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We immerse the bottom of a rod in ice water and record the time-dependent temperatures at

positions along the length of the rod. Though the experiment is simple, a surprisingly difficult

problem in heat conduction must be solved to obtain a theoretical fit to the measured data. The

required equipment is very inexpensive and could be assigned as a homework exercise or a hands-

on component of an online course. VC 2017 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4983649]

I. INTRODUCTION

Heat fins are essential components of many familiar prod-
ucts, including electronic circuits1 and engines.2 Simply by
providing additional surface area in contact with cool air,
heat fins prevent overheating. Although the concept is sim-
ple, the mathematical details are complicated. Heat-fin
experiments showcase practical applications of sophisticated
mathematical techniques.

Here we present an inexpensive experiment that illustrates
the complicated mathematical physics of transient heat con-
duction in fins. (We note here that “fin” suggests a shape
with a thin rectangular cross section, but identical physics
applies to rods with square or circular cross-sections.) In this
work, we immerse the bottom of a rod in ice water (with the
rest in air) and record the time-dependent temperatures at
one or more positions along its length. This experiment
requires only ice water, superglue, an Arduino Uno, a bread-
board, and a temperature sensor,3 all costing less than $30
(the rod can be a common nail). With the rise of online learn-
ing, science educators may be more and more obligated to
identify meaningful experiments that online students can
perform at home. Our experiment satisfies this criterion and
is suitable for intermediate and advanced laboratory courses
as well as courses in thermodynamics, heat transfer, engi-
neering sciences, and even mathematical physics.

Previous papers describe other experiments involving heat
conduction in rods. In some cases, convective heat transfer
along the lengths of the rods was considered negligible,4–9

but in our experiment, we will show that this assumption is
not valid. In other papers, convective heat transfer along the
length of the rod is accounted for,10–12 but the boundary con-
ditions for our experiment differ from those for previously
described experiments. As such, the equation required to
model our experiment has not, to our knowledge, been previ-
ously published.

II. THEORY

We will now derive the equation needed to fit our mea-
sured temperatures. We cannot use the one-dimensional heat
equation,1 @2T=@x2 ¼ ð1=aÞ@T=@t, because we need to
account for convective heat transfer along the length of the
rod. If there were no convective heat transfer between the
rod and air, the entire rod would eventually reach thermal
equilibrium with ice water, and this contradicts the measure-
ments presented below.

Before solving a differential equation, we must first derive
it; we do so by analyzing the differential volume element

shown in Fig. 1. The thickness of the element is dx, and its
cross-sectional area is A (perpendicular to the plane of the
diagram and not shown).

The conductive heat transfer rate in through the top of the
element is q(xþ dx), the conductive heat transfer rate out
through the bottom of the element is q(x), and the convective
heat transfer rate out through the external surfaces of the ele-
ment is qconv. The net outward flow of heat causes the tem-
perature to decrease according to

q xþ dxð Þ � q xð Þ � qconv ¼ qA dxð Þc @T

@t
; (1)

where q is the mass density, T is temperature, and c is the
specific heat. Equation (1) is simply the time derivative of
the first law of thermodynamics applied to the differential
volume element—because the work is zero, the net heat
transfer rate equals the rate of change of internal energy.1

Expressing the heat transfer rates through Fourier’s law of
conduction and Newton’s law of cooling, we obtain

kA
@T xþ dx; tð Þ

@x
� kA

@T x; tð Þ
@x

� hP dx T x; tð Þ � Ta½ � ¼ qA dxð Þc @T x; tð Þ
@t

; (2)

where Ta is the ambient temperature, k is the thermal con-
ductivity, h is the heat transfer coefficient, and P is the
perimeter of the cross-section. Dividing both sides by kA dx
and allowing dx! 0 results in

@2T

@x2
� m2 T � Tað Þ ¼ 1

a
@T

@t
; (3)

where m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
hP=kA

p
is called the fin parameter1 and a ¼

k=qc is the thermal diffusivity.
To solve Eq. (3), we need to know both the boundary con-

ditions and the initial condition. The initial condition is that
the rod is at ambient temperature, or

Tðx; 0Þ ¼ Ta: (4)

Immersing the bottom of the rod (x¼ 0) in ice water causes
convective heat flow into the ice water

k
@T 0; tð Þ
@x

¼ h0T 0; tð Þ; (5)

where h0 is the heat transfer coefficient in ice water. Since
water is a liquid, we expect h0 to be an order of magnitude
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greater than h, the heat transfer coefficient in air.13 The con-
vective heat transfer at the top surface is therefore much less
than the convective heat transfer at the bottom surface. In
fact, we will neglect convective heat transfer at the top sur-
face because the top surface area is small compared to the
lateral surface area, and the temperature at the top surface is
closest to ambient temperature. If the resulting theoretical
expression fits our data, the approximation is justified. The
approximation that convective heat transfer is zero at the top
surface means that conductive heat transfer at the top surface
must also be zero, requiring

