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Abstract. The Karmarkar-Karp differencing algorithm is the best known polynomial time heuristic for the
number partitioning problem, fundamental in both theoretical computer science and statistical physics. We
analyze the performance of the differencing algorithm on random instances by mapping it to a nonlinear
rate equation. Our analysis reveals strong finite size effects that explain why the precise asymptotics of
the differencing solution is hard to establish by simulations. The asymptotic series emerging from the
rate equation satisfies all known bounds on the Karmarkar-Karp algorithm and projects a scaling n=¢"",
where ¢ = 1/(2In2) = 0.7213.... Our calculations reveal subtle relations between the algorithm and

Fibonacci-like sequences, and we establish an explicit identity to that effect.

PACS. 02.60.Pn Numerical optimization — 89.75.Da Systems obeying scaling laws — 89.75.Fb Structures

and organization in complex systems

1 Introduction

Consider a list of n positive numbers. Replacing the two
largest numbers by their difference yields a new list of
n — 1 numbers. Iterating this operation n — 1 times leaves
us with a single number. Intuitively we expect this number
to be much smaller than all the numbers in the original
list. But how small? This is the question that we address
in the present paper.

The operation that replaces two numbers in a list by
their difference is called differencing, and the procedure
that iteratively selects the two largest numbers for differ-
encing is known as largest differencing method or LDM.
This method was introduced in 1982 by Karmarkar and
Karp [1] as an algorithm for solving the number partition-
ing problem (NPP): Given a list aj, aq,...,a, of positive
numbers, find a partition, i.e. a subset A C {1,...,n} such
that the discrepancy

D(A) = ‘Zai—Zai

i€cA iZA

: (1)

is minimized. Obviously, LDM amounts to deciding itera-
tively that the two largest numbers will be put on different
sides of the partition, but to defer the decision on what
side to put each number. The final number then represents
the discrepancy.

# e-mail: sboettc@emory.edu

Despite its simple definition, the NPP is of consider-
able importance both in theoretical computer science and
statistical physics. The NPP is NP-hard, which means (a)
that no algorithm is known that is essentially faster than
exhaustively searching through all 2" partitions, and (b)
that the NPP is computationally equivalent to many fa-
mous problems like the Traveling Salesman Problem or
the Satisfiability Problem [2]. In fact, the NPP is one of
Garey and Johnson’s six basic NP-hard problems that lie
at the heart of the theory of NP-completeness [3], and
it is the only one of these problems that actually deals
with numbers. Hence it is often chosen as a base for NP-
hardness proofs of other problems involving numbers, like
bin packing, multiprocessor scheduling [4], quadratic pro-
gramming or knapsack problems. The NPP was also the
base of one of the first public key crypto systems [5].

In statistical physics, the significance of the NPP re-
sults from the fact that it was the first system for which
the local REM scenario was established [6,7]. The notion
local REM scenario refers to systems which locally (on
the energy scale) behaves like Derrida’s random energy
model [8,9]. Tt is conjectured to be a universal feature of
random, discrete systems [10]. Recently, this conjecture
has been proven for several spin glass models [11,12] and
for directed polymers in random media [13].

Considering the NP-hardness of the problem it is no
surprise that LDM (which runs in polynomial time) will
generally not find the optimal solution but an approxima-
tion. Our initial question asks for the quality of the LDM
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solution to NPP, and to address this question we will fo-
cus on random instances of the NPP where the numbers
a; are independent, identically distributed (i.i.d.) random
numbers, uniformly distributed in the unit interval. Let L,
denote the output of LDM on such a list. Yakir [14] proved
that the expectation E [L,] is asymptotically bounded by

n—blnn S E [Ln] S n—alnn7 (2)

where a and b are (unknown) constants such that

> aq >
bzaz9ms

=0.7213.... (3)

