
Galactic Rotation 

1.  Objective 

 Use Doppler shift to determine the rotational speed of the WHOLE ENTIRE GALAXY. 

2.  Introduction 

2.1  The 21 cm line of neutral hydrogen 

 Neutral hydrogen can emit radio waves with a 21 cm wavelength and a frequency of 1420 MHz.  

This is a very long wavelength and a very low frequency, compared with the visible light of the Balmer 

series.  You know that the lines of the Balmer series result from electrons dropping to the n = 2 energy 

level from higher energy levels.  So where does the 21 cm wavelength come from? 

 The ground state of the hydrogen atom can actually be split into two energy levels:  one in which 

the proton and electron have parallel spins (shown in Figure 1), and one in which the spins are antiparallel.  

The parallel-spin state has a higher energy, and when the atom transistions from parallel spins to 

antiparallel spins, light with the 21 cm wavlength is released.   

 

Figure 1 (from http://en.wikipedia.org/wiki/File:HydrogenLineAntiParallel.png).  Parallel spins in the 

ground state.  When the atom transitions to the lower-energy state of antiparallel spins, light with a 21 cm 

wavelength is released.    

 The energy-level splitting due to the relative orientation of proton and electron spins is called 

hyperfine splitting.  Why hyperfine?  Fine (structure) splitting is due to the relative orientation of electron 

spin and orbital angular momentum.  Since there's no orbital angular momentum in the ground state, the 

ground state is split only because of hyperfine structure.  Figure 2 shows fine and hyperfine structure 

splitting.  The quantum numbers have the following meanings:  I is proton angular momentum, J is total 

electron angular momentum (orbital plus spin), and F is total atomic angular momentum (electron plus 

proton).   

http://en.wikipedia.org/wiki/File:HydrogenLineAntiParallel.png
http://upload.wikimedia.org/wikipedia/en/3/31/HydrogenLineAntiParallel.png


 

Figure 2 (from http://en.wikipedia.org/wiki/File:Fine_hyperfine_levels.png).   

 Hydrogen is the most abundant element in the universe, and interstellar clouds of hydrogen are 

cheerfully emitting the 21 cm line (frequency f0 = 1420 MHz).  However, if we're moving relative to the 

hydrogen cloud (and we almost certainly are), Doppler shift will affect the measured frequency.  If the 

hydrogen cloud and the observer are moving away from each other with a total line-of-sight speed of vaway, 

the Doppler shift satisfies 

 -c∆f/f0 = vaway.          (1) 

This is a redshift (negative f). 

2.2  Astronomical coordinate systems 

 Most of the hydrogen in the galaxy is in the galactic plane (the disk of the Milky Way), so it's 

convenient to use galactic coordinates, shown in Figure 3.  If we're standing in a remote location on a 

starry night, we can look up and see the Milky Way as a great circle across the sky.  This circle defines 

the galactic equator, b = 0.  We will restrict our attention to points along the galactic equator (b = 0) so 

that we are looking along the disk of the Milky Way.  It will be convenient to choose galactic longitudes 

in the first quadrant (0 <   < 90). 

 It would be nice if we could type galactic coordinates into the electronics controlling our 

telescope.  However, we need to give our telescope horizon coordinates, shown in Figure 4.  Our 

telescope cannot face west; our azimuth can go no lower than about 5 and no higher than about 175.  

The telescope's accessible altitudes range from about 10 to almost 90.  To minimize vulnerability to 

wind damage, we always "park" the telescope at the greatest possible altitude (~90), and we don't use the 

telescope when wind speeds are excessive.  

http://en.wikipedia.org/wiki/File:Fine_hyperfine_levels.png
http://upload.wikimedia.org/wikipedia/commons/f/fe/Fine_hyperfine_levels.png


 

Figure 3 (from http://en.wikipedia.org/wiki/File:Galactic_coordinates.JPG).  Galactic longitude (  ) and 

latitude (b). 

 

 

Figure 4 (from http://en.wikipedia.org/wiki/File:Horizontal_coordinate_system_2.png).  Horizon 

coordinates.  Altitude is angle shown in green (between the horizon and the point of observation).  

Azimuth is the angle shown in red. 

 It would be nice if we could convert from galactic coordinates directly to horizon coordinates.  