@T L; tð Þ
@x

¼ 0: (6)

The steady-state temperature distribution is not uniform.
Therefore, the solution to Eq. (3) must have a steady-state
part Ts(x) and a transient part Tt(x,t), so that

Tðx; tÞ ¼ TsðxÞ þ Ttðx; tÞ: (7)

Equation (7) may be unfamiliar to students, but the concept
is simple: the system evolves towards its steady-state solu-
tion, which does not depend on time. All of the time-
dependence can therefore appear in a separate, transient term
that decays to zero. Substituting Eq. (7) into Eq. (3) allows
us to separate the steady-state fin equation,

d2Ts

dx2
� m2 Ts � Tað Þ ¼ 0 (8)

from the equation for the transient term,

@2Tt

@x2
� m2Tt ¼

1

a
@Tt

@t
: (9)

The solution to Eq. (8) is Ts(x)¼Taþ aemxþ be–mx, where
a and b are coefficients to be determined by the boundary
conditions, Eqs. (5) and (6). The final result is obtained
through tedious yet straightforward algebra, giving

Ts xð Þ ¼ Ta �
h0Tacosh m L� xð Þ½ �

h0cosh mLð Þ þ mksinh mLð Þ : (10)

Note that as h0 gets very large, Ts(0) approaches 0; highly
effective convective heat transfer at the bottom surface of

the rod reduces the temperature there to that of ice water.
Conversely, as h0 gets very small, the temperature of the rod
remains at ambient temperature, unaffected by the ice water.

The transient equation is solved by separation of varia-
bles,13 setting Tt(x,t)¼X(x)s(t), where X(x) and s(t) are func-
tions to be determined. Substituting this expression into Eq.

(9) and dividing by Xs yields X00ðxÞ=X ¼ m2 þ s0ðtÞ=as,
where the primes denote differentiation with respect to the
function’s argument. The left-hand side of this equation is a
function of x while the right-hand side is a function of t, and
the only way for a function of x to equal a function of t is if
both functions are equal to the same constant, which we will
call –k2. Then, solving the ordinary differential equation for
s(t) yields s(t)¼C exp[–a(m2þ k2)t], where C is an unknown
coefficient. Meanwhile, the equation for X(x) is solved by
sinusoidal functions, which must satisfy the boundary condi-
tions given in Eqs. (5) and (6). Equation (6) is satisfied if
X(x) has the form cos[k(L–x)], and Eq. (5) then requires
cot(kL)¼ kk/h0. A solution for Tt(x,t) thus takes the form
C exp[�a(m2þ k2)t]cos[k(L � x)], and a sum over all
possible k is required to satisfy the initial condition,
T(x,0)¼Ts(x)þ Tt(x,0)¼Ta, so that Tt(x,0)¼Ta � Ts(x)
¼ h0Ta cosh½mðL� xÞ�=½h0 coshðmLÞ þ mk sinhðmLÞ�.
Expressing this function as a Fourier series1 allows us to
determine the coefficients C and obtain

Tt x; tð Þ ¼
2Tah0 sinh mLð Þ

h0 cosh mLð Þ þ mk sinh mLð Þ

�
X1
n¼1

kn m cos knLð Þ þ kn sin knLð Þ½ �
knLþ cos knLð Þsin knLð Þ½ � m2 þ k2

n

� �

� cos kn L� xð Þ½ �e�a m2þk2
nð Þt; (11)

where kn are the positive solutions to

cot knLð Þ ¼ kkn

h0

: (12)

As Eq. (12) is a transcendental equation, it must be solved
numerically. The complete solution is finally obtained by
substituting Eqs. (10) and (11) into Eq. (7).

This heat conduction problem is more advanced than typi-
cal heat conduction problems introduced in an undergraduate
math methods course. Students may be amazed that such a
simple experiment requires such complicated mathematics,
and such an experiment may motivate and reward students’
development of advanced mathematical skills.