In this contribution we will argue that b =a = ﬁ

The paper is organized as follows. We start with a
comprehensive description of the differencing algorithm, a
simple (but wrong) argument that yields the scaling (2)
and a presentation of simulation data that seems to vio-
late the asymptotic bound (3). In Section 3 we reformulate
LDM in terms of a stochastic recursion on parameters of
exponential variates. This recursion will then be simplified
to a deterministic, nonlinear rate equation in Section 4.
A numerical investigation of this rate equation reveals a
structure in the dynamics of LDM that can be used as an
Ansatz to simplify both the exact recursions and the rate
equation. This will lead to a simple, Fibonacci like recur-
sion (Sect. 5) and to an analytic solution of the rate equa-
tion (Sect. 6). In both cases we can derive the asymptotics
including the corrections to scaling, and we claim that a
similar asymptotic expansion holds for the original LDM.
The latter claim is corroborated by fitting the asymptotic
expansion to the available numerical data on LDM.

2 Differencing algorithm

The differencing scheme as described in the introduction
gives the value of the discrepancy, but not the actual parti-
tion. For that we need some additional bookkeeping, which
is most easily implemented in terms of graphs (Fig. 1).
The algorithm maintains a list of rooted trees where each
root is labeled with a number. The algorithm starts with n
trees of size one and the roots labeled with the numbers a;.
Then the following steps are iterated until a single rooted
tree of size n remains:

1. Among all roots, find those with the largest (z) and
second largest (y) label.

2. Join nodes x and y with an edge, declare node « as the
root of the new tree and relabel it with x — y.

After n — 1 iterations all nodes are spanned by a tree
whose root is labeled by the final discrepancy. This tree
can easily be two-colored, and the colors represent the
desired partition.

Figure 1 illustrates this procedure on the in-
stance (4,5,6,7,8). The final two coloring corresponds to
the partition (4,5,7) versus (6,8) with discrepancy 2. Note
that the optimum partition (4,5,6) versus (7,8) achieves
discrepancy 0.
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Fig. 1. The differencing algorithm in action.

Technically, LDM boils down to deleting items from
and inserting items into a sorted list of size n. This can
be done in time O (nlnn) using an advanced data struc-
ture like a heap [15]. Hence LDM is very efficient, but
how good is it? As we have already seen in the exam-
ple, LDM can miss the optimal partition. And for random
instances, the corridor in Eq. (2) is far above the true op-
timum, which is known to scale like ©(y/n27") [7]. Yet
LDM yields the best-known results that can be achieved in
polynomial time. Many alternative algorithms have been
investigated in the past [16,17], but they all produce re-
sults worse than (2). The few algorithms that can actu-
ally compete with the Karmarkar-Karp procedure use the
same elementary differencing operation [18,19]. It seems
as if the differencing scheme marks an inherent barrier for
polynomial time algorithms.

The following argument explains the scaling (2). The
typical distance between adjacent pairs of the n numbers
in the interval [0,1] is n~!. Hence after n/2 differencing
operations we are left with n/2 numbers in the interval
[0,n7Y]. The typical distance between pairs is now 2n 2.
After another round of n/4 differencing operations we get
n/4 numbers in the range [0,8n73]. In general, after 2"
differencing operations we are left with n/2% numbers in

k
the range [0, 2(2)n_k]. Reducing the original list to a single
number requires £ = log, n differencing operations, and
applying the above argument all the way down suggests
that

E|[L,] «cn~cn (4)
with
1
c=gp5 =0721.... (5)

As we will see, this is the right scaling, yet the argu-
ment cannot be correct. This follows from the fact that
it predicts the same scaling for the paired differencing
method (PDM). Here in each round all pairs of adjacent
numbers are replaced by their difference in parallel. This
method, however, yields an average discrepancy of order
O(n~1) [20]. Yet, our analysis below suggests that (4)
and (5) indeed describe the asymptotic behavior correctly,
although a far more subtle treatment is required.
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Fig. 2. Results of LDM applied to n random i.i.d. numbers,
uniformly drawn from the unit interval. Each data point rep-
resents between 10° (large n) and 107 samples (small n). The
solid line is the linear fit —InE [L,] = 1.42 + 0.65 In’ n.
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Fig. 3. Probability density function of L, /E[Ly].

