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I. FUNDAMENTALS

A. Sums
We define
n1
Z Up = Qpg + Qg1 + Qpgao + oo F Qpy 1 + (1)
n=ng

as the “sum” of the numbers a,, for nranging over all integers from (including) ny to n;.
Typically, ng < njare integers; if either is a real number, the sum starts at the next-larger
integer to ny and ends at the next-smaller integer to n;. If ng > n;, the sum evaluates to Oby
definition. Note that n is a “dummy” index, which could be replaced by any other symbol,
Loe Yl n =D o, 4o

EXAMPLES:
1. With a,, = n® :Zi:_2 n=-8—-14+0+1,
2. witha; =i: > ji=0+14+24...4+n="25—=
3. with a; = 2*(Geometric Series):
- 1 — gntt

Gn(x):in:1+m+m2+...+x"—
i=0

11—z
There are some basic operations for sums (similar to integration, but more limited):

1. Distributive Law: for any expression C, > " Ca, =C>."" a,.

n=ng n=ng

: —1
2. Extraction: Y"1 a, = a,, + > ot ap, Sy = 0 Gy + Ay -

n=ngo n=ng+1 n=ng n=ng

: . A
3. Shift: n — n' =n+ An results in Y 00 a4, =00 AL Gw_an

An—ng

4. Reflection: n — n' = An —n results in Y311 a, = > 0010 aan_n (note inter-

change of upper and lower limit!).

Infinite sums (where one of the limits is +00) have the restriction that terms must remain
in order, unless the sum is absolutely convergent.

EXAMPLES:



e Infinite Geometric Series:

(e}

Golz) = Y o' =14+z+2>+...
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hence,

e Riemann Integral:

EXERCISE:

1. Derive the result for the geometric series, G, ().

2. How would you order the first 10 terms in the harmonic series,
i (_1)n+1
n=1 n 7

such that the sum can converge to 0, or 1, or...

B. Taylor-Series:

If f(z)is sufficiently regular near some point z, i. e. all derivatives f( (x) for all n >

Oexist, we can represent the function locally (near z) by

f(z+Ax) = ag + ay Az + ag Ax? + asAx® + agAx* + .. ..

(6)



Then, differentiating this expression n times and setting Az = 0:

f@)=ao, flx)=ar, f'(x)=2a, fOx)=6as,...,f"(z)=nla,.
Hence,

flz+ Ax) = Z

TL

EXAMPLES:
The exponential function f(z) = e”satisfies the differential equation f'(z) = f(x), f(0) =

1, so at © = Owe get the MacLaurin series (a Taylor series at x = 0):

. (o
far) =3 0 ap ©)
n=0 ’
in particular with f(0) = f'(0) = f7(0)=... =1,
eAT = n'Aaj 9)
n=0

Note, that using “0,” as the instruction (“operator”) of differentiating everything to the

right by x, we can write

X f)
flz+ Az) = Z / n'(x)
n=0

In this sense, one may interpret a Taylor series as an operator that “generates” a trans-

oo

Z (B0.) ] (2) = 2 f(z). (10)

DI
n=0 =0

lation in the argument of a function from f(z) — f(z + Ax). Clearly, the (transcendental!)
exponential of an operator only makes sense in terms of the infinite series that defines it.
Hence, the above relation serves no purpose except as an efficient, suggestive shorthand.
For the trigonometric functions f(z) = sin(x), cos(x), we know that f"+2)(z) = —f)(x)
for all n > 0. Since sin(0) = O0and cos’(0) = 0, all terms in the Taylor series at x=0 vanish

for even n for sin(z) , and all odd n for cos(z). Thus,

f(Az) = sin(Az) 3 = i ) Ax",

! n!
n=0 n=0;n odd

and substituting n = 2¢ + 1 to parameterize all odd terms (with i =0,1,2,...),

0 f(2i+1)(0)

» Ag2itl
— (2i+1)!

sin(Az) =



Using fM(0) = —f@(0) = +fO(0) = ... = (=1)'fZ*+D(0) = ... = 1, it is finally
. o« (= i
sin(Az) = ZZ:O: mAﬁ L (11)

EXERCISE:

1. Show that

- Ax? (12)

PRODUCT OF TWO SERIES:
For any two series, it is
o0 o0 o0 o0 o0 o0 o o0
() () = (32 ()] = 32 () - 3
n=0 m=0 m=0 \n=0 m=0 \n=0 m=0 n=0
Since we are summing over all pairs of discrete indices (m, n), we can reorganize the terms
(without rearranging the order of summation in m for fixed n, or in n for fixed m!) by

settingi=m+n (0<i<oo)and j=n (0 <j <i)and get

(£0) (£0) S5 -

i=0 j=0
Note that, unlike for the double-sum above, the order of the two sums here matters because
the inner sum depends on the index of the outer sum.

This result is particularly useful for finding Taylor series for the product of two functions,

for which each Taylor series is know. With a,, = A,z" and b,, = B,,z™

7

i=0 j=0 i=0 j=0

8

As 27777 = z* does no longer depend on the summation index jof the inner sum, it is merely

a factor that can be pulled in front of that sum:

<Z Anx"> (Z Bmxm> = le (Z AjBi_j) = Zcle (14)

with ¢; = Z;":o A;B;_;. Now, the ith coefficient in the series is a sum itself, but at least it
is finite (and may even have a closed form).

EXAMPLES:




with A, = # and B, =

Sometimes, these formal manipulations lead to non-trivial relations:

L) = B (B B (R ).

m=0 7=0

Since this expression must be the geometric series, we know that

DpR e IR

Z_
j=0 k=0 ‘7

EXERCISE:

1. Use the Taylor series for e®*9® and compare it term-by-term in powers of = with the

product series of eP*e?to obtain the binomial series,

(p+q"= zn: <Z) PP (15)

k=0

C. Complex Algebra:

ORIGIN: Desire to be able to solve general algebraic equations, such as quadratic equa-

tions:

r? +ar+b=0,

completing the square:
2 2

9 a a
———+b=0
¢+ axr + 1 1 + )
then,
a\? a’
— b——=0. 16
<93 + 2) + 1 (16)
Finally, solving for x:
a a?
=—=+14/— - 1
Tt 9 4 b. (17)
Hence, the problem arises when the discriminate is ‘2—2 — b < 0. For example, when a = —2

and b = 2, then

zy =14 v/—1.



Amagzingly, any algebraic relation like that can in principle be “solved” by simply intro-

ducing the “imaginary number”

1:=+v—-1 (18)
and demanding that any expression can be written in “complex” form
z = a +1b, (19)

where a = Re{z} is called the “real” part of z, and b = Im{z} is called the “imaginary” part

of z, but both a, b are entirely real expressions. Note that

and so on.

A useful definition is is the so-called “complex conjugate” of z, denoted by

2z — 2ZorzZ =a —ib. (20)

Complex conjugation essentially means to replace : — —i everywhere. So, while

2> = (a+ib)* = (a* = b*) + i(2ab)
is also a complex number with Re{z?} = a® — b? and Im{z?} = 2ab, the product of
22" = (a+ib)(a — ib) = a* + b*
is entirely real, i. e. Im{z2*} = 0, and positive! Thus, it is justified to define
2] =Vzz >0 (21)

as the norm or “modulus” of any expression z.
Complex conjugates have many uses, for instance, to show that the inverse of z can also

be written in complex form:

1 z* a—1ib a b

= = —1 .

z zzt (a+ib)(a—ib) @+ a?+
Further insight is provided, when we represent a complex number as a 2-component vector
in the “complex plane”, z = (a,b), where the first component, a« = Re{z}, measures the

extent along the “real axis” (horizontal), and the second component, b = Im{z}, measures

8



the extent along the “imaginary axis” (vertical). This plane geometry suggest a new, polar

representation of a complex number as
z = 1rcos(¢) + irsin(¢p)

with {a = rcos(¢),b = rsin(¢)} or conversely, {r = Va> + b = |z|,¢ = arctan (2)}. This
polar representation obtains its value from the following realization: Consider the Taylor

series for the exponential wit imaginary argument,

id i"p . "o "
e’ = = + ,
n! n! n!
n=0 n=0;n even n=0;n odd

and substituting n = 2k for even n, or n = 2k + 1 for odd n, respectively, we get

0 2k 2k . >0 2kl p2k+1 _ o0 (— 1)kt = 0 (—1)kg2h+1
(2k)! —~ (2k + 1)! —~ (2k)! (2k+1)! 7

= (=1)¥ and i**! =i (i%)" =i (=1)*. Now, we

¢

e (22)

k=0 k=0

where we have used the fact that i%* = (i2)"

can easily identify these two series as the MacLaurin series for sin ¢ and cos ¢ :
€'? = cos(¢) + isin(¢), (23)

This result, called “Euler’s Formula”, provides a very compact and suggestive form for com-
plex expressions:

z=re?. (24)

Euler’s formula itself leads to a number of fascinating relations such ase’z =i, €™ = —1,
combining the imaginary number 7 with the irrational numbers e and 7. Furthermore, it is

for all integers k = 0, +1,+£2,...

™k = cos(2mk) + isin(27k) = 1.