Radiative heat transfer is not explicitly included here
because it is much less important than convective heat trans-
fer.12 Even if radiative heat transfer is significant, the heat
transfer coefficient can approximate the effects of both con-
vective and radiative heat transfer.13 To demonstrate this
fact, we perform a Taylor series expansion on the exact
expression for radiative heat transfer,

qrad ¼ erP dxðT4 � T4
aÞ; (13)

where e is the emissivity of the material, r is the Stefan-
Boltzmann constant, and P dx is again the external surface
area of a volume element of the material. The second-order
Taylor series expansion around T¼Ta is

qrad ¼ 4T3
aerPdxðT� TaÞ þ 6T2

aerPdxðT� TaÞ2: (14)

Fig. 1. Volume element of thickness dx within a rod of length L.
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If only the first-order term is retained, the coefficients can be
absorbed into the convective heat transfer coefficient, which
also multiplies (T � Ta). The absolute value of the ratio of
the second-order term to the first order term is 1.5(Ta � T)/
Ta, where Ta¼ 293 K and Ta � T< 10 K for all our experi-
ments. The second-order term is therefore less than
1.5(10 K)/(293 K)¼ 5.1% of the first-order term, which is
why little error is introduced by dropping the second (and
higher) order terms.

III. EXPERIMENT

We used a 3.5 cm-long nail (including the head but not the
tapering tip) with a diameter of 2.3 mm, and two 6 in.-long
square rods of widths 0.25 in. and 0.75 in. composed of type
304 stainless steel. We superglued a single temperature sen-
sor (Analog Devices TMP36)14 into the head of the nail and
three sensors along the length of each rod. The area of the
sensor in contact with the material is a square with side
length 4.5 mm. These sensors generate a voltage that
depends linearly on temperature according to14

V ¼ ð10 mV=�CÞT þ 500 mV: (15)

The sensors’ leads were plugged into a breadboard, which
was held in a clamp over a bowl of ice water, and were wired
directly to an Arduino Uno. Each sensor has three leads: one
connected to ground, one connected to 5 V, and one con-
nected to an analog input, as shown in Fig. 2. We found that
the sensors were sensitive to electrical noise, so to prevent
anomalous results we avoided excessively long wires. The
apparatus is shown in Fig. 3.

We immersed the bottom surfaces of the rods and the bot-
tom portion of the nail in ice water. The nail was immersed
to the level where it began to taper, designated as x¼ 0;
above that level, the nail was considered to be a rod of
approximately uniform cross-sectional area up to the top of
the head at x¼L. Every 5 s, we averaged 100 measurements
from each sensor to obtain the temperature. In all, 100 meas-
urements were completed within about 0.01 s, so the averag-
ing does not result in any significant loss of time resolution.
In all cases, data are read into a computer through an
Arduino microcontroller. Lengthy instruction in Arduino
programming is not required, as the necessary code is sim-
ple. The program requires little more than an analog read, a
“serial print” of the data to the computer, and a delay to set
the time interval between measurements.15 Students are
often amazed at how quickly and easily they learn how to
interface with a sensor.

Our ultimate goal is to experimentally test our mathemati-
cal model, and to determine the thermal diffusivity a, the fin
parameter m, and the heat transfer coefficient in ice water,

h0. For type 304 stainless steel, q¼ 8,030 kg/m3 and
c¼ 0.5 kJ/kg K over a wide temperature range,16 and k
varies17 from 14.4 W/K m at 0 �C to 14.8 W/K m at 20 �C.
Therefore, a for the rods18 should be about 4 mm2/s. We are
not certain of the composition of the nail, and thermal con-
ductivity for different steel alloys varies19 from 11–65 W/K
m at 0 �C, so we expect a for the nail to be in the range of
2.7–16 mm2/s.

The fin parameter m depends on physical dimensions,
thermal conductivity, and the (unknown) heat transfer coeffi-
cient. The heat transfer coefficient in air can vary widely,
though typical values13 are in the range 5–30 W/m2 K.
Therefore, we expect m to be in the range 12–69 m�1 for the
nail, 15–36 for the 0.25 in.-wide rod, and 8–21 for the 0.75
in.-wide rod. Meanwhile, our expectation is that h0 will fall
within a typical range13 of the heat transfer coefficient for
water, 30–300 W/m2 K.

According to the data sheet for the temperature sensors,14

the typical accuracy is 61 �C, although it may be as poor as
63 �C. We found that each sensor recorded very consistent
values of room temperature, usually with a standard devia-
tion less than 0.1 �C. However, the sensors differed by up to
3 �C from one another and from a digital thermometer mea-
suring room temperature (20 �C). We assumed that the sensors
could be calibrated by a simple additive correction, so if the
initial temperature of a sensor was Ti, we added (20 �C – Ti) to
every measurement to obtain calibrated temperatures.

