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1.  Purpose: 

 

To measure and analyze the "cold front" passing through a material dipped in ice water. 

 

2.  Theory:  heat conduction  

 

Consider a rectangular solid at room temperature.  Place its bottom surface in contact 

with ice water.  Heat will flow from the solid into the water.  For simplicity, neglect heat 

flow from air into the solid.  (This approximation is based on the fact that air conducts 

heat less effectively than water.)  Under this assumption, the temperature will not vary in 

the horizontal directions.  The temperature will only vary in the vertical direction, z.  So 

we want to determine T(z,t), the temperature of every point within the solid at all times.  

T(z,t) satisfies the heat conduction equation: 
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where D is called the thermal diffusivity of the solid.  (Some authors use  instead of D.) 

 

This equation looks a little complicated, but we can understand it qualitatively.  Suppose 

that some horizontal layer in the solid is hotter than the neighboring layers above and 

below.  This would appear as a local maximum in the graph of T vs. z.  So 2T/z2 is 

negative (curves are concave down at local maxima), and so T/t is also negative, 

according to Equation (1).  This makes sense:  if Layer A is hotter than the neighboring 

layers, then heat will flow out of Layer A into its neighbors.  Consequently, Layer A's 

temperature will decrease.  

 

In order to solve Equation (1), we need some more information.  Specifically, we need 

boundary conditions (what is happening at the bottom and top of the solid?) and an initial 

condition (what is the temperature distribution in the solid before we place it in contact 

with ice water?).   

 

We will use the following boundary conditions: 

 

 T(0,t) = 0C         (2) 

 

 T(H,t)/z = 0         (3) 

 

 T(z,0) = Ta         (4) 



 Brody, Emory University 2 
 

 

Equation (2) says that the temperature of the bottom of the solid (z = 0) is 0C, the 

temperature of the ice water.  Equation (3) says that no heat flows through the top of the 

solid; this is the condition for thermal insulation.  Equation (4) says that the initial 

temperature of the entire solid is Ta, the ambient temperature.  

 

To solve Equation (1), we use separation of variables:  T(z,t) = Z(z)(t).  Plugging this 

into Equation (1) yields Z(d/dt) = D(d2Z/dz2).  Let's put all the t dependence on one 

side, and all the z dependence on the other:  (1/Z)(d2Z/dz2) = (1/D)(d/dt).  This is true 

for all z and all t, which is only possible if both sides of the equation are equal to the 

same constant, -k2.  (For convenience, we choose –k2 instead of just k.)  So we have d/dt 

= -Dk2 and d2Z/dz2 = -k2Z.  So  = exp(-k2Dt) and Z = Asin(kz) + Bcos(kz), where A 

and B are unknown constants.  So one solution is T(z,t) =                                        

[Asin(kz) + Bcos(kz)]exp(-k2Dt).  The lower boundary condition, Equation (2), allows us 

to infer that B is 0, so T(z,t) = Asin(kz)exp(-k2Dt).   

 

So what's k?  Equation (3) allows us to write cos(kH) = 0, which means kH = /2 + p 

for any whole number p.  So k = (/H)(p + ½).  Since there are many possible values of 

k, we need to sum all the possible solutions:           
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Finally, we need to determine the values Ap.  To do this, we use the initial condition, 

Equation (4): 
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If we multiply this by sin[(q+½)z/H] and integrate from 0 to H, all the terms in the sum 

will integrate to 0 except the one with p = q.  So 
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So Equation (5) becomes 
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which is our final solution.  Wow! 

 

Since T depends on z, there is a thermal gradient.  A thermal gradient creates a refractive 

gradient because the index of refraction depends on the temperature.  When we shine 

light through the material, the light will be bent by this refractive gradient.  The bending 

is proportional to T/z, so let's calculate this from Equation (7). 
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By shining light through the solid and measuring the bending of the beam, we can 

determine T/z as a function of time for whichever z we've chosen.  Figure 1 shows 

Equation (8) as a function of time for a particular value of z.  You will see that your 

measurements of beam bending will closely follow the shape of this curve. 

 

Neglecting convection, the preceding analysis applies to liquids in rectangular containers. 

