order
of magnitude for our data from Fig. 1, using Eq. (2) with our
effective spring constant k = 6.8 pN/μm (setting this equal to
u/F) and r = aMB = 2.25 μm. This gives us E = 0.72 Pa for φ

= 0.55, suggesting that our data in Fig. 6 are overestimated by
a factor of O(100). Thus, we are in plausible agreement with
the data of Ref. 16 in the high-frequency limit, in particular,
which is most relevant for our quickly perturbed samples.

An alternative comparison for E can be made with the
theory of Schweizer and Saltzman, who developed an effec-
tive “free energy” for a hard sphere trapped in a cage.20 They
construct the free energy F(r) as a function of the distance
r from the cage center. For particle motion within the cage,
they find an effective spring constant depending on φ as k
∼ k0exp (25.3φ) with k0 = 2.5 × 10−4kBT/a2 (where kB is
Boltzmann’s constant, T is the absolute temperature, and a is
the colloidal particle radius). In our experiment, the magnetic
bead is larger than the surrounding particles by a factor of
1.45, so the effective spring constant experienced by our bead
will be larger by 1.452 = 2.1. Using φ = 0.55 and correct-
ing for the bead size, their theory predicts k ≈ 580kT/a2, as
compared to our result of k = 6.8 pN/μm = 4000kBT/a2. Our
result is a factor of 7 larger. Overall, given the approximations
made by the theory and the uncertainties of the experiment,
agreement within a factor of 7 is suggestive that the origin of
the elasticity we observe is indeed the caging of the particles.
Recent work by Harrer et al.23 combined mode coupling the-
ory and simulations, and also found somewhat smaller spring
constants than we do, ≈150kBT/a2 for φ = 0.55, or 320kBT/a2

after adjusting for the magnetic bead size. Interestingly, Har-
rer et al.23 also found a “strain softening” effect (decreas-
ing spring constant) at large applied forces F � 5kBT/a.23

Figure 1 shows forces up to 7 pN = 2600kBT/a without
any strain softening; however, as noted above, Fig. 1 is an
atypical result and most magnetic beads under these forces
move out of their cages, in agreement with the predictions of
Ref. 23.

The other key fit parameter in Eq. (2) is the Poisson ra-
tio σ . For all Fmax and φ, we find σ = 0.50 ± 0.08. Values
of σ larger than 1/2 are unphysical, so we conclude that our
data show σ = 1/2. Accordingly, we fix this value and redo
the fits to Eq. (2), and the values of E that result are the ones
shown in Fig. 6 and correspond to the fit curves shown in
Fig. 5. The physical meaning of σ = 1/2 is that volume is
conserved during deformation: if this sample is strained in
one direction, the sides contract sufficient to conserve vol-
ume. This is plausible, as the sample itself is an incom-
pressible fluid with solid particles, and additionally one as-
sumes the volume fraction stays homogeneous during simple
deformations.

As noted above, we allow the direction of the force to
be a free parameter when performing the fit. This angle is

fairly constant, with a standard deviation of only 4◦ between
the different experiments. This variability likely reflects mea-
surement error.

The fit shown in Fig. 5 is not perfect, and some system-
atic deviations from the fit can be seen. The difference be-
tween the fit and the measurements is shown in Fig. 4(b).
The displacement vectors are stretched by a factor of 5,
and thus greatly exaggerate the difference. Nonetheless, this
picture looks similar to the locally nonaffine elastic behaviors
seen in some simulations6, 51–53 and also images of “floppy-
modes,” localized normal modes, and “soft spots” known to
be present near jamming.54–58 We stress that the majority of
the total displacement field shown in Fig. 4(a) is well-fit by
Eq. (2).

V. DECAY OF STRAIN

A. Experimental observations

After the force is removed, the magnetic bead moves
back to its equilibrium position. Typical data of the mag-
netic bead displacement as a function of time are shown in
Fig. 7(a). Within our resolution, the magnetic bead is always
in the initial position less than 10 s after it starts the return
motion.