Its use for the polar representation of a complex number also provides a geometric description
of basic operations in (complex) algebra. For example, it is well-known that /1 has two
roots (solutions), namely +1, since (£1)2 = 1. But what are the roots of 137 One root
clearly is 1 itself, but we would expect three roots. Is the root at 1 simply a triple root? The
answer is: No! And to see this it is best to write “1” as a complex number in polar form, as

above: 1 = ¢2™* Then



1 . 1 2k .
3 2mik 3 =T
13 = (e ) =e3",

seemingly yielding an infinity of roots, one for each integer k. Now, for £ = 0 we get the
known rtoot, 1. For k = 1 we obtain a new, non-trivial root, 5™ = cos(2m) + isin(3m) =
—% +1 %\/3 It is straightforward to test that this is a cube-root of 1 via (—% +1 %\/g) =1.

Also, for k = 2 we obtain another, non-trivial root, e3™ = cos(4m)+isin(dm) = —1 —i 13,

2mi — 1 again,

the complex conjugate of the previous root. But for k£ = 3 we obtain e5™ = ¢
and similarly for any other integer k£, we merely reproduce one of the 3 already known roots.
This is a quite general result: taking a power corresponds to rotating a number around the
origin in the complex plane. For instance, a real positive number sitting on the Re-axis at
¢ = 2rk taken to an integer power n rotates to ¢ = 2wkn, i. e. it remains on the positive
Re-axis. A number on the negative Re-axis, at ¢ = 7 + 27k taken to an integer power n
rotates to the positive Re-axis, if n is even, and to the negative Re-axis, if n is odd. In
general, a number at ¢ is rotated to n¢ mod 2w. This gets complicated when the power is
rational, say, n/m (as in the cube-root of 1 above: n = 1,m = 3). First, ¢ — ¢' = n¢
uniquely, then ¢’ — (n¢/m + 2wk /m) mod 2w, which leads to m distinct values. Now, when
the power is irrational, «, then ¢ — (¢ + 2wka) mod 27, which has infinitely many values
for all integer values of k.
Finally, there are a few interesting relations derived form Euler’s formula:
. e —e ev +e
sin(z) = — cos(z) = — s
and setting z — ix defines the “hyperbolic” functions

% = —isin(iz), cosh(z) = % = cos(ix).

sinh(z) =
EXERCISE:

1. Use these relations to find
> 1
Z cos(n) = 3
n=0

(Hint: Remember the geometric series!)
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II. GAUSSIAN INTEGRALS

This chapter is short because it is so important! I. e. there is not too much to say
here because we will return to its implications many times in the following chapters. The

et — exp(—z?) is pervasive in many areas of applied mathematics.

“Gaussian” function e~
It does not have an elementary integral (which is simply tabulated as the “error function”
erf(z) = [*_d¢ e~¢", named due to its use in statistics). Even the definite integral of the
Gaussian is not trivial. One writes:

I = / dre™ = 2 = / / dzdy exp [— (2* +y%)] | (25)
_ T=—00 J Yy=—00

oo

and transforms to polar coordinates via (z = r cos ¢,y = rsin ¢), with dedy — rdrd¢, hence

I? = /q5 : / : rdrdpe™” = [ /0 " d¢>} { /0 S 7"6_’"2] . (26)

As these two integrals magically factorize, leaving the first integral trivial, fOQﬂ d¢ = 2w, and

with the substitution rdr = %d(r2) = d¢,

1 o0
I?=2m- dée™t =,
2 Jesy

we have solved the Gaussian integral,

I= /_OO dze™ = /. (27)

[e.e]

We can readily generalize, using a well-chosen linear substitution of the integration variable,

o0 2
/ dz e+ = \/gei_a (a >0, anyb). (28)
o a

to

EXERCISE:

1. Derive Eq. (28).

2. Assume that b in Eq. (28) can also be complex, and use that to solve the integral

/ dz cos(z) e ™.

oo

11



ITII. INTEGRATION-BY-DIFFERENTIATION
A. Gaussian Distributions

The Gaussian is import particularly in statistics, where one is interested in “moments”
of a particular distribution p(z). The meaning of these terms I will discuss below for the
more intuitive, discrete binomial distribution. Here, I simply define the nth “moment” of

the “Gaussian distribution

M

x

p(x)—\/% (29)
as
_/Ood "p(z) = Ood_x -2 (30)
=/ zap(z) = mxe :

These integrals are also quite difficult, and as for the basic Gaussian integral, integration-
by-parts will not help (why?). We could play the same trick as above and multiply with
1= ffooo dy ev?/2 / V27 and transform again to polar coordinates, in which case we will have
to solve a number of integrals involving nth order polynomials in r and cos ¢ multiplying
the exponential. While doable, this is awkward! Instead, we will play a powerful trick, that
has a number of applications beyond this case. Note that 1 = [¢*"],_ois an identity for any
regular (i. e. not singular) expression z, where |...],—o means “evaluate everything inside of
the bracket in the end at a — 07.” (We will typically assume a > 0, and take the limit to 0
from above.) Using the notion of the derivative introduced in Sec. I, we can more generally

write in the same spirit the identity
" = [07e] =0 (31)

The power of this identity becomes apparent, when we apply it to our moment problem

above:
> dx 22
(@) = O] e
\/_
< d 22
V a=0
_ |:an 00 dl’ _ 2z2+a:c:| '
\ 27T a=0

The first transformation of pulling the brackets [...],—o outward is obvious, since everything

depending on a is still inside. The second step is quite profound, and may be hard to justify

12



in general: We have to assume that the integral converges for any a near 0 and that it is
always OK to differentiate n times to be able to interchange the order of integration and
differentiation! Yet, given that, the integral is now straightforward (see Sec. II), and we
obtain
a2
"y = 8"67] ,
< > |: a a=0

having reduced the integral to an nth-fold derivative (hence the name “integration-by-

differentiation”). For instance, we can now obtain
<x0> = _e%] =1,
L Ja=o0
(z') = :aae(ﬂ = [aeajhzo =0,
(%) = _626%]

which are, respectively, the “norm”, the “mean” (@ =< x >) and the “variance”
(02 = (2?) — (x)?) of this Gaussian distribution in Eq. (29) In effect, what we have de-
rived is an important property of any distribution, which is often referred to in statistics,

called the “characteristic function”
®(a) = ("),  (2") = [07®(a)]a=0, (32)
from which we can obtain any moment by mere differentiation. For this Gaussian,
®(a) = /2, (33)

Alternatively, we could have realized immediately that only even moments n = 2k in this
Gaussian distribution are non-zero (why?), and used a variant of the same trick:

* dx 22

(z%) = _mﬁ(ﬁ)%_?
> dx

1 1
- -],
Can you see, why we need a = 1/2 in the end here? Clearly, we get the same results:
(2°) = [1/v2a]acr )2 = 1 and (22) = \/1/2[=84(a=/2)]gzr o = 1.
EXERCISE:

13



1. Rewrite the generalize Gaussian distribution

p(ZL’) — ae—bxz—i-cm
by replacing the constants a, b, and ¢ by the mean p = () and the “standard deviation”
o = \/(2?) — (x). (Hint: calculate (z) and (22) and require proper normalization, i.

e. enforce (x°) = 1, to obtain relations between these constants.) You should find that

o (z;;ﬁ
= Tas (34)

Note that if we transform to the “reduced” variable &, © — £ = (x — p) /o, in the generalized
Gaussian distribution in Eq. (34), the new distribution p(£) = op(z(&)) has zero mean (£)= 0

and unit variance, (¢2) = 1. In turn, its characteristic function is always ¢(a) = (%) = /2,

B. Solving integrals with integration-by-differentiation

This method can be used more generally to solve all kinds of integrals. Take, for instance,
the identity

[6’;:17)‘]/\:0 = [ore*™] _ = [(Inz)"e**] = (Inz)", (35)

A=0

which can be useful in solving integrals involving powers of logarithms, e. g.

1 1 1
/ dr (Inz)? = / dz [032] = {éﬁ/ dx I)‘:|
0 0 B 0 A=0

Clearly, we could have solved this integral also by other means, such as integration-by-parts.
But this method is more elegant and straightforward; we always know how to differentiate
while integration always involves some guess-work.

EXERCISE:

1. Determine

1
I:/ dx (lnx)zx%.
0

14



C. Binomial Distributions

Initially more intuitive than a Gaussian is the “binomial distribution”
T n n—
P = (k) ¢“(1—q)" ™" (36)

for 0 < ¢ <1 and any integers 0 < k < n. It answers the following question: If an individual
event has a probability of ¢ to be realized (i. e. 1 — ¢ to be not realized), what is the
probability that in n trials I see k& such realizations of the event. For instance, if I do n
coin tosses with the event “heads” having an elementary probability ¢ = 1/2, about, then
observing k such events has probability p;. Similarly, we could be describing a drunkard
that on each step is randomly swaying to the right with probability ¢ and to the left with
1 — g. That drunkard would reach a distance z} = kL + (n — k)(—L) = (2k — n)L after
nsteps of length Lfrom her origin at 23 = 0 with probability p}.