 

 
Figure 1.  Thermal gradient as a function of time after placing the bottom of the solid in 

contact with ice water. 
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You might wonder why there's a little kink in the curve around 1 min.  The reason is that 

there is an infinite number of terms in Equation (8), but I only use the first 21 terms.  The 

higher order terms (higher p) are extremely small at high t:  each term decays 

exponentially as exp[-(p + ½)22Dt/H2].  However, as t approaches 0, all the infinite 

terms approach the same magnitude as the first term, and using only 21 terms causes 

noticeable error at small t. 

 

3.  Theory:  Refractive gradients 
 

Figure 2 illustrates the experimental situation.  A laser illuminates the side of a 

rectangular material.   

 

 
Figure 2.  An illustration defining some experimental parameters. 

 

We will show that the beam displacement h is proportional to the refractive gradient in 

the material: 

 

 h = (dn/dz)RL         (9) 

 

Equation (9) says that we can determine the refractive gradient (dn/dz) simply by shining 

light through the medium and measuring the beam displacement on the wall.  While 

deriving Equation (9), we will also derive the amazing fact that light follows a parabolic 

path through a medium whose refractive index varies linearly with height.  First, let's 

write an expression for the refractive index, n(z):   

 

 n(z) = n0 + nz.        (10) 

|h| = Beam displacement on wall. 

R = Distance from material to wall. 

L = Length of material. 

H = Height of material. 
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n is defined as dn/dz; let's assume that n is constant.  Then, Equation (10) just says 

that n(z) varies linearly with z.  We will also assume that n is small, so that n(z) is 

always nearly n0. 

 

How can we apply Snell's Law to a material with variable n?  We must divide the 

material up into an infinite number of differential slices, each with constant n.  Let's 

consider just the first few differential slices.  We'll apply Snell's Law at the interface 

between each pair of adjacent slices. 

 

Let's imagine "zooming in" on the material where the laser enters.  The refractive index n 

varies continuously with z, but we divide the material into differential slices of constant 

n.  This is shown in Figure 3. 

 

 
Figure 3.  A "close-up" of the small region of the material where the laser enters. 

 

Consider the leftmost ray of light.  It enters the material "skimming" the interface 

between the n0 slice and the n1 slice.  Let's imagine that the light continues undeflected 

for an infinitesimal distance.  Now we can apply Snell's Law at the interface between n0 

and n1.  We first draw the normal to the interface (the dotted line).  Then we observe that 

the angle of incidence, 0, is 90 since we choose to shine the laser normal to the side of 

the material.  We want to find the angle of refraction, 1, and then its complement, B1.   

 

 n0sin0 = n1sin1  from Snell's Law    (11.a) 

 n0 = n1sin1   from 0 = 90     (11.b) 

 n0 = n1cosB1   from 1 + B1 = 90    (11.c) 

 

You might object that 90 is an unreasonable angle of incidence.  However, 90 can be an 

angle of refraction in total internal reflection.  So Equation (11.b) is like total internal 

reflection in reverse. 

 

n1 

n2 

0 

1 

B1 

1 

2 

B2 
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Notice that Equation (11.b) implies n0 < n1.  This means that n is increasing downward.  

If n were increasing upward, the beam would bend upward. 

 

Now let's consider the ray when it strikes the interface between the n1 slice and the n2 

slice. 

 

 n1sin1 = n2sin2  from Snell's Law    (12.a) 

 n1cosB1 =n2cosB2  from 1 + B1 = 90 and 2 + B2 = 90 (12.b) 

 n0 = n1cosB1 =n2cosB2 from (11.b) and (12.b)    (12.c) 

 

Equation (12.c) has an amazing implication:  if we continued applying Snell's Law at 

additional interfaces (between the n2 slice and the n3 slice, between the n3 slice and the n4 

slice, etc.), we would find n0 = n3cosB3, n0 = n4cosB4, etc.  So n0 always equals the 

product of n and cosB.  We can write this conclusion as 

 

 n0 = ncosB         (13) 

 

where both n and B are functions of z.  Here we have stopped thinking about discrete, 

differential slices (which were just a conceptual tool) and returned to thinking of n as a 

function of a continuous variable.  Equation (13) says that if we know n0 and n at any 

point, we can determine B, the "bending angle" (the angle to the horizontal), at that 

point.   