To fit the data using our mathematical model, we used the
curve-fitting tool in MATLAB, though identical calculations
can be performed using PYTHON or some other analysis pro-
gram. We found that the series in Eq. (11) converged rapidly,
and we truncated the series after 10 terms.

Fig. 2. Schematic diagram showing how the temperature sensors are con-

nected to the Arduino (created using the open-source Fritzing program).

Fig. 3. The simple apparatus used to record temperatures at three locations

along a 0.25 in.-wide steel rod.
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IV. RESULTS AND DISCUSSION

Experimental results for the nail are shown in Fig. 4, along
with a fit from the model. Although we are not certain of the
composition of the nail, we assume that is stainless steel, and
for density and specific heat, we use the values of type 304
stainless steel (q¼ 8,030 kg/m3 and c¼ 0.5 kJ/kg K). The fit-
ting parameters obtained were a¼ (1.4 6 0.4) mm2/s,
m¼ (33 6 5) m�1, and h0¼ 1,500 6 400 W/m2 K. Here, h0 is
five times larger than the largest typical value for water
reported in the literature. We believe h0 is anomalously high
partly because the nail is not a perfect cylinder but also
because the entire tapered tip was immersed, which dramati-
cally increases the surface area in contact with the ice water
as compared with a circular cross section. Because our
model does not account for the geometry of the tip, the
increased area for convective heat transfer manifests as an
anomalously large convective heat transfer coefficient. The
geometric deviation from the mathematical model is proba-
bly also responsible for the unexpectedly low value of a; it is
about half the smallest typical value reported for steel.

The final temperature at the top of the nail is greater than
14 �C, demonstrating that convective heat transfer along the
length of the nail is significant: if heat transfer occurred only
between the ice water and the nail, the nail would eventually
come into equilibrium with the ice water at 0 �C.

Experimental results, along with a fit using the model, for
the thin square rod are shown in Fig. 5, with the fit parame-
ters given in Table I. The values for a are all within 33% of
the expected value of 4 mm2/s. In light of the approximations
used in the mathematical model—a and k actually depend on

temperature and are only approximately constant and uni-
form; similarly, h and m are also only approximately con-
stant and uniform—we feel that such results are reasonably
good. In fact, because the local heat transfer coefficient can
vary so widely from one position to another, the symbol �h is
often used to represent the average heat transfer coefficient
over a surface.1 (We believe that such variability also
accounts for the differences obtained for m and h0.) The val-
ues of m provided in Table I fall within the expected range
whereas the values of h0 are much more variable. Note that
at the position farthest from the ice water, the temperature
changed by less than 1 �C, and the fit was unable to precisely
specify h0.

Results for the thick square rod are shown in Fig. 6 and
Table II. The temperature data at the position farthest from
the water clearly illustrate that the temperature does not fol-
low a simple exponential decay; significant time elapses
before the top of the rod is affected by the ice water. The
goodness of the fits in Fig. 6 are very high, especially for the
two lower positions. In addition, the fit parameters in Table
II are much more consistent than for the thin square rod. As
with the previous results, values obtained for a fall within
40% of the expected result. The values obtained for m are
surprisingly close to one another, and are within the expected
range. In addition, two of the values obtained for h0 fall
within the expected range, while the third is just 10% higher
than expected.

V. CONCLUSIONS

We have demonstrated an inexpensive, experimentally
simple but mathematically advanced laboratory-exercise that
can be performed at home by online students. The mathemat-
ical model fits the measured data with a coefficient of deter-
mination that usually exceeds 0.98. By fitting the model to
the measured data, we obtained thermal diffusivity values
within 40% of the expected result. We consider this a

Fig. 4. Measured data and theoretical fit for the temperature at the top of a

3.5-cm nail.

Fig. 5. Measured data and theoretical fits for the temperatures measured at

three positions along a 0.25 in.-wide steel rod.

Table I. Fitting parameters obtained from temperatures taken at three posi-

tions on a 0.25 in.-wide steel rod.

Position x (cm) a (mm2/s) m (m–1) h0 (W/m2 K)

14.95 3.9 6 0.6 24 6 2 800 6 900

5.75 4.9 6 0.4 18.5 6 0.9 270 6 20

2.1 2.7 6 0.3 31 6 2 450 6 30

Fig. 6. Measured data and theoretical fits for the temperatures measured at

three positions along a 0.75 in.-wide steel rod.
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success because the model equation relies on a significant
assumption that the physical parameters—thermal conduc-
tivity, thermal diffusivity, heat transfer coefficient, and fin
parameter—are all uniform and constant along the length of
the rod.
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