Note that the binomial distribution is closely related to the binomial series introduced in
Sec. I with p =1 — ¢, from which immediately follows

Yo=Y (Z) ¢FA—g" =g+ (1-q]" =1,
k=0 k=0

i. e. p} is properly normalized, with the probability of “any” outcome being certainty (=1).
In terms of this distribution, the meaning of “moments” becomes more clear. For example, we
may consider the mean number of “heads” p arising from a (large) number N of experiments
of n coin tosses. In Ny of those experiments, we found 0 “heads”, N; with 1 “heads”,...,
N,, with n “heads”. If N is large enough, we would naturally expect that N,/N — p}.
To get the mean number of “heads” one adds up all the individual experimental outcomes,
O0+0+..0+(1+14+..)+...+4(n+n+...) =0Ny+1N; + 2Ny +...4+nN,, and divides
by the total number of experiments, N = Y, Ny, to get

n

1 n n N,
= STEN = SR =S Rl = (R,
I N; k ; ¥ ;pk

in close correspondence to the definition of moments for the Gaussian distribution above.
While p} is a “discrete” distribution for a countable (discrete) set of outcomes k, the Gaus-
sian is a continuous distribution, for which we can measure the likelihood outcomes only
over closed intervals Az, pf ~ p(x)Ax. In the limit of large n, as we will see, the above ex-

pression will take on the character of a Riemann sum with infinitesimal intervals, Az — dzx.

15



Furthermore, we can ask ourselves, how much do an experiment typically deviates (or “fluc-
tuates”) around the mean p, since each individual experiment of n trials with give exactly
the mean number of outcomes. (The mean may even be realizable, such as for n = 3
coin tosses with mean p = 3/2 non-integer!) Since we don’t care whether the deviation
k; — (k) in the ith experiment was above or below average, we consider the squared devia-
tion, (k; — (k))? = (k — u)?, so that a below-average fluctuation in one experiment can not
cancel out another above-average one. Now, we simply average those squared-deviations

themselves to obtain the “variance”
0% = ((k — 1)?) = (K — 2k + pi2) = (K2 — 20 (k) + 2 = (K2) — 2. (37)

Therefore, it becomes apparent that higher moments (here, the 2nd moment (k?)) are es-
sential to probe details of a distribution.

Even more than for continuous distributions with integrals, the evaluation of sums to
obtain moments of discrete distributions can be tedious. For example, we can calculate the

first moment of the (relatively simple) binomial distribution:

- - nlk _
p= (k)= kaz = quk(l —q)" ",
k=0 k=1 " ’

where we have used the definition of (Z) and the fact that the £ = 0 term vanishes. Canceling

the k by the factorial to get (kK — 1)! in the denominator, we can shift k = ¢ + 1 in the sum

to get
n—1 (n 1)
— _ i+1 (n—1)—1
po=) n a7 (1—q)
— ill(n—1) — ]
n—1 n 1
_ - i1 — (n—1)—1
ng ;—0 < . )CI( q)

This is a familiar result, of course, since we expect that n coin-tosses with ¢ = 1/2 should
yield n/2 “heads”, on average (after many experiments). Similarly, for a dice with elementary
probability ¢ = 1/6 to roll “6”, we would expect n/6 times a “6” out of n rolls.

EXERCISE:

1. Use similar steps to obtain the 2nd moment, (k?).

16



To avoid the tedium of such evaluations, we can use the same trick as above for continuum
distributions, using integration-by-differentiation. But instead of just the first moment, lets

go after the characteristic function immediately:

a) = (") = Xn: (Z) ¢"(1— )" e

-3 (1) et -
= (ge"+1—1¢q)". (38)

Now, it is a straightforward matter to obtain moments:

1= [0up(a)],—
= [0a(ge” +1 = q)"] =
= [nge®(ge" +1—¢q)"'] _,
= ng
(*) = [02¢(a)] .,
= [Oange®(qe” +1—q)" '] _,
g e 41— 0"+ il — D (ae* +1— ],

= ng+n(n— 1)q2,

hence

o =/(k?) — 1> = \/ng + n’¢®> — ng> — n?q® = \/nq(1 — q). (39)

This result says that if you toss a coin n times, you can expect the number of “heads”
will typically deviate from the mean result at most by (roughly) ++/n with a certain degree
of certainty. (This statement can be made more precise: In general, the outcome would be
between ;1 — o and p + o with probability ~ 2/3; that’s called a “standard deviation” and
is often the width of an error-bar in a plot of data.) So, if you do n = 100 coin tosses, you
can expect to find somewhere between £ = 90 — 110 “heads”. Note that the relative size
of fluctuations gets smaller and smaller with increasing n, o/n ~ 1/4/n, making the mean
value p better and better defined.

In all this, there is a deep connection between the binomial distribution (and many others)

on one hand and the Gaussian distribution on the other hand. Many of these distributions

17



have a Gaussian as a limiting case for large n. This is roughly the content of the “law of large
numbers”, which gives the Gaussian its fundamental importance. We will now demonstrate
this limit for the binomial distribution. To make this connection, we want to calculate the
characteristic function of the binomial distribution for the “reduced” variable, £ = (k—pu)/o.
(It would make no sense to compare two distributions, if they don’t have at least the same

mean and variance!) Then, in a calculation similar to the above,

o(a) = <e“§> —e o <Z) ¢ (1 — q)"‘ke%k — (qe% +1- q)n.
k=0

Now, with /o = v/ng/(1 — q), so e~/ = <e‘“V q”““”’”) , we get
¢(a) — |:@_a\/ (1—111)71 (qe \/nq((ll—tJ) +1— q):| .

At this point, it is not at all clear that this expression would reach an interesting limiting
form, independent of n for n — oo. The only thing to do here is to Taylor-expand both

exponentials in the small variable 1//n :

o= |(1-o/ ) (o s ot )|

Note first that the terms in ¢ cancel in the second parenthesis. After multiplying out term-

by-term, keeping only terms not smaller than 1/n, a miraculous cancellation occurs of all

terms in 1/4/n, and we are left with

a’q a’ q 2 !
éa) = |1+ + —(a 7) .
@) 21=qn 21 -g)n (I—q)n
a? "
= |1+ —+...

{ o } ’

from which all ¢-dependence has now canceled! Using lim, _..(1 + z/n)* =

lim,, .. exp[nln(l + z/n)] = €* (since In(1 + €) ~ € for ¢ — 0 from the Taylor series

for the logarithm), we get finally for n — oo,

a2

¢la) =e7,

i. e. we re-obtained the same characteristic function as for the Gaussian, Eq. (33). If
two distributions share the same characteristic function, they share all moments, obviously.

While this is not a proof here, it can be shown that both distributions are identical.
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IV. GAMMA FUNCTIONS I'(z)
A. Surface of a D-Dimensional Sphere

Let’s consider the following question: What is the surface area Sp(r) of the sphere in D
dimensions? We remember that S3(r) = 47r* in D = 3 [V3(r) = 47r3/3]. What is a sphere
in D = 27 It’s the D = 2 object that, when rotated into the third dimension, gives a D = 3
sphere. That object is the circle, of course. Its “volume” is the circle’s area, Vs(r) = 712,
hence, its surface is the circles circumference, Sy(r) = 27r. By the same token, the plain line
between —1 < x < 1 must be the corresponding unit “sphere” in D = 1. Clearly, its volume
is Vi(r) = 2r, and its surface is a constant, S;(r) = 2.

How can this quantity be generalized? It appears, that a consideration of physical units
requires that Vp(r) oc P and Sp(r) = QprP~!; there is only one characteristic length
for a sphere, its radius . But that only solves half of the problem. What remains is a
determination of the surface for a unit (r = 1) sphere, Qp. Our way of finding Qp is, in fact,
a generalization of the trick we used to solve the Gaussian integral in Sec. II. There, we
relied in the spherical symmetry of the Gaussian integrand. In trust of the generalization of

the Euclidean metric into higher dimensions,

2 2 2 2

we can write:

(V)" = (/OO dxe_IQ)D
= /OO dxl/oodx2.../oo dzp exp [— (m%%—x%—i—...—kx%,)}
= /OO dVp(r) e (40)
r=0
Note that any spherically symmetric function could be used, in principle, but the Gaussian
has the big advantage that it goes to zero very rapidly near +oo. At this point, replacing

the infinitesimal cubic-like volume element in D-dimensional Cartesian coordinates with the

corresponding volume element in spherical-like coordinates,

dridzy . ..dxp — dVp(r),
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is merely a formal statement. To fill it with meaning, we “observe” (if that is the right
term for imagining something in arbitrary dimensions!) that we can tile the volume of D-
dimensional space just as well with a sequence of infinitesimal, concentric, spherical shells as
with Cartesian cubes, dVp = dxdx, ... drp. Each such shell has a radius r from the origin
and an infinitesimal width dr. Since dr gets arbitrarily small, the inner and outer surface

area of the shell is about the same, Sp(r). Hence, the infinitesimal volume of each shell is
dVp(r) = Sp(r)dr = QprP~tdr, (41)

which, inserted in Eq. (40), leads to

[

™

= QD/ drrP'exp (—r?) . (42)
0

Now, our problem is solved, almost! We reduced it to a discussion of a Gaussian integral,
which is of general interest, and which we will now consider at length before we return to

the D-sphere.

