
Elasticity of Metallic Spheres                 

 

I. GOAL 

 
The  goal in this  lab is to  test  the  Hertzian  theory  of elasticity [1], and  determine  the  elastic 

modulus  E,  the  elasticity,  of stainless  steel.   You accomplish this  by measuring  how much  large 

steel spheres deform upon impact  collisions of varying  strength.  The first part of the  lab involves 

building  a digital  timing  circuit  needed to measure  the collision times,  which is then  used in the 

experimental  measurements  in the second part.  Your results will then be compared to theory, where 

a determination of E can be made. 
 

II.   INTRODUCTION AND THEORY                                                       

 
We need to derive an expression for the collisional contact  time  τ  for an impacting  sphere  

in terms  of the sphere’s speed U0, mass M , radius  R, density  ρ and elasticity  E.  We begin by 
writing down the solution for the force F(x) needed to compress the sphere a distance x.   The 
solution comes from the Hertz model [1, 2] for small deformations of elastic objects, and is a rather 
long calculation owing to the complex geometry of spherical deformations.  The result is 

 

 

         (1) 

 

Here σ is called the Poisson ratio [3], which for most metals has a value of σ ≈ 0.3, and we 
assume σ = 0.30 in what follows below. Equation (1) is reminiscent of Hooke’s linear law for springs, 
F  = −k · x, except that  the power of the compression variable  x is higher than  1, i.e.  F  ∝ −x3/2. 
This means that the system is non-linear, i.e. if we double the compression, we more than double 
the force.  Can you explain why this would be the case for spheres, but not springs?  Think about 
the size of the region that gets compressed as a function of x. From the force expression Eq.  (1) 
we now derive a number  of useful relations  that are relevant for the experiments. 

 

 
1. Maximal compression distance h: 

How much will a sphere compress (Fig. 1) when colliding with a plate?   To determine 

this, you can use an energy conservation argument:  A sphere whose decrease in height is H will 

have a velocity U0 = (2gH)1/2  when it first contacts the plate.  Its kinetic energy then is K 

E0   = (1/2)M U 2.  There is also a potential energy of compression in the steel ball. 
Using Eq. (1), derive a general expression for P E(x).  Now, assuming that all of the initial 
kinetic energy goes into compressing the sphere, show that the maximal compression  

distance h can be written  as 

 

h = 2.20ρ2/5
RU0

4/5/E2/5.          (2) 

 
 

In the experiments we will not be able to directly  measure  h, because it is extremely  small 

for steel.  However, we will measure the collision time τ, and the expression for h here will 

be useful in its derivation below. 
 

 
 
 
 
 
 
 
 
 
 

 
2/3

213

2
)( x

RE
xF






dt 
=       = 

dt 

U 
1/5

 

R          
  

           R-x 
 

 
FIG.  1: Diagram of a compressed elastic sphere.  The compression distance is x, so that the centerline radius  has been 

reduced from R to R − x. 

 

2. Compression   time   τ:                                                                                                                             

To derive an expression for the total compression time τ requires several parts, and begins 
from Newton’s basic force balance law. That is, write out M (dU/dt) = −F (x) using the force 
expression in Eq.  (1). 

 

• Let’s first solve for the sphere velocity U (x) in terms of the compression distance x. To do

this, we need to eliminate time as a variable, which we can do with the identity  dU
 

dU dx 
dx  dt

U(dU/dx).  Now separate the U and x terms onto different sides of the equation, and 

integrate the expression from U 0  t o  U ( x )  o n  U −side, and 0  t o  x  on the x−side. 

Show that the v e l o c i t y  U (x) as a function of compression distance can be written as 

𝑈(𝑥) = 𝑈0√1 − (
𝑥

ℎ
)
5/2

.         (3) 

• To solve for the compressional time, write U = dx  in Eq. (3), and separate the x and t terms 

onto different sides of the equation.  The total time that the sphere is in contact with the 

plate, τ , is assumed to be twice the time that  it takes the sphere to go from no compression 

(x = 0) to full compression (x = h).  To solve for τ, integrate from 0 to  h
 
on the x−side, 

and 0 to /2 on the t−side (refs. [5], [6] can help with the integration), and show that τ = 

2.94h/U0, or substituting in for h from Eq.  (2),
 

τ = 6.46ρ2/5   
R 

 

0     E
2/5 

 
.                                                   (4)

 

This is our first result that can be directly used in the experiments.   As will be outlined below, 
by measuring τ for different values of R and U0 (i.e. different dropping heights), we can 
extract values of the elasticity of steel E. 

 

3. Contact   area   A: 

The  contact  area  A made  between  the  sphere  and  the  plate  is also a very useful quantity 

to know, and it can be readily measured.  To do this, you will lay a thin piece of aluminum foil 

on top of the base plate, and examine the area A of the indented foil after the collision.  What 

does A tell us?  The measured contact area corresponds to the maximum contact area between 

the sphere and the plate.  Most importantly, by geometric arguments [4], one can show that A is 

directly related  to the maximum  compression distance  h, as 

A = πRh.                                                            (5) 

Therefore, while we cannot measure the compression distance h directly, by measuring A, we 

are able to estimate  its value from the measurements  of A. 
 