 

Let's assume that B is small, so that  

 

 cos[B(z)]  1 – B
2/2.        (14) 

 

Now we can substitute Equations (10) and (14) into Equation (13): 

 

 n0 = (n0 + nz)(1 – B
2/2).       (15) 

 

Each binomial on the right side of Equation (15) contains a large term and a small 

correction term.  We will neglect the product of the two small terms.  Then, 

  

 n0 = n0 + nz – n0B
2/2,       (16) 

 

which becomes 

 

 n0B
2/2 = nz         (17) 

 

or 
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Now let's see how B is related to the tangent to the light path.  B is the angle between 

the horizontal and the tangent to the light path.  In Figure 4, we see that B  tanB = 

dz/dx.  

Figure 4.  Relationship between B and the tangent to the light path. 

 

Substituting B = dz/dx into Equation (18), 
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Upon integration, 
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So the light takes a parabolic path (downward, because n = dn/dz is negative:  n 

decreases at higher z).  If we extended Figure 3 and drew a large number of sequential, 

infinitesimal segments of the light's path, a parabola would form.  Finally, let's look at 

where the light leaves the material, as shown in Figure 5: 

 

dx 

dz B 
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Figure 5.  The angles used in Snell's Law where the light leaves the material. 

 

Snell's Law where the light leaves the material says that  

 

 n(z)sinB = 1sin,         (23) 

 

where 1 is the index in air. The index n(z) is approximately n0 because the variation in n 

is slight.  Moreover, both B and  are small, so we can rewrite Equation (23) as 

 

 n0B = .         (24) 

 

Applying B = dz/dx to Equation (24) yields B = xn/n0, but since x = L where the light 

leaves the material, B = Ln/n0.  From the geometry of Figure 5,   |h|/R.  Thus 

Equation (24) becomes 

 

 n0(Ln/n0) = |h|/R,        (25)  

 

which at last simplifies to Equation (9). 

 

Since dn/dz = (dn/dT)(T/z), we can rewrite Equation (9) as 

 

 h = (dn/dT)(T/z)RL,       (26) 

 

where T/z is given by Equation (8).  If we measure R, L, H, and z, and h as a function 

of time, we can fit our data to Equation (26) by using dn/dT and D as fitting parameters. 
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4.  Instructions 

 

EXPERIMENT 

 

 This experiment can be performed with any transparent material.  You can try 

Plexiglass, glycerol, and water. 

 To record h as a function of time, you can use a digital camera to make a movie of 

the beam's changing position on the wall.  Alternatively, you can use the 

Neanderthal method of directly marking the wall with the beam's position every 

thirty seconds or so. 

 Make sure you record H, R, L, and z, in addition to the time-varying h! 

 It might make sense to do a few preliminary measurements to understand the 

experiment.  Then, develop a computer model of Equations (7) and (8), as 

described below.  Based on your analysis, design experiments that will show you 

a wide range of behaviors.  (In other words, what values of z and H should you 

use?  In each case, how long should you record data?) 

 

ANALYSIS 

 

 One important goal is to fit your data to Equation (26).  The interesting term in 

this equation is T/z, given by Equation (8).  I used Excel to create Figure 1.  

Excel works fine, but programming languages like Python and MATLAB are 

more versatile, and I can help you with it if you want to practice programming.  

 To fit Equation (26) to your data, you can use D and dn/dT as fitting parameters.  

D affects the shape of the curve, and dn/dT affects only the height.  If necessary, 

you might try adjusting z a little in case your measurement was insufficiently 

accurate. 

 After achieving a reasonable fit, you can compare D and dn/dT to published 

values. 

 Strive for the deepest possible understanding of how the "cold front" moves 

through the material.  To achieve this, you can generate some theoretical curves 

of Equations (7) and (8).  For example, you might show T vs. z at various times 

on the same graph. 

 Ultimately, the data and theoretical curves mean nothing without a strong 

conceptual understanding.  Explain qualitatively why your measurements and 

simulations make sense.  Specifically, why does the beam bend down and then 

come back up again? 

 

5.  Acknowledgement 

 

This experiment was suggested by Phil Segre. 