B. Factorials for non-integers

Let us consider the properties of the following integral, which we will define as the

“I"—function”
[(x) = / dtt"te ™, (43)
0

This integral exists for all z > 0 (why not z < 07) and has a few remarkable properties.

t

Integration-by-parts, using u = ¢™* — v’ = —e~* and v/ = 7! — v = t*/x yields

[(x) :/ dtt*tet
0

1 <1 [
= {——t%—t] + = / dtt* et
T =0 L Jo

1
= -T 1
T+ 1),
Fx+1) = a2l(x). (44)
This last, “recursion” equation for I' is very suggestive. It is easy to integrate I'(1) = 1.
Then by Eq. (44), T'(2) = 1IT'(1) =1 and ['(3) = 2I'(2) =2 x 1, T'(4) = 3I'(3) = 3 x 2 x 1,
['(5) =4I'(4) =4 x 3 x 2 x 1, and so on. It is, in fact, easy to show that Eq. (44) for non-

negative integers x = n is solved by the factorial function, i. e. I'(n+1) = n!, indicating the
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close connection of the I'-function to anything having to do with “counting” (combinatorics).
In turn, the I'-function accomplishes an amazing feat: it continues the factorial function off
the non-negative integers! Such “analytic continuations” are used quite commonly. This con-
tinuation is not unique, though, as I'(z)[1 + a sin(2z7)] does the same thing and satisfies the
recursion relation. Other, obviously desirable properties, like monotonicity for sufficiently
large x, are needed to make I'(x) unique. Now, it makes sense to ask, for instance: What

is (), or (—3!)? The former is just some irrational number, but the latter is easy to find

indeed:

<—1)!:F(1) :/ dtt2e™t

2 2 :
= 2/ d(vVt) et

[ a(vi)

/alue_“2
0
7T7

2
= VT (45)
where we have used the Gaussian integral in Eq. (27).

But there is more! Although the integral in Eq. (43) only defines I'(z) for z > 0, the
recursion relation in Eq. (44) uniquely continues I'(z) to all real z. (Actually, the defining

integral also converges for complex x with Re{z} > 0, hence the recursion then extends I'(z)

to all complex x!) For example, T (%) = —%F (—%) , SO (—%)! =T (—%) = =2 (%) = =2/,
and so on. In fact, if we knew I'(x) only on a < 2 < a + 1 for any a, the recursion would
provide I'(x) everywhere!

We know the factorial function as monotonic and rapidly rising but non-singular. The
secret life of its continuation, I'(z), is somewhat surprising. Consider, for example, for a
small € — 0

I(e) = %m o),

by virtue of the recursion relation in Eq. (44) again. It is easy to see from the defining
integral in Eq. (43) that lim._o+ I'(1+¢€) = 1. Thus, near the origin, I'(¢) = 1/¢ has a simple
pole, i. e. it diverges to +oo for ¢ — 0T, and to —oo for € — 0~. And the recursion relation
implies that such simple poles occur in I'(z) for all non-positive integers z. For instance,
consider T'(e — 1) = I'(¢)/(e — 1) for ¢ — 0% : Since 1/(e — 1) — —1, I'(e — 1) =~ —T'(e)
inherits the pole of I'(0) but with a minus sign. Its behavior for z < 0 is not unlike that of
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1/sin(x7), and one can actually show the “reflection” relation

T(2)D(1 - ) = —— (46)

sin(zm)

Returning to the D-dimensional sphere, we can finally write

SD(’I“) = QD’I“D_l, (47)

and, incidentally,

D
VD(T’) = QD—’I“D = L (48)

Qp| Vb

S |lw | v |- lo|lyg
)
)

Table I: Surface 2p and Volume Vp of the D—dimensional unit sphere for some integer dimensions.

EXERCISES:

1. Express the moments (z?") of the Gaussian distribution in Eq. (30) in terms of T-

functions.
2. Sketch, by hand, I'(z) for =3 <z < 3.

3. Use integration-by-differentiation, the identity 1/A4 = fooo dte=* and Eq. (46) to

h:/ a0 Mg L)
0 1+2 2 coS (5)\) o

V. SADDLE POINT EXPANSIONS

show that

A. The Traveling Salesperson Problem

We have see, how the I'-function provides us with a continuation of the factorial function

to any real number. Its utility, though, extends even beyond that! Consider a few every-day
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problems: You run a delivery service and your truck has to make a hundred drops a day in
your area, moving from one drop point to the next. How many different paths are there to
route your truck? Or you have to drill a thousand wholes into a board. How many ways
are there to move your drill from whole-to-whole? This is but one, and the simplest, of a
family of combinatorial problems. This particular one is called the “Traveling Salesperson
Problem” (TSP).

The actual goal of the TSP is to minimize travel-time (or -cost). Here, we only focus on
the much simpler question of counting the space of all solutions (paths). This is done best
by “induction”. Say, we already have counted the number of paths, a,,, for the problem with
n locations. If we add one more location to just one of those a,, paths, how many new paths
do we get? Well, any path consists of a closed n-sided polygon with an ordered sequence of
those n locations on its corners. The new, n + 1-st, location can be inserted on any side of

the polygon, leading to n new, distinct paths. Hence, for n + 1 locations, there are
(pi1 = Nay, (49)

possible paths. This “recursion relation” in fact solves our problem: We already know that
the factorial is a solution to the recursion relation, a,, = n!.

So, in the delivery business, we have to select the best of N = 100! routes, and in the
drill problem, the best of N = 1000! paths. What are these numbers? Can we even discern
their order of magnitude? How do we evaluate the factorial for large n?

Dealing with such large numbers, it may be helpful to look at their logarithm, which
turns very rapidly varying functions in to more slowly moving ones. In particular, we can

take the logarithm of Eq. (49) and set b, = In(a,) to get

b1 = by, +In(n)

bn+1 - bn o
CESET In(n)
db,

2 In(n)

b, ~ nln(n) —n+ B

n_—n

a, ~ An"e

This somewhat venturous calculation, considering dn = (n+ 1) — n = 1 as infinitesimal

compared to n > 1 and simply integrating the equation, in fact, provides a very useful
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result, which is probably not wrong by more than a factor of 10-100 (i. e. off by 1-2 orders
of magnitude!) on the above problems. In this estimate, it doesn’t even matter then that

we simply replace the unknown integration constants by B ~ 0 or A~ 1 and e ~ 20 :
(1000 A 100010001000 1 1300093337 (=333 1, 12667 (210)—33 ~ 102567

where we have also used 2! ~ 103. This result is too high, since we have underestimated
both, 2! and e*. But how wrong are we? Thanks to the I-function, this question can be

answered to any desired precision. (In reality, one gets ajgpo ~ 5 10%°%°.)

B. Sharply peaked functions

To get a more precise value for n!, we first make a few general observations. Let us

consider the simple polynomial function
o) = t*.

This function varies quite slowly and has a minimum at ¢t = 0, where ¢'(t = 0) = 0 and
¢”(t =0) =2 > 0. Its integral is straightforward and requires no approximation. Now, let
us consider the function

e~ =) (x — 400).

This exponential now varies quite rapidly and has a sharp maximum at ¢ = 0 for large x.
For example, with, say, © = 9, the function at t = £1 is e * ~ 2072 ~ 10~*, or four orders

of magnitude smaller than at t = 0. So, let us look at its integral

I(z) = /_ 1 dte **® (1 — 400). (50)

1

00 —1 e’}
= / dt e —/ dt e** —/ dt e "
o oo 1
i —2/ dte‘rtQ,
T 1
where we have used Eq. (28). As it turns out, for large x, the correction to this integral

stemming from the domains —co <t < —1 and 1 < t < oo are entirely negligible! Note that

if £ > 1 then t < ¢2 and e~ > =" > (), hence

& & e 7 T
/ dt e~ < / dte ™™ = —— < \/j
1 1 T T
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Accordingly, we can write

with only an exponentially small error, say, 1 in 10%at z ~ 10, as above.
How close to the minimum of ¢(x) do we need to be to be able to neglect any corrections?
Well, let us look at the same integral but with some extra parameter, ¢ > 0, that measure

the closeness to the minimum:

I(2) = / dt e (2 — to0).

= / dt e — / dte=" — / dt e=***
= \/§_2/ dte="".
x €
Now, substitute ¢ = es and get for the correction integral
/ dt e = e/ ds e~ (=)
€ 1
< 6/ ds e~ @)
1

—1762

e

xe

So, for the correction to be exponentially small, we only need an

e>1/Vx. (51)

That means, at x = 10, we should choose € > 1/3. Say, already with ¢ = 1/2, the correction
is ~ 0.01, missing I(z) ~ \/7/x by only ~ 2%.
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Figure 1: Plot of ¢(t) = t? and e~*%®) for various x. While the upper graph only varies slowly, its
exponential varies very rapidly for larger z. For increasing x, the area under each curve (i. e. its

integral) in the lower plot is significant only over a decreasing interval in ¢.

Of course, the function ¢(¢f) = t* is somewhat trivial, but it demonstrates the generic

behavior of so-called Laplace Integrals, Eq. (50). Let’s us do a more complicated example,

¢(t) = sin(),
I(x) = / dt e==sn® (x — 0). (52)

This is in general a very hard integral, which has no simple solution, unless z is large. The
sin(¢) function has minima at ... — 57/2, —7/2,37/2,... and any shifts by multiples of 27
thereof, but for this integral, only the minimum at ¢, = —n/2matters (why?). From the

previous calculation, we expect that for large x only a small interval around the minimum
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of ¢(t) near t =ty = —m/2 contributes to /(x), so

to+e ] 0 ] to—e ]
I(Z’) — / dt e—zsm(t) +/ dt 6—:csm(t) +/ dt e—z¢sm(t)
t t

0—€ ote€ -
to+e )
= / dt e 4 exponential smaller termsin x
to—e
~ / dse ™ sin(tp+s) (53)

where we have substituted ¢t =ty + s, dt = ds. What have we gained? Well, in such a small

environment, —e < s < ¢, we can Taylor-expand

blto+5) ~ Blt) + 56/ (F) + %szgzﬁ” (o) + 2% (t5) + 2—1484¢<4>(t0> b (54

6
n (=g +s) = sin (-3) +seos (-3) - 5 (-5)
in(—= A sin (—— ——) —=s"sin (—=
S 5 TS S 5) Tscos(—5 55 5
1 1
_683 cos <—g> + ﬂs‘l sin (—g) +... (55)
1 1
~ —14 -5 ——st4+ ..
+2s 248 +

Inserting this result into Eq. (53), we get
[(.CL’) ~ / dS 6—:0(—1-’-%82—%54""...)