An obvious approach to find the quality of LDM are
simulations. We ran LDM on random instances of vary-
ing size n, and Figure 2 shows the results for E [L,]. Ap-
parently InE[L,] scales like In®n, in agreement with (2)
and (4). A linear fit seems to yield

¢~ 0.65

for the constant in (4), which clearly violates the bound
¢ > 1/2In2. Apparently even n = 10°% is too small to see
the true asymptotic behavior. This may be the reason why
Monte Carlo studies of LDM never have been published.

A plot of the probability density function (pdf) of
L, /E[L,] reveals a data collapse for varying values of
n (Fig. 3). Apparently the complete statistics of L, is
asymptotically dominated by a single scale n=¢n",

Some technical notes about simulating LDM are ap-
propriate. Differencing means subtracting numbers over
and over again. The numerical precision must be adjusted
carefully to support this and to be able to represent the
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final discrepancy of order n=¢"™". We used the freely avail-
able GMP library [21] for the required multiple precision
arithmetic and ran all simulations on ¢-bit integers where
the number of bits ranges from ¢ = 40 (for n = 20) to
¢ =300 for n = 1.5 x 107. The integer discrepancies were
then rescaled by 27¢. The pseudo random number gener-
ator was taken from the TRNG library [22].

3 Exact recursions

A common problem in the average-case analysis of al-
gorithms like LDM is that numbers become conditioned
and cease to be independent as the algorithm proceeds.
Lueker [20] proposed to use exponential instead of uniform
variates to cope with this problem. Let X;,..., X, 41 be
i.i.d. random exponentials with mean 1 and consider the
partial sums S = Zle X;. Then the joint distribution of
the ratios Sk /Sp+1, k = 1,...,n, is the same as that of the
order statistics of n i.i.d. uniform variates from [0, 1] [23].
As a consequence, LDM will produce the same distribution
of data no matter whether it is run on uniform variates
or on Si/Sp+1. Let L,, denote the result of LDM on the
partial sums Si,Ss,...,.5,. Since the output of LDM is
linear in its input, we have

L,Z2 (6)

where S, 11 is the sum of n + 1 i.i.d. exponential variates

n+1Ln 9

and the notation X L Y indicates that the random vari-
able X and Y have the same distribution. The probability
density of S, 41 is the gamma density

n

S —s
In+1(s) = ! e (7)
Taking expectations of both sides of (6) we get
B L]
E|L,| = . 8
D (®)

This allows us to derive the asymptotics of E[L,] from
the asymptotics of E [f)n}

Exponential variates are well suited for the analysis of
LDM because the sum and difference of two exponential
variates are again exponential variates. Once started on
exponential variates, LDM keeps working on exponentials
all the time. This allows us to express the operation of
LDM in terms of a recursive equation for the parameters
of exponential densities [14]. We start with the following
Lemma:

Lemma 1. Let X1 and X5 be independent exponential
random wvariables with parameter Ay and A2, resp. The
probability of the event X1 < Xo is given by

A1
SV (9)
A1+ Ao
Furthermore, conditioned on the event X1 < Xo, the vari-

ables X1 and Xo — X1 are independent exponentials with
parameters A1 + Ao (for X1) and Ao for Xo — X;.

P(Xl <X2)=
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The proof of Lemma 1 consists of trivial integrations
of the exponential densities and is omitted here.

Next we consider generalized partial sums of exponen-
tials, described by n-tuples

(A1, A2,y An).

This n-tuple is shorthand for the sequence of partial sums

<X1,X1 +X2""’ZXi>
1=1

with X; = exp(\;).