Figure 7(b) shows the data on a semilog plot, where
straight lines would indicate exponential decay. While the ini-
tial portion of the data can be fit to straight lines, clear devi-
ations are seen at longer times. The decay times found are
0.3–0.5 s but do not depend systematically on the initial dis-
placement. Furthermore, some evidence of memory is seen.
For example, the Fmax = 0.29 nN data (green triangles) go
from x = 2.0–0.4 μm during the time interval t = 0.0–0.7 s.
In contrast, the Fmax = 0.75 nN data (red squares) go from

FIG. 7. Plots of the displacement of the magnetic bead as a function of time,
after the force is removed, for φ = 0.49. Panel (a) shows a linear-linear plot
and panel (b) shows a log-linear plot. The values of Fmax are given in Table I,
with the largest initial displacement (red squares) corresponding to the largest
force and the smallest initial displacement (purple pluses) corresponding to
the smallest force. In (b), lines are fit to the initial data (t < 0.5 s) indicating
decay time constants of 0.47 s, 0.38 s, 0.37 s, 0.31 s, and 0.46 s (from largest
Fmax to smallest).
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FIG. 8. Relaxation curves for several experiments demonstrating that the
decay is faster for samples with higher φ. (a) Comparison of two samples
with φ as indicated that have nearly the same initial displacement. For the
φ = 0.44 data, the force is Fmax = 0.13 nN, and for the φ = 0.49 data, the
force is Fmax = 0.29 nN. Two different instances are shown for the φ = 0.49
data (triangles and pluses). (b) Comparison of three samples with the same
force (Fmax = 0.29 nN) but different φ as indicated.

x = 2.0 to 0.4 μm during the time interval t = 0.4–1.9 s, tak-
ing nearly twice as long to cover the same displacement. The
noisy data seen in Fig. 7(b) at small values of x are partly due
to the uncertainty in determining x (±0.04 μm). The x = 0
position is defined by an average at long times and so is more
accurately defined. Within our resolution the positions shown
in Fig. 7(b) have not quite decayed to x = 0 over the time
period shown.

One trend is that samples with larger φ (closer to the
glass transition) decay faster, as is shown in Fig. 8. Given the
nontrivial memory effects, it is not obvious whether to com-
pare data at constant initial displacement or at constant Fmax.
This distinction turns out to be unimportant. Figure 8(a) com-
pares two different volume fractions with the same initial dis-
placement, and the data at larger φ decay faster. Figure 8(b)
shows three different volume fractions with the same Fmax,
with the same trend, data for larger φ decay faster. This makes
intuitive sense, as the elastic modulus is larger for larger φ

(Fig. 6). While viscous dissipation rises as the glass tran-
sition is approached,16 apparently the elastic contribution to
the magnetic bead relaxation rises faster, resulting in a faster
relaxation.

While the position as a function of time does not appear
to decay exponentially (Fig. 7), plotting the data in Fig. 9 as
a function of

√
t suggests x ∼ exp(−√

t/t0). The value of t0
is slightly larger for larger initial displacements, although the
data in Fig. 7 are fairly parallel within each panel, showing
that t0 is not changing that dramatically. t0 is clearly larger for
lower volume fractions φ.

B. Model of relaxing bead

To explain the stretched exponential decay process, we
develop a model that treats the relaxation of stresses in the
viscoelastic colloidal sample. Consider the relaxation dynam-

FIG. 9. Displacement plotted as a function of
√

t for (a) φ = 0.47 and (b) φ

= 0.49. The different symbols indicate different values of Fmax. The values of
Fmax are given in Table I, with the largest initial displacement (red squares)
corresponding to the largest force and the smallest initial displacement (pur-
ple pluses) corresponding to the smallest force. The straight lines indicate fits
to ∼exp(−√

t/t0). For (a), the values of t0 are 0.50, 0.29, and 0.31 s (top to
bottom). For (b), the values of t0 are 0.23, 0.21, and 0.19 s (top to middle).