However, we have to convert to equatorial coordinates as an intermediate step.  The two equatorial 

coordinates are declination () and right ascension ().  Declination is analogous to latitude and is the 

http://en.wikipedia.org/wiki/File:Galactic_coordinates.JPG
http://en.wikipedia.org/wiki/File:Horizontal_coordinate_system_2.png
http://upload.wikimedia.org/wikipedia/commons/2/2a/Galactic_coordinates.JPG
http://upload.wikimedia.org/wikipedia/commons/a/a5/Horizontal_coordinate_system_2.png


angle between the equatorial plane (see Figure 5) and the line of sight (positive to the north, negative to 

the south).  Right ascension is analogous to longitude.  Longitudinal circles (passing through the north 

and south poles, projected into the sky) are called hour circles.  Consider these hour circles to be fixed in 

the celestial sphere.  Which hour circle do we choose for our longitudinal origin?  We choose (half of) the 

hour circle passing through the sun at the vernal equinox.  (As viewed from earth, the sun moves through 

the celestial sphere over the course of the year.)  Right ascension is the angle in the equatorial plane 

between the hour circles of the vernal equinox and the observed object.  It's positive to the east and 

typically measured not in degrees but in hours, with 15 equivalent to 1 hour.  If the vernal equinox's hour 

circle ( = 0h) is directly overhead, then in 1 hour, the  = 1h hour circle will be directly overhead.    

 

Figure 5 (from http://en.wikipedia.org/wiki/File:Ra_and_dec_rectangular.png).  The equatorial plane and 

the direction toward the sun at the vernal equinox. 

 Since you need to convert a limited set of galactic coordinates (perhaps   = 0, 5, … , 90, all 

with b = 0) into equatorial coordinates, your quickest option is probably to use on online calculator 

(http://hea.iki.rssi.ru/AZT22/ENG/cgi-bin/c_prec4.htm:  enter l and b, enter year in either Start or Final 

Epoch, click Accept Galactical Coordinates) and tabulate the results.  However, the corresponding 

horizon coordinates change with time!  You need to predict when the desired locations in the galactic 

plane are in range of the telescope.  Therefore, it's valuable to convert from equatorial to horizon 

coordinates in your own spreadsheet; you can enter different local sidereal times and instantly see the 

changes in all your horizon coordinates.  Local sidereal time is given in the Spectracyber software.  You 

can also find an online calculator to convert from equatorial to horizon coordinates.   

 To do the conversion yourself, use these formulas: 

• Compute the hour angle H = t - , where t is local sidereal time. 

• Compute the altitude a = sin-1(cosH cos cos +sin sin), where  is our latitude. 

• Compute azimuth A by making use of both of these formulas: 

 sinA = -sinH cos / cosa  cosA = (sin - sina sin)/(cosa cos) 

http://en.wikipedia.org/wiki/File:Ra_and_dec_rectangular.png
http://hea.iki.rssi.ru/AZT22/ENG/cgi-bin/c_prec4.htm
http://upload.wikimedia.org/wikipedia/commons/d/de/Ra_and_dec_rectangular.png


 Why do we need two formulas for A?  A can be any angle, 0-360.  However, arcsine always 

gives a result between -90 and 90, and arccosine always gives a result between 0 and 180.  If, for 

example, A = 270, then cosA = 0, cos-1(cosA)) = 90, and A = 360 - cos-1(cosA)).  The general 

trigonometric rules (not specific to astronomy) are 

 A = cos-1(cosA)) if sinA > 0 

 A = 360 - cos-1(cosA)) if sinA < 0 

 A = sin-1(sinA)) if cosA > 0 

 A = 180 - sin-1(sinA)) if cosA < 0 

 If other words, you need to know sine if you use arccosine, and you need to know cosine if you 

use arcsine.  (Arcsine automatically gave the right result for altitude a because it’s between -90 and 90.) 

2.3  The tangent point method 

 As shown in Figure 6, we represent circular orbits of the local standard of rest (LSR) and three 

hydrogen clouds (P', P, and P'') around the galactic center.  The sun's motion around the galactic center is 

not perfectly circular; the LSR is defined as a reference frame in the vicinity of the sun moving in a 

perfectly circular orbit.  We point our telescope along a line in the galactic plane with longitude  .  

Multiple hydrogen clouds are in our line of sight:  P', P, P'', and many others not shown.  All of these 

hydrogen clouds are emitting the 21-cm line.  However, the Doppler shift depends on relative speed, and 

we will detect a spectrum of Doppler shifts because the different hydrogen clouds have different relative 

speeds to us. 
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Figure 6.  The local standard of rest and three hydrogen clouds (P', P,  P'') moving in circular orbits 

around the galactic center.  P is the tangent point along the line of sight.  The thick arrows are line-of-

sight projections of velocity. 

 How can we unambiguously associate a specific hydrogen cloud with a specific Doppler shift in 

our spectrum?  If we study Figure 6, we see that the greatest relative speed occurs at point P, where the 

entire rotational velocity is along the line of sight.  (We're assuming 0 <   < 90, and that rotational 

speed doesn't vary too much with distance from the galactic center.  If 90 <   < 270, there is no tangent 

point along the line of sight.  If 270 <   < 360, the greatest blueshift occurs at the tangent point.)  Since 

point P has the greatest relative speed to us along the line of sight, the greatest redshift that we observe 

will be from the hydrogen cloud at point P. 