Now let us look at the result of one iteration of LDM
on (A1, A2, ..., A). The two largest numbers are removed
and replaced by their difference X,, which is an exp(\,)
variate. Lemma 1 tells us, that the probability that this
number is the smallest in the list is

An
P(Xn < X)) = —-

and conditioned on that event, the smallest number is an
exp(A1 + A, ) variate and the increment to the 2nd small-
est number X; — X, is an independent exp(\1) variate.
Conditioned on X,, < X; we get another A-tuple as the
input for the next iteration:

X, < X1 = ()\1 +/\n7)\17)\27-~7)\n—2)-

The probability that X,, > X; is

At

P(X,>Xy) = N

and in this case X7 is an exp(\, + A1) variate, whereas
the difference X,, — X is an exp(\,) variate. Now the
probability that the new number X, is second in the new
list reads

P(XnZXlﬂXn<X1—|—X2):

P(anXlﬂXn—X1<X2):
A1 An
AL+ A A2+ A\,

and conditioned on that event the input for the new iter-
ation is

(/\1 + /\na /\2 + )\na /\2, R /\n—2) .
This argument can be iterated to calculate the probability

of X,, becoming the k-th number in the new list. Denoting
the partial sums by Sy we get

k—1
A Ai
P(X,>Si1NX, <Sk) = ° L 10
(%o 2 S ) Ak+AngAi+An (10)
for k =1,...,n—2 and conditioned on that event the new

list is

()\1—i-/\n,...?)\k+)\n,/\k,/\k+1,...7)\n_2). (11)
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(2,1,1) (2,2,1)
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(3,2) (3,1) (3,2) (3,1)

Fig. 4. Statistics of LDM on n = 4. The final difference is
distributed according to ps(z) = e~ + 327",

The final case is that X,, becomes the largest number in
the new list. This happens with probability

n—2
i
P(X, >S,_2) = 12
Gz 500 =TT 555 (12)
and leads to the list
(/\1 +/\nu-~7)\n—2+/\nu/\n)- (13)

In all cases we stay within the set of instances given by
partial sums of independent exponentials, and we can ap-
ply equations (10-13) recursively until we have reduced
the original problem to a (A1, A2)-instance which tells us
that the final difference is an exp(\z) variate.

Figure 4 shows the result of this analysis on the input
(1,1,1,1), our original problem with n = 4. We have to
explore the tree that branches according to the position
that is taken by the new number inserted in the shortened
list. The numbers written on the edges of the tree are the
probabilities for the corresponding transition. Note that
we have combined the two branches emerging from the
root that both lead to a (2,2, 1)-configuration into a single
one by adding their probabilities. In the end we get

for the probability density function (pdf) of Ly. In general,
the pdf of L,, is a sum of exponentials,

pn(x) = Z a,(cn)k e ke (14)
&

where a,(cn) is the probability of LDM returning an exp(k)-

variate. For small values of n, these probabilities can be
calculated by expanding the recursions explicitly (Tab. 1),
but for larger values of n this approach is prohibitive due
the exponential growth of the number K(n) of branches
that have to be explored.
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Table 1. Coefficients a,(c") in (14).

k\n | 4 5 6 7
11 2 1 4L a9 131
3 24 120 180 2520
9 | I 1 5 1 527
3 6 18 3456
3 7 7 1073 3079
24 72 4320 38880
4 ETR 1229
180 720 5600
5 L 53 149
18 360 2100
6 7 486359
72 5443200
7 161 343
4320 4320
8 1 L
135 144
9 26083
604800
859
10 77760
941
11 155520
1
12 1050
1
13 1800

Alternatively we can explore the tree of A-tuples by
walking it randomly. Given a tuple (A1 ..., \;), we gen-
erate a random integer 1 < k < n — 1 with probability

¢ A
pezo =m0

and using this random k we generate a new tuple of size
n — 1 according to equations (11) or (13). This process is
iterated until the tuple size is two, and the final value of
\s is the parameter for the statistics of L. The probability
density of Aa/E [A2] is shown in Figure 5. Again the data
collapse corroborates the claim that the statistics of LDM
is dominated by a single scale.