€
696 / dS 6—%95524-%:034-‘,-...
—€

Q

It is key now to substitute u = s\/z, ds = du/+/x, then

T NG
I(z) =~ 6—/ du e~z oy
\/E —ev/T

In this way, it is apparent that we can neglect the u*-term (and any higher-order terms),

since 1/x is small. Furthermore, because of Eq. (51), ey/x is a large number, so that

We can easily generalize this result, also adding another, z-independent function f(¢) in
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the integrand. As in Eq. (53), we obtain in general

I(z) = / ’ dt f(t) e "0® (56)

a

to+e€
= / dt f(t) e=**Y 1 exponential smaller terms in x
t

0—¢€

~ / ds f(to+ s) e 2oto+s),
~ /E ds [f(to) + sf'(to) + .. ] e—r[¢(to)+s¢/(to)+%szq§”(to)+%s3¢(3)(t0)+...]7 (57)

Note that since ¢(t) is assumed to have an absolute minimum at t, € (a,b), we have

@' (to) = 0, hence,
I(e) o emrt / ds [f(to) + sf'(to) +...] o~ 325°®" (to)+ g7 (to)+..

10 o [ { M) ] (3ol o [f6 D wu+
N /_Efd N Ok v (58)

Neglecting small terms in 1//x, 1/x, etc, and letting e\/z — oo, it is finally

I(z) ~ —f%) e o) / due 139w

/ dt e ~ f(to) ¢,, ez o), (59)

where t; is defined by the global minimum on (a,b) with

@' (tg) = 0.

It should be noted that at this stage the result in Eq. (59) is only accurate up to terms
of order 1/4/x, because of the terms we dropped in Eq. (58). But those terms could be
further incorporated systematically by simply Tayloring in powers of 1/y/z in Eq. (58). Any
exponentially small corrections from the tails of the integral can always be neglected.

EXERCISES:

1. Find the approximation to

_ / dt e—zcosh(at) (.7? N OO)

2. Find the approximation to

I(x) = /000 dt t ¢~ (ot'=m*e?) (x — o0).
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3. Find the approximation to

I(x) = / dt e=(H' =5+ 1) (x — o00).
0

C. TI'-Function for Large Arguments

Now we have all the tools needed to obtain a systematic approximation to I'(z) for large

x. Although, we still have to be clever! Starting from the I'-integral,

[(x) :/ dtt*le™,
0

which is not at all in the form of the integral in Eq. (56). We need the z in the exponential,
so let us shift t = xs, dt = xds, to get

I(x) = x”’”/ dss™ te s
0

d

S _

z e st In(s) )
0 S

Now, we have an integral that has exactly the form of Eq. (59) with

¢(s) = s —In(s)

#s) =1~
1
¢ (s) = 2

Clearly, ¢(s) has one unique minimum, where¢’(sy) = 0, on (0,00) at sy = 1. There, it is

d(s0) =1 ¢"(sg) =1 and f(sg) = 1/so = 1. Applying Eq. (59), we finally get

[(x) ~ 2” \/%6_96 (x — o00). (60)

This is called the “Stirling Approximation” for the I'-function.
Returning to our above problem of calculating the number of paths, a;9090 = 1000!. First,

note that
nl=T(n+1)=nl'(n)~V2rnn"e ™. (61)

Hence, our above estimate was off by a factor of /271000 &~ 80. Estimates aside, the actual
relative error between 1000! and the Stirling approximation is less than 0.1%.

EXERCISE:

1. Determine the relative error between 10! and its Stirling approximation.
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VI. DIFFERENCE EQUATIONS
A. Mortgage Equation

Let us consider how interest-payments on loans are calculated. Say, you are taking out a
loan amount L at an periodic interest rate of /. You agree to repay your debt, including all
interest, after 7" periods. What would be your periodic payment P? Well, we can proceed
inductively again, and write down a recursion relation [as for the factorial function in Eq.
(49)| for your current debt D, during period n. Clearly, at the beginning, n = 0, we have
Dy = L, and in the end, n =T, we want Dy = 0. What is our debt during the next period,
D, 1, assuming that our current debt is D,,? During that period, our debt increases by the

interest on that debt, I D,,, and decreases by our payment P from its current level. Hence,
D,.1=D,+ 1D, — P. (62)

This is called a “difference equation”, due to its close similarity to differential equations. To
see this similarity, we define D,, = d(to + nAt) for a continuous time-variable ¢ and rewrite

Eq. (62) as

d(to + (n+ 1)At) —d(to +nAt) (1 P
[to + (n+ )AL — [to + nAt] (E) dlto +nAt) - (E) '

Defining ¢ = I/At and p = P/At as the interest rate per unit time and the payment per

unit time, respectively, we obtain in the limit of At — 0,
d'(t) = id(t) — p, (63)

where t = t, + nAt is now a continuous variable. Note that if we wanted to solve such a
differential equation numerically on a digital computer, which is inherently discrete, we in
fact would have to proceed exactly backwards from Eq. (63) to Eq. (62) by introducing
a sufficiently small but finite At. (The smaller At, the more accurate the numerical result
would be, but the more steps 7" would be required in the computation to cut a preset time
interval into slices of size At.)

Eq. (63) is an inhomogeneous differential equation of first order, for those familiar with
differential equations. There are standard methods to solve those equations in generality and,
not surprisingly, many of these methods have their correspondents for difference equations.

For our purposes here, let us just note that we can reduce Eq. (63) to the differential equation
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for the exponential by a simple shift by a constant, d(t) = d(t) + p/i, since d'(t) = d'(t).

Similarly for Eq. (62), we can shift D, 1) = Dy,11) + P/I to find

Dypy1 = Do(1+1). (64)

A typical way to obtain a solution for a difference equation, which is linear in the dependent
variable D,, and has only constant (n-independent) coefficients, is with the “Ansatz” (German
for “try”)

D, = Ar" (A, r constants).

Inserting that into Eq. (64), we obtain r = 1 + I, leading to D,, = A(1 + I)". Thus we find
as general solution for Eq. (62)

Dy = A(L+ 1) + ? (65)

To make this general solution apply to our particular problem, we have to determine the
arbitrary constant A and the desired payment P in terms of our specific requirements, i. e.

that Dy = L and Dy = 0. First,

P P
L=Dy=A+—+ = A=L——
0 + I I7
which leads to the solution to our problem
P P
D, = (L_T) (1+I)"+7. (66)

With that, we can now determine our periodic payments when the repayment is stretched
over T’ periods:
IL(1+1I)T

OzDT=<L——)(1+I)T+§:>P:m. (67)

EXERCISES:
1. Mortgages are typically paid over monthly periods, although market interest rates are

quoted as “annual percentage rates” (APR). If your mortgage has an APR of 6%, what

is I?

2. “Interest-only loans” are quite popular currently, for which the “principle” loan amount
L never gets paid off, i. e. D,, = L for all n > 0. (This may be useful — compared to
renting — if one must sell the property again within a few years, but hopefully not at

a loss!) What is the monthly payment P on a loan of L = 200,000 at 5% APR?
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3. Consider the choice between a 30-year (360 months) mortgage at 6% APR and a 15-
year (180 months) mortgage at 5% APR for a loan of L = 200,000. What are the
respective monthly payments P, what is the total excess pay (difference between total
amount paid and the “equity” owned, where your equity is £, = L— D,,) after 15 years
for (1) the 15-year mortgage, (2) the 30-year mortgage, and (3) the interest-only loan

from 2. above?

B. Random Walks

We have already referred to the walk of a drunkard in the context of the binomial dis-
tribution in Sec. III C. This problem, called a random walk, is in fact of great importance,
since it describes general diffusion processes. For instance, we could replace the staggering
drunkard by a molecule in solution that is randomly kicked into anywhich direction by the
surrounding molecules. If we imagine a droplet full of a pigment, which contains many
molucules, immersed in clear water, we would soon find that the pigmentation has spread
throughout the water.