 So, from our raw data for a given longitude  , we identify fmin, the greatest redshift (the most 

negative f at which we observe an appreciable signal).  Our ultimate goal is a plot of rotational speed VR 

as a function of distance R from the galactic center.  Simple trigonometry allows us to calculate R:   

 R = R0sinl,          (2)   

where R0 = 8.5 kpc is the Earth’s distance from the galactic center.   

 How do we determine VR from ∆fmin?  The Doppler shift is 

 -c∆fmin/f0 = vaway = VR – V0sin   + vLSR,       (3) 

where VR is the rotational speed of the hydrogen cloud (away from the observer), V0sinl is the line-of-

sight projection of the velocity of the LSR (which travels with speed V0 = 220 km/s in a perfect circle 

around the galactic center), and vLSR is the line-of-sight projection of the velocity of the observer relative 

to the LSR (due to the sun’s motion relative to the LSR, the earth’s motion around the sun, and the earth’s 

rotation).  To determine vLSR, use http://www.gb.nrao.edu/GBT/setups/radvelcalc.html.  (This website 

assumes the observer is in West Virginia, which is close enough to Atlanta for this purpose.  The main 

contributions to vLSR are the sun’s motion relative to the LSR, and the earth’s motion around the sun.  

These motions are independent of the observer’s location on earth.) 

 We can solve Eq. (3) for VR. 

3.  Procedure 

 First choose a set of coordinates in the galactic plane (b = 0).  The entire fourth quadrant (90 <   

< 270) is south of the celestial equator, and much of the fourth quadrant never rises above our horizon; 

therefore, we should choose points in the first quadrant (0 <   < 90).  When the tangent point is near 

the galactic center (small R and small  ), the greatest redshift produces a very faint signal that is very 

difficult to detect.  Your best results will probably be in the range 20 <   < 90, but you can try other 

coordinates too.  I think it's fun to point the telescope directly at the galactic center.  You should also take 

a control measurement with the telescope pointing at nothing in particular (perhaps straight up). 

http://www.gb.nrao.edu/GBT/setups/radvelcalc.html


 You will use Remote Desktop Connection to connect to the computer interfaced with the 

telescope.  Find Remote Desktop Connection under Accessories in the local computer.  Connect to the 

computer interfaced with the radio telescope (10.224.48.254).  Please ask me for the password.  Once 

you've connected to the remote desktop, open three applications:  RT_GUI allows you to move the 

telescope, SEI Explorer allows you to monitor altitude and azimuth, and Spectracyber processes and 

records data from the radio receiver. 

 There are not many parameters to adjust in Spectracyber.  First, choose spectral mode.  You can 

set the range for the measurements (up to 1000 kHz in Doppler shift), but 500 kHz is reasonable.  The 

other three parameters (integration time, IF gain, and DC gain) affect data quality.  I seem to get the best 

results when I maximize integration time and IF gain, and minimize DC gain.   

 As the spectrum is recorded, you'll see it graphed on the screen.  Be sure to export your data as a 

csv file to be viewed in Excel.  The file name should probably indicate the galactic coordinates of your 

measurement. 

4.  Analysis 

 Now you have a Doppler-shift spectrum for a set of coordinates in the galactic plane.  In each 

case, you already know  , so Eq. (2) immediately gives you R of the tangent point.  Now, you need to 

determine fmin, the greatest redshift of any appreciable signal.  How do you determine fmin?  One 

method is to simply "eyeball it" and record f where the spectrum just begins to rise above the baseline.  

(And if the baseline is slanted, which is an artifact of the electronics, just ignore the slant.)  It may be 

helpful to plot a smoothed line. 

 If you want to eliminate the baseline slant, there are two methods for this.  One method is to 

subtract your control spectrum from each of your other spectra.  A possible objection to this is that the 

telescope may have been inadvertently pointing at a celestial radio source when you made your control 

measurement.  To overcome this objection, you could study a catalog of celestial radio sources and make 

sure to point the telescope toward a quiet spot in the sky.  Or, you could make control measurements of 

several random spots in the sky, eliminate any unusual measurements, and average the other control 

measurements. 

 A second method to eliminate the baseline slant is as follows.  You can suppose that each of your 

recorded spectra can be represented by the function y = Signal(x) + mx + b.  We want to subtract mx to 

eliminate the baseline slant, and we might as well subtract b to eliminate any baseline offset.  To 

determine m and b, simply do a linear fit to the linear regions of your spectrum.  

5.  Lab Report 

• Provide any background information required to discuss your results.  It's tedious and unedifying 

to paraphrase this entire manual.  It's more impressive if you recapitulate only the key points, 

perhaps clarifying and elaborating any subtleties.   

• Discuss the values of vLSR that you found from the online calculator.  Do these values make sense, 

given what you know about the local standard of rest?  How would vLSR differ if you repeated the 

experiment in six months?  Why?  



• Present your rotation curve.  What does it imply about dark matter, given that the luminosity of 

the galaxy is concentrated in the center?  What would the rotation curve look like if we assumed 

that outer masses in the galaxy orbited a much larger, central mass? 