4 Rate equation

We can turn the exact recursions from Section 3 into a
set of rate equations for the time-evolution of the average
A-tuple. Let A! denote the value of \; after ¢ iterations,
such that

(AL, ML) = (AP ASFL AL ) L (16)

As explained in Section 3, at “time” ¢t a number k, 1 <
k <n —1—1tis chosen with probability
¢ 2
Py(k<t)= {1—Ha-—1w (E<n=1-i)
1 (=n—-1-1)
(17)
Depending on the choice of k, equations (11) and (13)
suggest that )\EH only takes on one of two possible values.
For 1 <i<n—t—1, these are

AN (i<k<n—t—1)
AIH—I — 7 n—t = = 18
! A (1<k<i) ’ (18)
whereas for i =n —t — 1, the two values are
AL (k=n—-t—-1)
At—l—l _ n—t . 19
notel M s 1<k<n—t-1) (19)
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Fig. 5. Probability density function of A2/E [A2].

We introduce the shorthand

1—1 /\t
Pi=1] w5 (20)
j=1 /\j + )‘n—t
for the probability of £ > i at iteration t. On average, the
evolution of A! is given by the rate equation

ANFL= X (=P + (M + L) PE, (21)

forall 1 <i<n—1-—t, and at the upper boundary

A - N o (L=PL )+ PE

n—(t+1 (22)

These equations are defined on the triangular domain 0 <
t<n-—1,1<1i<n—t. The initial conditions are
M0 =1

(1<i<n). (23)

As described in Section 3, the process terminates at ¢t =
n—2 with A% characterizing the exponential variate for
the final difference in LDM. Yet, equation (22) for t = n—2
implies A7~ = A7 72, reflecting the final, trivial differenc-
ing step, and it will prove conceptually advantageous to
focus on the asymptotic properties of /\?_1 instead.

Since the rate equation is an approximation to the ex-
act recursion, we need to check how accurate it is. We
have solved the rate equations (21-23) numerically up to
n =75 x 10%. Figure 8 shows

In (A7! (n+ 1))

2
In“n

from the rate equation versus 1/Inn. If A}~ were calcu-
lated as an average from the exact recursion, the previous
expression should be equal to

~InE [Ly)
In’n
from the direct simulation of LDM. Figure 8 shows this

quantity, too. Apparently the error introduced by approx-
imating the exact recursion by the rate equation vanishes
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Fig. 6. Contour plot on a logarithmic scale for the numerical
solution A! of the rate equations (21-23) at n = 256. The so-
lution is A\! ~ 1 throughout the entire lower triangle, and it in-
creases monotonically for increasing ¢ above that. The solution
rises by about a decade between each repeat of a band color.
Note the ever more-rapid alternation between narrowing and
widening bands, signifying regions of rapid gain interrupted
by extended plateaus. The regular banded structure along di-
agonals t — i = const justifies the similarity solution in equa-
tion (38). The only notable exceptions occur in asymptotically
diminishing regions near ¢ = 1 and t = n/2,3n/4, /8, .. ..

Table 2. Parameters for (51) used in Figure 8.

Z f F X' ERL,)™!
a1 144 145 122 ~1.24
co ~1.00 142 -3.06 -3.86
cs 072 1.01  1.23 1.55

for n — oo, and our conjecture is that the rate equa-
tion and the exact recursion are asymptotically equiva-
lent. Judging from our numerical studies below, see Ta-
ble 2, both asgmptotic series have a relative difference of
size Inlnn/In*(n).

The time to solve the rate equation numerically scales
like O (n?), so it is actually more efficient to simulate
LDM directly, not least because the sampling for the latter
can be done efficiently on a parallel machine. For analytic
approaches, however, the rate equation is more convenient.
The initial probabilities decay exponentially,

(24)

which implies that only the first values A1, Aa, ... increase.
Everywhere else, P; is essentially zero, and those entries
will not increase until the first term of (21) has copied the
values from the low-index boundary. Hence we expect a
“wavefront” of increased A-values to travel with a velocity
of one index per time step toward the upper boundary,
which in turn travels with the same velocity towards the
lower boundary. As can be seen from Figure 6, this trav-
eling wavefronts of increasing heights are a hallmark of
the rate equation for all times ¢t. We will use this intuitive
picture for an Ansatz to analyze both the exact recursion
and the rate equation in the next two sections.

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

Fig. 7. Proof of the Fibonacci recursion: The number of dif-
ferent paths from the leftmost point to the rightmost point in
the triangle for n is the sum of the number of paths in the
corresponding triangle of size [n/2] (top) plus the number of
paths in the triangle of size n — 1 (bottom).