Let us consider a discrete “lattice” in one dimension, i. e. the line of all integers —oo <
1 < 00, and discretized time steps t = 0,1,2,.... We assume to have at t = 0 a walker at
the origin ¢« = 0. At each subsequent step, the walker moves to the left (i — i — 1) or right
(¢ — i+ 1) with equal probability. We want to find the number of possible paths N, that
this walker could have taken to reach a point (i,¢). For example, at time ¢ = 1, there is only
one path each to reach the points (i = —1,t = 1) and (i = 1,t =1),s0 N_y; = Ny; =1
and N, = 0 for all other ¢ # +1. At time ¢ = 2, there is again only one path each to reach
t = +t, generally N1, = 1, since it leaves the walker no choice but to always walk left or
right, resp. But there are now two paths to return to the origin, Ny, = 2, for a walker
going right-left or left-right; all other N; o = 0. Continuing on, one notices that the numbers
for the paths generated are in fact those of the Pascal triangle. For each time ¢, there are
2'possible path, so the probability to reach any point (7,¢) is simply N;./2', since all path
are independent. Due to the close relation to the Pascal triangle, we can easily deduce from
Sec. IILC that p(, ; , = Ni/2' for ¢ +i even, refering to the binomial distribution p} in Eq.
(36). Note that no path can reach a site i at time ¢, if i+t is odd; this “checkerboard pattern”

makes the equations for NV;, unnecessarily difficult. Instead, we consider the numbers in the
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familiar Pascal triangle, II,, , = 2"p}, directly.

For the construction of the Pascal triangle, we can write down
Wk =1 + 1 k-1, (n,k > 0), (68)

and II,, o = 1 for all n > 0. Again, we have obtained a recursion relation, but in this case it
depends to two indices, n and k. While this equation could just as well be solved by other
means, we want to use it here to introduce an important method, called generating functions,

used to solve even more general recursion relations. Defining the generating function

o0 [o¢] 1
(o) =D Mhaa”s gofe) =3 Thuos” = 1. (69)
we can multiply Eq. (68) with 2" and sum over all n > 0 to get

Z IL, 2" = Z I, k2™ + Z I, 1™, (k>0),

n=1 n=1 n=1
Z I, — Iy = o Z IL, g™ + o Z L, 12", (k> 0),
n=0 n=0 n=0

9x(2) = zgi(z) + 2g8-1(2), (k> 0), (70)

since Il ; = 0 for &£ > 0. Thus, the generating function has reduced the problem to a simple,
ordinary recursion relation in one variable, k, with x as a parameter. We rearrange Eq. (70)
and solve:

X

gk(x) = 1_ 2 gk—l(x)v (k > 0)7

z \" a®
9i(z) = go(z) <m) = A= (k> 0).
Now we have to “pay” for the convenience that the generating function gy(x) provided. To
convert back to II,, ., we have to determine the Taylor coefficients of g (x). In this case, the
task is quite easy, but in general, the conversion may be very difficult. Here, we observe

from the binomial expansion in Eq. (15), analytically continued to arbitrary exponent n

that

n

(1—2)" = Z z'(nLiz)'(_x)l’

- I'(n+1) i
- ;ilf(n—i+1)(_x)’

B = (—x) Lt —n)sin(r (n+1—1)]
B Zz:; i ['(—n)sin[r(n+1)]
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where we have used the reflection formula for I'—functions in Eq. (46) twice. With inte-
ger i and arbitrary n, sin[r (n+ 1 —14)] = sin[r (n + 1)] cos(wi) — sin(wi) cos[r (n+1)] =

(—=1)*sin[7 (n+1)], so

(1—2)" = ZMQC (71)

— ill'(-n)
a L+ k+1)
(1—a2)F 2 AC(k+1)
= Li+1 ;
9(@) = ; (i—k:()!F(k>+ n (72)

Hence, (replacing the dummy index i — n)

T, . = (Z) (n>k>0),

the familiar result for the Pascal triangle. Thus, we obtain for the number of paths for the

random walker to get to site ¢ at time ¢,

t )+ ¢
N, = Qtpti# =11, ire = ( ), (0< Z—; <'t, i+ teven), (73)

and there are no paths if i 4+ ¢ is odd.

C. Poisson Distribution

Another example of an interesting difference equation is given by Poisson process. Con-
sider you are observing a sequence of events, say, the decay of nuclear material or the arrival
of costumers into a queue. The elementary events have a specific rate of occurence A, and all
events are independent of each other. The question is, How many events n will have occured
after a time ¢ has passed since we started counting? We define the probability to have see
exactly n events after time ¢t as P,(t). The rate of change, 9;P,(t), is easily determined: At
rate \, the n + 1st event deminishes P, (¢), while with rate A, the nth event occurs, adding

AP, _1(t) to P,(t). Hence,
O P, (t) = —AP,(t) + APy (1), (n>0), (74)
starting from P, (0) = 0 for n > 0 and P,(0) = 1. Note that we have to require also that
i Po(t) = —APo(t) (75)
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for the initial process. Eq.(74-75) is a mixed, differential-difference equation. To solve the

differential equation first, we define a generating function as

glz,t) =) Py(t)a", (76)

with g(x,0) = 1. We simply multiply 2™ through Eq. (74) and sum for all n > 0 to get

O i P,(t)z" = —\ i P(t)z" + A i P,_1(t) 2",
0u9(w,1) — OLPA(t) = —Algl.t) — Po(t)] + Arg(z. 1),
Og(z,t) + M1 —x)g(z,t) = 0 Py(t) + APo(t) = 0,

where the last equality follows from Eq. (75). This ordinary differential equation for g(x,t)

in ¢ (z is merely a paramter here) is easily solved by an exponential:

g(z,t) = g(,0)e 2L, (77)
_ 6—)\(1—:c)1t7 (78)

o0 tn
= Z — e Mam, (79)

"0 n.

Thus, by comparison with Eq. (76), we finally get

D. How to convert Generating Functions

Consider again the generating function gx(z) in Eq. (69) and rewrite it with a complex

argument = = €', to get
g (€)= ZHn,kein¢7
n=0

2w 00 2
/ do gx. (ei‘z’) e"me — Z Hmk/ dep e'm=m9 (81)
n=0 0

0

where m is another integer. The integral on the right-hand-side is easily evaluated, with a

surprising result: If m = n, the integrant is simply unity, so the integral equals 27; if m # n,
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we obtain by straightforward integration:

2
. 1 : 27
d i(n—m)¢ - - i(n—m)¢
/0 de i(n —m) [6 L’:O’
1 .
_ (62m(n—m) 1) ’
i(n—m)
= 0,
as €™ = 1 for any integer k, see Sec. I C. Therefore, the sum on the right-hand-side of Eq.

(81) collapses, leaving only the term for m =n :

1 2 ] )
0, =— d 9) g=imo, 82
k=5 ; b g (6 )6 ( )

Clearly, in general, this integration may be quite difficult.

VII. PERTURBATION EXPANSIONS

In many areas of science and engineering, almost everything we know derives from the
power of perturbative expansions. Well, with the advent of computation, things have im-
proved somewhat; simulations even helped to discover mathematical solutions to difficult
problems previously only accessible to perturbations. One area where our knowledge almost
exclusively depended on perturbative expansions until some 30 years ago was the theory of

sub-atomic particles, for instance.

A. Perturbing a Differential Equation

Perturbative expansions are mostly used in the context of differential equations. Since
this is not a course in differential equations, we consider only a very simple example here:

Say, you want to solve the problem

y'(z) =y(z) —2Infy(z)],  y(0)=1. (83)

Clearly, this being a ordinary differential equation of first order, it is easy to write down the
answer in terms of a implicit integral expression. But there is no closed form solution, and
without having a computer around to solve it numerically, that solution is not very helpful.
Instead, we note that it is easy to solve Eq. (83), if the logarithmic term were not present,

y'(z) = y(z), i. e. y(r) = e°. How can we utilize what we know to obtain information
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about the real problem? The idea is to interpolate between the original, hard problem and a

suitable(!) “easy” problem. Hence, we have to deal with a one-parameter family of problems,

y,(IL’, 6) = y(l‘, 6) —2¢eln [y(xv 6)] ) y(0> E) =1, (84)

where we obtain the original problem for ¢ = 1 and the easy problem for ¢ = 0. The idea is

to construct a Taylor series (see Sec. IB) in the parameter earound the easy problem,

1 1
y(z,€) = y(z,0) + €0.y(w, €)]emo + 562033/(% €)]e=o + 6633;9’@/(%, ewo+...  (85)
~ yo(z) + ey () + () + e3y3(:v) + ... (86)

Ostensibly, then,

y(x) =y(z,1) = yo(x) + yi(x) + yo() + ys(x) + ...

provides an ever improving solution to our problem, but we will deal with that question
later. (Note that since y(0) = 1, we want yo(0) = 1, 11(0) = 0, y2(0) = 0,....) First, we
analyze what happens to first order in ¢ when we insert Eq. (86) into Eq. (84):

Yo+ ey + ... & yot+eyr+ ... —2eln [y + ey + ..
~ y0+ey1+...—2e(ln[yo]jte?—l—...)
0

0 = (yo—vo) + e —yr+2Infy]) + ...,

where we have dropped all terms of higher order in €. Since € is arbitrary, the expressions in

each bracket (...) must vanish separately, i. e.

e Yo — Y = O, (87)

€ yi—y = —2Infy],

We are thus faced with having to solve a infinite hierarchy of easy problems to approxi-
mate our hard problem, Eq. (84). The equation for y in Eq. (87) has the expected solution
(by design) of yo(x) = e®. For the first correction, we obtain

yi_yl = —2ZE,
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a simple linear, homogeneous problem with the general solution y;(z) = Aje®+2x+2, where
we find A; = —2 for y;(0) = 0. Therefore, our first approximant to the hard problem in Eq.
(84) is

y(r,e) e +e2e+2—2e"+ ... - y(x) =y(z,1) =~ 2z + 2 — €°. (88)

This being a Taylor series, one would actually have some freedom in interpreting this ap-

proximant, for instance, we could write with equal justification

e’ e’

~ 2w s e —1] +... .-yl =y, 1)~ T (89)

y(x,e€)

2.8
2.6
2.4
2.2

1.8
1.6
1.4
1.2

0.8
0.6
0.4
0.2

O 02040608 1 12 14 16 18 2

Figure 2: Plot of the numerical solution of Eq. (83) (top curve), the Taylor approximant in Eq.