4. Expressions relating contact area and collision time 

Finally, we can construct from the above Eqs.  (2,4,5) two interesting  and useful relations  

that  relate contact area and collision time.  These are 
 

 
 A/(U0) = 1.069R          (6) 

 A1/22 = 110R3/E          (7)



III.   LAB INSTRUCTIONS                                                                 

 
The lab consists of two general parts.  The first part is the construction of a digital timing circuit to 

be used in the second part for measurements of contact times. 
 

 

A.     Construction of a Digital Timing Circuit. 

 
The contact times that we would like to measure are on the order of 100 µs.  Obviously, this is no 

task for a stopwatch.   We need an instrument with a precision of about 1 µs.  Perhaps such an 

instrument is commercially available; if it is, it’s likely to be expensive.  A straightforward and 

instructive alternative to purchasing an instrument is to build our own. 

The circuit we are going to construct has three main components:  a clock oscillator, counters, and 

hexadecimal displays.  These produce the following effects.  The clock oscillator generates one pulse 

every microsecond.  During our experiment, the contact between the ball and the plate allows these 

microsecond pulses to travel to the first counter; the ball and the plate act as a switch.  When a pulse 

arrives at the counter, its output increases by 1. 

Each counter has four output pins whose voltage can take on only two values (see ref. [7]). The 

high value is represented by 1, and the low value is represented by 0. The four output pins are associ- 

ated with the digits (”bits”) of a binary number, so a total of 16 binary numbers can be represented by 

four pins:  0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, and 
1111. We want to be able to count higher than 16, so we connect the highest bit (the most slowly 
changing bit) of the first counter to the input of the second counter.  This lets us count up to 162, but 
that’s not high enough.  To count up to 163  = 4096, we connect the  highest  bit  of the  second counter 
to the  input  of the  third counter.   So our circuit will be able to measure time intervals as high as 
4096 µs; each microsecond pulse increases our binary number by 1. 

Finally, we need an easy way to read off the values stored in our counters.  We simply connect 
each counter to a hexadecimal display (see ref.  [8]).  The  display  shows us the  hexadecimal  digit 
equivalent  to the number  stored  in the  counter.   In hexadecimal,  every whole number  through  15 
is represented  by only one digit:   10 is represented  by A, 11 by B, 12 by C, 13 by D, 14 by E, 
and 15 by F. We have one hexadecimal display for each counter.  It’s convenient to order the three 
displays from left to right to obtain a three-digit hexadecimal number.  The display on the right must 
connect to the counter storing the lowest bits (which I’ve called the first counter), and the display on the 
left must connect to the counter storing the highest bits. If we see D8A, we compute 13 × 162 + 8 × 16 + 
10 × 1 = 3466, and we know that we’ve measured a time interval of 3466 μs. 

 

 
 
 



B.   Measurements                                                               

 
The   equipment needed for this experiment is: 

 

• 4 steel balls. 
 

• mass scale to weigh steel balls. 
 

• small ruler. 
 

• yardstick ruler. 
 

• sheets of aluminum  foil. 
 

• completed electronic timing circuit. 
 

Experimental Procedure: 

Each ball should be released from different heights.  The  contact  time τ from the  digital  circuit  
should be recorded, as well as the impact  area A imprinted  in the aluminum  foil sheet.  Multiple runs 
should be done for each ball, at each height, to check reproducibility and to estimate the experimental 
uncertainty. 

IV.   REPORT                                                                           

 
The   report   should contain   at a minimum   the following items: 

 

• A description of the construction and operation of the digital timing circuit. 
 

• A description of the elastic Hertz model introduced in Sec. II, including explicit derivations of 

Eqs.  (2-4) as described in the text. 
 

• Explicit tests of the Hertzian elasticity model using your data, specifically testing the functional 

form of the contact time and contact area. 

• Can you get out reasonable values for the Young’s modulus of steel from fits to the τ and A 

plots? 
 

• An evaluation of Eqs. (6) and (7).  Does Eq. (6) yield accurate values of the sphere radii? 
 

• Calculate the range of compression distances h, from A, seen in the experiments. 
 

• What are the important sources of uncertainty in this lab? 
 
 
 
 
 

V.     REFERENCES 
 

 
 
 
 
 

[1] L.D. Landau and  E.M.  Lifshitz,  Course  of Theoretical Physics, (Pergamon, Oxford), Vol. 7 , 26-31, (1959). 

[2] B. Leroy,  Collision  between  two balls accompanied by deformation:  A qualitative approach to Hertz’s  theory,  Am.  J. Phys. 

53,  346-349 (1985). 

[3] http://en.wikipedia.org/wiki/Poisson ratio 

[4] http://www.oxfordcroquet.com/tech/gugan/index.asp#refcite=R1 

[5] http://integrals.wolfram.com/index.jsp 

[6] http://functions.wolfram.com/webMathematica/FunctionEvaluation.jsp?name=Hypergeometric2F1  

[7] http://focus.ti.com/lit/ds/symlink/sn74ls93.pdf. 

[8] http://focus.ti.com/lit/ds/symlink/til311.pdf 

http://en.wikipedia.org/wiki/Poisson
http://www.oxfordcroquet.com/tech/gugan/index.asp#refcite
http://integrals.wolfram.com/index.jsp
http://functions.wolfram.com/webMathematica/FunctionEvaluation.jsp
http://focus.ti.com/lit/ds/symlink/sn74ls93.pdf
http://focus.ti.com/lit/ds/symlink/til311.pdf

