Problem Set 8

 

I.

 

a.

 

 

            V(x) = -V0       for –a < x < a

            V(x) = 0           otherwise

 

 

            y(x) = Aeax                 for x < -a

            y(x) = Csin(kx)            for –a < x < a

            y(x) = Ge-ax                 for x > a

 

 

b.

 

 

 

 

6-42.

 

a.

 

b.

 

 

c.

 

Since all of the incident beam is either reflected or transmitted, T = 1 – R = 4k1k2/(k1 + k2)2.

 

d.

 

 

6-53.

 

a.

 

 

b.

 

 

c.

 

 

6-61.

 

a.

 

            A + B = (a - ik)Fea(ik+a)/(2a) + (a + ik)Fea(ik-a)/(2a).                           (5)

            ikAikB = -a(a - ik)Fea(ik+a)/(2a) + a(a + ik)Fea(ik-a)/(2a).              (6)

            F* = -4aikA*/[(-2aik + k2 - a2)ea(-ik+a) + (-2aik – k2 + a2)ea(-ik-a)].

16a2k2A*A/{[4a2k2 + (k2 - a2)2]e2aa - (2aik + k2 - a2)2 - (2aik – k2 + a2)2 + [4a2k2 + (a2 - k2)2]e-2aa}=

16a2k2A*A/{[4a2k2 + (k2 - a2)2]e2aa – [-4a2k2 + 4aik(k2 - a2) + (k2 - a2)2] - [-4a2k2 + 4aik(a2 - k2) + (a2 - k2)2] + [4a2k2 + (a2 - k2)2]e-2aa}=

16a2k2A*A/{[4a2k2 + (k2 - a2)2]e2aa + 8a2k2 - 2(k2 - a2)2 + [4a2k2 + (a2 - k2)2]e-2aa}=

16a2k2A*A/{[4a2k2 + (k2 - a2)2](e2aa - 2 + e-2aa) + 16a2k2}               Check it!

= A*A/{sinh2(aa)[4a2k2 + (k2 - a2)2]/(4a2k2) + 1}                             Check it!

= A*A/{sinh2(aa)[16E(V0 – E) + (4E – 2V0)2]/[16E(V0 – E)] + 1}

= A*A/{1 + sinh2(aa)[16E(V0 – E) + 16E2 – 16EV0 + 4V02]/[16E(V0 – E)]}

= A*A/{1 + sinh2(aa)(4V02)/[16E(V0 – E)]}

= A*A/{1 + sinh2(aa)/[(4E/V0)(1 – E/V0)]}

 

b.