(88) (bottom curve), and the rational approximant in Eq. (89) (middle curve).

Finally, extracting information from the perturbative series is somewhat of an art, in fact.

B. A simpler Example

Applying perturbative expansions to differential equation is of course very useful, but

makes understanding the technique unnecessarily difficult. To understand the nature of
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perturbative expansions, it is much easier to consider a simple problem, where we know
both the “easy” and the “hard” problem (and everything in-between) in all detail. And

instead of solving for a function y(z), we just want to find the root of an equation, say,
=2 (90)

It is obvious that z = 1 and x = —2 are the two possible solutions to this equation. Even if

we introduce a one-parameter family of problems, such as
ex® + 1 =2, (91)

the solution is simple:

1
T+ — .Ti(é) = __6

[1 + m] . (92)

Yet, we want to solve the problem by a perturbative expansion,
T =1x(€) BTy + €x1 + X + Exz + ety + .. (93)
to understand its properties. We insert Eq. (93) into Eq. (91) and obtain

e(x0+ex1+e2x2+63x3+...)2+x0+ex1+62x2+e3x3+e4x4+... = 2,
(zo — 2) + € (25 + 1) + € (2zom1 + 22) + € (27 + 2zoz2 + 73)

+et (2w19 + 22073 +24) + ... = 0.

Since the last statement is supposed to hold for any e (between 0 and 1, at least), one can

show that each (...) must vanish independently:

= Xy — 2
= x% +
21’0$1 + T2 (94)

2
= z] + 2x079 + T3

[
[\v)

o o o o o
|

= 21179 + 2x973 + T4

providing us with a infinite sequence of simple problems, similar to Eq. (87). Some notes

are in order:
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1. While the “hard” problem was non-linear (here: quadratic), the “easy” problem is

linear.

2. Subsequent problems in Eq. (94) express at order €” the unknown z,, in terms of the

already determined quantities zg, x1,..., %, 1.

3. Each subsequent problem in Eq. (94) has the same structure as the “easy” problem;
here this means, it is also linear, x,, = F, (2o, 21,...,2,_1). (The functions F, may
not be linear, but since all of its arguments are already known, it is merely a number

as far as the unknown variable x,, is concerned!)

Each of these points are generic properties of a well-designed perturbation expansion. “Well-
designed” here means that we choose to insert the expansion parameter ¢ in such a way that
the easy problem is linear [be it in the algebraic or differential equation sense as in Eq. (84)
|, or otherwise solvable. In case of the differential equation above, the “easy” problem was a
homogeneous linear equation, while each subsequent problem is inhomogeneous. Ever more
complex inhomogeneous terms arise order-by-order, which may limit the usefulness of the
expansion at some order.

Solving Eq. (94) order-by-order, we obtain

e Tg = 2

€ T, = —15=—4

e Ty = —2x0x1 = 16 (95)
e T3 = —x% — 2x0x9 = —80

et T4 = —2T1x9 — 2x9x3 = 448

Inserted into our Taylor-series Ansatz in Eq. (93), we obtain as “solution”
7(€) ~ 2 — de + 166 — 80€® + 448¢* + . . ., (96)

which evaluated at € = 1 provides a very poor approximation indeed [to either root of Eq.
(90)]! In fact, when we consider a sequence of partial sums by truncating Eq. (96) first after

the ¢! —term, than after the ¢€>—term, and so on, it yields (1) ~ —2, 14, —66, 382, . . ., which
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is oscillating around the known roots with ever larger amplitude. The series in Eq. (96) is
clearly divergent! Since we have (for this very simple problem) the general solution for x(e)
in Eq. (92) available, we can immediately detect the problem: Due to the singularity of the
square-root, the radius of convergence for the MacLaurin series for z(e) is just 1/8! After
all this work, what are we to make of such an apparently useless result? The problem has
to do with an annoying property of Taylor series in general: Their radius of convergence is
limited by the singularity closest to the point around which we are expanding a function
in the complex plane, even if this singularity is just an isolated pole, and the underlying
function itself is perfectly regular anywhere else. Remember the geometric series in Eq.
(4): The MacLaurin series of G(x) = 1/(1 — x) has only a unit radius of convergence, yet,
G(—1) = 1/2 or even G(10) = —1/9, say, are perfectly acceptable values, which the series
can not produce. In particular, our approximation consisting of a finite number of terms in
that series, a polynomial, can never have any singularities. But there is nothing germane to
writing that finite number of terms in polynomial form. We may just as well write it as a
rational function, say,
a-+eb+ e

= 97
. 14 ed + e2e’ (97)

which to 4-th order has a unique relation to Eq. (96). To this end, we simply expand Eq.
(97) in € to 4-th order only and match the coefficients term-by-term:

= (a+eb+ec) [1— (ed+ %) + (ed + €’¢)” — (ed + €°¢)* + (ed + .. )* + .. ]
= (a+eb+é) [1 —ed — e+ Ed? +26%de + ¢'e® — Ed® — 3e'dPe — ...+ *dt + .. ]
= (a+eb+éc) [l —ed+ € (d° —e) + € (2de — &%) + €' (? = 3d’e +d') + .. ]
= a+e(b—ad)+ € (ad® — ae — bd + ¢) + € (2ade — ad’® + bd* — be — cd)
+¢' (ae® — 3ad’e + ad* + 2bde — bd® + cd® — ce) + . . ..

Eq. (97) is called a “Pade-approximant.” In particular, a [n, m]|—Pade is a rational expres-
sion, which has a nth-order polynomial in the numerator and an mth-order polynomial in
the denominator. It can be uniquely matched to an (m + n)th-order Taylor series. So,
what we have in Eq. (97) is a [2,2]-Pade. Best results are typically obtained from the
sequence [0, 1], [1,1],[1,2],[2,2],...of Pade approximants, although convergence is not guar-
anteed. The success depends on how well the poles, due to the zeros of the denominator,

are able to mimic the actual singularities of the approximated expression.
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Matching this series to that in Eq. (96) and solving for the letters appears to lead
to a horrible set of nonlinear equations. But solved sequentially, matters again simplify

drastically. Clearly, a = 2. Then, we have
b—2d= —4, 2d* — 2e — bd + ¢ = 16,
where the first relation, b = 2d — 4, linearizes the second,
4d — 2e 4 ¢ = 16, 4de — 2d3 + bd® — be — c¢d = 2de — 4d* + 4e — ed = —0.
Now, ¢ = 16 — 4d + 2e linearizes the latter relation,
4de — 16d = —80,

so, d = e/4 + 5 finally leads to 400 + 4e = 448, from which follows

2 + 12¢ + 8¢2

1+ 8¢ + 12¢2

22
— ~ 1.048
21 ’

8
T
~—

&
—~

©

oo
~—

=
2

an approximation of better than 5% accuracy to the root of Eq. (90) at x = 1.

This approximation is clearly much improved over the diverging Taylor series in Eq. (96).
It is amazing that this simple rational expression in Eq. (98) manages to mimic the square-
root expression in Eq. (92). Rational expression are merely capable of poles through the
zeros of their denominator. Yet, note that the two poles of Eq. (98) at e = —1/2, —1/6 are
actually quite near the square-root singularity of Eq. (92) at ¢ = —1/8. In fact, for higher-
order rational approximants, their poles would tend to accumulate at the singularities of the
true solution.

One serious problem of our approximation remains: Instead of the two solutions of the
original, we only found one near x = 1. What happened to the second solution at z = 27
According to Eq. (92), this root corresponds to x, (€¢), which moves to infinity (as 1/e)
for ¢ — 0, highlighting the fact that this limit is singular: the “easy” problem at ¢ = 0

in Eq. (91) has only one solution, while there are two for any other value of e. Our naive
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Taylor series Ansatz in Eq. (93) does not provide for singular terms such as 1/¢ (or more
complicated singular expressions of € in general) and looses all those solutions. The only
remaining solution our Ansatz permits is that which smoothly interpolates between the easy
and the hard problem, a scenario often suggested by our intuition about the physics at hand
in a problem. To obtain other solutions, the singular behavior near ¢ — 0 would have to
be discovered first to start out the perturbative expansion. In this simple example, a series
Ansatz with a leading 1/e—term would obviously do the trick.

EXERCISE:

1. Repeat the calculation with a leading 1/¢ factor in the Ansatz in Eq. (93) to be inserted
into Eq. (91) to approximate the root at = —2. (Hint: you find two solutions for z;

choose the one that does not correspond to the already found solution.)

2. Find the perturbative expansion for

V2sin(z) +z =

=]

to 4-th order, i. e. z = xy + ex; + €21y + x5 + ¢wy by appropriately inserting
a parameter ¢ into the equation. Determine xg,xq,...,z4. Express x as a rational
function in € (Pade approximant), as in Eq. (97) and evaluate this expression at

e = 1. Compare with the exact result, x = 0.32877....