ics of a magnetic bead of radius aMB initially at x = 0 in a
viscoelastic medium that is suddenly displaced at time t = 0
by an amount x0 due to an imposed force F. The bead was
originally (at t < 0) in equilibrium and the displacement will
result both in a force exerted on the external medium by the
bead creating a stress field in the colloidal medium and a reac-
tion force by this medium on the bead. The experiments show
clearly the presence of both memory and a stretched exponen-
tial behavior for the bead relaxation. We show here that if the
induced stress field relaxes in a diffusive manner then such
behavior arises. The reaction force will thus in general be a
function of both the applied force F that creates the inhomo-
geneous stress field around the bead, as well as time t due to
diffusive relaxation of the stress field. This reaction force will
tend to bring the bead back to its original equilibrium posi-
tion due to the elastic forces exerted on the bead together with
a viscoelastic drag force that will dissipate energy. Thus, we
can write the equation of motion,

mẍ = −m

∫ t

0
ζ (t − s)ẋ(s)ds − k(F, t)x, (3)

where the first term on the RHS is the viscoelastic drag on
the bead and the second term represents the elastic force on
the bead in the presence of a relaxing force constant k(F, t).
Because the motion is slow, we can replace the viscoelastic
drag by its viscous zero frequency limit. Namely, defining
γ = ∫ ∞

0 ζ (t)dt , we can rewrite Eq. (3) as

ẍ = −γ ẋ − ω(F, t)2x. (4)

We estimate γ = 6πaMBη/m using Stokes’ law with η being
the effective viscosity of the colloidal medium, and we define
ω(F, t)2 = k(F, t)/m.

Our first challenge is to estimate k(F, t). We can see from
the strain field u(r) induced in the colloidal medium due to
the applied force F (see Eq. (1)) that there exists a length
scale ξ 0 over which the colloidal displacements will be greater
than the typical colloidal particle radius a. This scale can be
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estimated as

ξ0(F ) ≈ CF/(Ea), (5)

where E is the Young’s modulus of the sample and the con-
stant C ≈ (1/16π )(1 + σ )(7 − 8σ )/(1 − σ ) ≈ 0.2. Using our
largest Fmax = 0.75 nN and E ≈ 15 Pa, ξ 0 ≈ 4a. Given that
the medium is not perfectly elastic but rather viscoelastic, we
argue that this region grows diffusively as the strain is dissi-
pated in the surrounding medium, leading to a growing length
scale ξ (F, t), where

ξ (F, t)2 = ξ0(F )2 + 6Dt. (6)

In Eq. (6), D is the diffusion constant characterizing motion
that can relax the strain, which does not require cage rear-
rangements. We discuss D in more detail below. Using ξ (F,
t) we can estimate the typical strains in the colloidal medium
induced by the bead. These strains, ε ≈ x/ξ (F, t), reduce with
time both due to the diffusive relaxation of the initial strain
and the reduced imposed forces, as the bead returns to its
original equilibrium position. The associated elastic stresses
in the colloid are then ≈Ex/ξ (F, t). Thus, we are now in a po-
sition to estimate the restoring force on the bead as k(F, t)x
≈ 4πR2Ex/ξ (F, t) or

ω(F, t)2 ≈ 4πR2E/(mξ (F, t)) = ω2
0/

√
(1 + t/τ ), (7)

where ω2
0 = 4πR2E/(mξ0(F )) and τ = ξ 0(F)2/6D. Substitut-

ing Eq. (7) into Eq. (4) then yields

ẍ = −γ ẋ − ω2
0x/

√
(1 + t/τ ). (8)

The relaxational behavior of the bead can now be found
by solving Eq. (8) subject to the initial conditions x(t = 0)
= x0 and ẋ(t = 0) = 0. Though Eq. (8) cannot be solved ex-
actly, it has two limiting forms. For t 	 τ , Eq. (8) reduces to
ẍ = −γ ẋ − ω2

0x. This is the equation of motion for a linear
oscillator with two overdamped modes,

x(t) = (x0/2){α+ exp [−γα−t/2]