VIII. DIRAC’S §-FUNCTION
A. Definitions and Basic Properties

In the sciences, one often deals with situations in which things happen apparently in-
stantaneous, at least on the time scale one is interested in. For instance, a soccer ball
kicked appears to change its state of motion suddenly from stand-still to high velocity. We
observe the ball on a scale of seconds, while the detailed (and potentially messy) events
by which forces accelerate the ball occur on a milli-second time-scale considered irrelevant
for our observation. To this end, the notion of an “impulse” was created in this example.
The result is somewhat un-physical (and un-mathematical), since the velocity of the object

in this description changes discontinuously from zero to finite. Worse yet, the force, being
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proportional to the time-derivative of the velocity, diverges! In fact, what we have is a very
large, finite force over a very small time interval resulting in an ordinary, finite integral — the
impulse. Keeping the impulse constant while shrinking the time interval to zero leads to a
force function which is non-zero (infinite!) only on a domain of zero support in such a way
that the integral of the function is finite. Such an object is not a function in the traditional
sense, and is instead called a distribution. It is easy to find sequences of perfectly regular
functions, which have such distributions as their limit. In our example, we can approximate
the force function by a (continuous) triangle-function,

0, t] > 2,
F(t) = Ap lim (99)

e n(l—nlt]), [t <2,
which has an integral of ffooo dt F(t) = Ap = const for any n. More abstractly, we can define

a so-called “6—Function” (as due to Dirac) via two axioms,

1) d(x—x) =0,  (z#m),
(2) / dz 6 (x —xz9) = 1, (anye > 0). (100)

0—E€E
There are a number of representations of this —function, each with its own advantages

(and dis-advantages):
1. Easiest, but itself discontinuous, is a rectangular function sequence,

07 ‘Z‘ - xo‘ > %7
d(x — ) = lim (101)

n—oo
n, |t —zo| < 5.
2. At least continuous is the triangular function sequence already used above,

07 ‘x_xo‘ > %7

d(x —xp) = lim (102)
TN —nljr—x0]), | —x0] < Z,

3. A perfectly regular (analytic!) function sequence often used is the Gaussian represen-
tation,

§(x—xp) = lim ——e ™ @w0)°, (103)

n
n—00 \/7_1'6
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4. Another smooth function sequence is the Lorentzian representation,

n 1
0(x —xp) = lim — . 104
(@ = a0) = fim 2 (104)

5. Even oscillatory functions (with negative values) can make a useful sequence, as in the

sin —representation,

(105)

6. From the previous sin-representation, we can also derive an often used integral-

representation. It is

sin(nx) L[
= — dt t
— o) cos(xt),

1 n

= 5= B dt [cos(xt) £ isin(xt)],
1 M -

- dt Fixt
27 ), <

where we have used [” dt sin(zt) = 0 and the Euler relation from Eq. (23). Hence,
from Eq. (105),

r Mm 4
d(x—x9) = lim —/ dt i@t

n—oo 27 n
1 - +i(z—z0)t
= | e . (106)

One of the most important properties of the J—function is that for any a,b with o € (a..b)

and any function f continuous at x, it is

b To+€
[ e s@i o) = i [ e s - ),
= f(z0) lir(?+ o dx § (x — xo),
— f (gjo) , ’ (107)

where we have used axiom (2) in Eq. (100).

Of interest is also the variable integral of the d—function,

0, z <,
0(x—x9) = / dr' ¢ (2" — xo) = 1z =, (108)
1, x>z,
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which is called the (unit) step-function or Heaviside-function. The result 6(0) = % follows

from the symmetry of the d—function, 6(—x) = d(x), in that

xTo+€ 1 xo
/ dwé(x—xo)ziz/ dzx d (z — xg) . (109)

zo

EXERCISES:

1. Show for the representations 1.-5. that the axioms in Eq. (100) are satisfied.

2. Using any of the representations to show that

d(ar) = —o(x). (110)

3. Use the previous result, Eq. (110), to argue that

5(m2—a2):ﬁw(x—l—a)—i—(ﬂx—a)]. (111)

B. Using the é—Function

There is a myriad of uses for the é—function, but most involve the use of differential
equations. Instead, we can consider a powerful application in statistics. We want to consider
the case of adding random numbers. For example, we know that the roll of one dye X has
6 possible outcomes, each equally likely, p1(X = 1) =p(X =2)= ... =p (X =6) = %.
The same is of course true for a second dye Y. A practicle question (i. e. for players in
“Monopoly”) is, What is the probability ps(Z) of rolling both dice and obtaining an outcome
Z = X 4+ Y7 A general way to calculate ps(Z) is to sum over the entire probability space
for all pairs (X,Y") under the constraint Z = X +Y,

p2(Z) = ZZPl(X)p1(Y)|Z:X+Y- (112)
X v
A simple example is the case of Z = 3 :

p2B) = X =1+ . +p(X =06)][p1(Y =1)+... +p1(Y = 6)] |x4v=3,

= (X =Dp1(Y =2) +p1 (X =2)p1 (Y = 1),
_ 11111
66 66 18
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Note that while p;(X) = = was uniform over all outcomes X, ps(Z) is not. There are 36

1
6
possible outcomes (X,Y’), only one has Z = 2 (“Snake-eyes”) or Z = 12, i. e. po(Z =
2) = po(Z = 12) = 5, then po(Z = 3) = pa(Z = 11) = 15, and so on. It is essential
for “Monopoly” players to know that the most likely individual outcome is Z = 7 with
pz(Z = 7) = %!

Switching from discrete probabilities to the continuum, a similar formulism can be applied
to determine the probability distribution for the sum of two or more iid (independent,
identically distributed) random numbers. Say, we add two numbers, (X,Y’), randomly
drawn from a basic distribution p;, What is the distribution ps(Z = X + Y)? Well, we can

simply generalize the notion developed in Eq. (112) and write

pa(Z) = /_Z dX /_Z dY pi(X)p1(Y)|z=x+v

How do we handle the constraint in any actual computation of the integral? What the
constraint amounts to is replacing ¥ = Z — X or X = Z — Y at the expense of the
respective integration, i. e.

p2) = [ dXm(X)(2 - %) (113)

In fact, this is just what a —function accomplishes,

o(Z) :/_OO dX/_OO &Y p (X)pr (V)5 (X +Y — 2) (114)

which leads right back Eq. (113) after integration over Y, according to Eq. (107).
It is easy to extend this idea to the sum of n random numbers (n coin tosses, or n roll of

the dice, etc). Eq. (116) simply generalizes to

pu(Z) = /_OO Xm/_oo ng.../_oo X (X1 (Xa) - pr(X0) 8 (X1 + Xo+ .. + X,y 4125)

In fact, we have already shown in Sec. IITIC by elementary counting that for n coin tosses,
pn(Z) is given by the binomial distribution, and that for large n, p,(Z) approaches a Normal
distribution. We will find this to be a much more general result, virtually independent of
the elementary distribution of each random number, p;(X).

To appreciate the power of the §—function, let us try to find py(Z) and p3(Z) the “pedes-
trian” way for the special case of the normal distribution in Eq. (34) for p;(X), but with
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zero mean and unit variance (x = 0 and o = 1). Then, Eq. (116) reads:

1 o0

p(Z) = Dy dX e X e 27X,
™ o0
= 2i dX e XX =2 2 (116)
™ —00
= 1 6_%Z2

giving us a distribution of twice the variance of the original. That calculation was easy

enough, but let us consider the corresponding calculation for n = 3 in Eq. (115) now:

PalZ) = (27r / Xm/ dXQ/ dXge X et e 2X35(X1+X2+X3—Z)

- ( )3/ Xm/ dXse” 3 le 3 26 3(Z-X1— X2)27
2m)2
_%Z2

= / dX;e X2+ZX1/ dX, e X3 H(Z-X1)X (117)
(2m)2
_lz2

_ o / X, e Xz

= 1 e_%ZQ,

Vor

where we have used Eq. (28) repeatedly. Note that we obtain for p3(Z) a distribution of
trice the variance of the original.

Well, the calculation in Eq. (117) was not pretty! And the algebraic effort in applying Eq.
(28) will only become more messy for larger n. Yet, a clever application of the é—function
that preserves the symmetry between Xi,..., X, in Eq. (115) not only solves the problem
for arbitrary n, but also provides a much deeper insight into the general problem. To this
end we replace the d—function with its integral representation in Eq. (106), apparently
increasing the number of integrations instead of reducing it:

p(2) = [ [ e [ aXap(p () o) [ e )
—00 —00 —00 ™

= / g—teitz [/ Xmpl(Xl)e_itXl} {/ dszl(X2)6_itX2] [/ anpl(Xn) et )
—00 ™ —00 —00 —00

_ / j_teitz { / prl(X)e_“X] . (118)
—o0 4T —00

By symmetry, the n—fold integration has magically collapse into a single integral. Of course,

it is still not obvious that the determination of p,(Z) has become much simpler in light of
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the outer integral with respect to ¢. The biggest value of the result in Eq. (118) concerns

the explicit appearance of n, not as an index but as a parameter, for which we can study the

limit n — oo asymptotically using the methods of Sec. V B. First, though, we can verify

also that the d—function makes life easier for the special case of a normal distribution for

p1(X). We find

pn(Z)

for any n > 0, in particular,

% dt itz
Ll

oo 2T

1 1,2
e~ m?

2nm

edly easier than those “pedestrian” attempts!
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for n = 2,3 as in Egs. (116-117). This calculation is undoubt-