+α− exp [−γα+t/2]}, (9)

using α± = 1 ±
√

1 − 4ω2
0/γ

2. In the limit t 
 τ , Eq. (8)

reduces to ẍ = −γ ẋ − ω2
0

√
τ/tx. In this limit, we have a

stretched exponential solution,

x(t) ≈ (x0/2)α+ exp (−
√

t/t0), (10)

where t0 = γ 2/(ω4
0τ ) = (27/2)η2D/(a2

MBE2). Significantly,
t0 does not depend on the initial displacement x or on the ini-
tial applied force F.

We can compare these predictions to the experiment. As
mentioned above, using Fmax = 0.75 nN and E ≈ 15 Pa, ξ 0

≈ 4a. The discussion in Sec. IV makes clear that neither Fmax

nor this inferred E are the proper values for Eq. (5), but on
the other hand their ratio is what is needed to compute ξ 0

and it is precisely this ratio that is directly measured in the
experiments of Sec. IV. We estimate D as the short-time dif-
fusion coefficient, D ≈ kBT/6πηa = 0.064 μm2/s. This ap-
proximation using the dilute-limit value is imperfect due to
hydrodynamic interactions, which reduce D at larger volume
fractions,59–62 but we are mainly seeking the right order of
magnitude. Using this D and ξ 0, we find τ ≈ 100 s.

The drag force acting on the magnetic bead is not due
to the viscosity η of the solvent (used to calculate D) but
rather the effective viscosity of the medium, which is ≈50
times larger at these volume fractions.13 To calculate t0 we
use the more correct value of E estimated from the data of
Fig. 1 as discussed in Sec. IV. Using aMB = 2.25 μm and E
= 0.72 Pa we get t0 = 1 ms. This is too small by a factor of
∼200 from the experimental data (Fig. 9). Likewise, given τ

≈ 100 s, we would expect to see the asymptotic (stretched ex-
ponential) behavior for

√
(t) 
 10 in Fig. 9: that we see it at

earlier time scales suggest that our estimate for τ is too large.
We thus reconsider the correct value of D. In our model,

we assume D is the diffusion coefficient for strain. In prac-
tice, individual colloidal particles do not need to move signif-
icant distances for the strain to diffuse. Much as a dislocation
can move rapidly through a crystalline lattice, while individ-
ual particles stay close to their lattice sites, a slight motion of
a particle (�r < a) changes the strain over a neighborhood
∼a in scale. If we assume that particles diffusing a distance
of a/20 are sufficient for the strain to diffuse a distance a, then
D becomes 400 times larger. This decreases τ to 0.2 s and in-
creases t0 to 0.4 s, bringing our model into more reasonable
agreement with the data. The distance a/20 is smaller than the
cage size (which is about a/3).19

VI. CONCLUSIONS

We have used magnetic beads to locally perturb a dense
colloidal sample at volume fractions φ < φg, close to the col-
loidal glass transition. The magnetic beads have a linear re-
lationship between the applied forces and their displacement,
and the strain field around the beads is well-described as that
of a homogeneous elastic medium subject to a point force.
The Poisson ratio is σ = 1/2, consistent with a sample that
conserves its total volume when a stress is applied. Not sur-
prisingly, the Young’s modulus describing the elastic medium
grows as the glass transition is approached. The growth is con-
sistent with power-law in (φc − φ), where φc = φrcp > φg.

When the bead is moved away from its equilibrium posi-
tion and the force is removed, we observed the subsequent re-
laxation to the equilibrium position. This relaxation behaves
as a stretched exponential, x ∼ exp (−(t/t0)1/2). This agrees
with a model that assumes the stress can diffuse away to in-
finity: thus, while the particle is moving back to x = 0, the ef-
fective spring constant acting on the particle is also diminish-
ing. The experimental time scales suggest that this diffusion
is rapid, occurring faster than the particles themselves diffuse.
This is likely due to the relatively small displacements of par-
ticles needed to change the strain.
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