0.72 ' ' ' =

0.71% N
§ o rate eq.
= LDM
¢ F(n) (Fibonacci)
— f(n) (cont. limit)

070,

n

e 2 2

[} (o)) D

~ o0 =
T T T

In[Z(n+1)] / In*

(=]

(=

=
T

0.651

0.64 -

. | . ! . !
0'630 0.05 0.1

1/In(n)
Fig. 8. Four models of LDM: Direct simulation (Z =
1/E[n Ly]), rate equation (Z = A?™'), the Fibonacci model
Z = F(n) from (29) and the similarity solution Z = f(n) of
the continuous rate equation, given by (49). The dashed line
represents (50). All dotted lines are numerical fits of the type
(51).

5 Fibonacci model

Both the exact recursion and the rate equations yield

AT =M+, (25)
for the lower boundary that we are ultimately interested
in. This recursion connects the lower and the upper bound-
aries at i = 1 and at ¢« = n — t. Unfortunately, A\l _;
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depends in a complicated way on entries of the A-tuple
at different times and different places. However, Figure 6
suggests a similarity Ansatz

A= N8, (26)
which makes the upper boundary readily available:
NFU =M A0 (0<t<n—1
1 , 1 1 ( — ) (27)
A =1 (t<0).

Note that we have extended the initial conditions ! = 1
to hold for all negative times, too.

It turns out that one can express the final value A}~
of this recursion in terms of the corresponding values in
smaller systems, which leads to a simple recursion in n. To
derive this recursion it is convenient to visualize (27) in
terms of paths in a right-angled triangle A,, (Fig. 7). The
hypotenuse of A,, represents ¢ and ranges from —n + 1
to n — 1, the height is n — 1. Let us discuss the basic
mechanism for the example n = 8. The final recursion
reads

A=A+,

and the two terms on the right hand side correspond to two
paths: one that connects 6 with 7 along the hypotenuse,
the other connects 5 with 7 along the path that is “re-
flected” at the right leg of Ag. In our case a reflected
path moves diagonally upward until it touches the right
leg above point 7. From there it moves downward to point
1+ 1. This peculiar “law of refraction” implies that only
every second point of the left half of the hypotenuse is
connected to the right half by a reflected path.

We can apply the recursion again and write

AT=A0+ A
= A7+ A+ AT+ AL

Here we have connected 6 with 5 along the hypotenuse
and with 3 along a reflected path, and similarly for 5. We
iterate this path finding process until all paths end on the
left half of the hypotenuse (negative t). Here the paths col-
lect the initial values A = 1, hence \] equals the number
of different paths that connect the points —7,—5,...,—1
to the point 7 on the hypotenuse. Instead of considering
each paths that starts on the left half of the hypotenuse
separately we let all paths start in the leftmost point —7.
The rule for path finding then is: if you are on an even
index, move one unit to the right. If you are on an odd
index, there are two branches: one to the right, the other
45 degrees upward and reflected down to the hypotenuse.
Obviously, A equals the number of different paths that
connects the leftmost point of Ag to the rightmost point
according to this rules. Let 7,,(i) denote the number of
paths that connect the point ¢ with n — 1 in A,,. Then we
have
To(—n+1) =771

Now, starting at —n+1, we have two choices: move upward
for a reflection that will take us to point 1 or move along
the hypotenuse to point —n + 3:

To(—n+1) =T,(1) + Tpo(—n +3).
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As we can see in Figure 7 (top), the number of paths from
1 to n—1 is exactly the same as the total number of paths
in A, /. Hence

T,(1) = Ty jo(—n/2+ 1),

Similarly, the number of paths from —n—+3 to n—1 equals
the total number of paths in a slightly smaller triangle, as
can be seen in Figure 7 (bottom). Hence we have

To(—n+3)=Th_1(—n+2),
and all three equations yield
To(—n+1) =T, 2(—n/2+ 1) + T 1 (—n +2).

The derivation of a corresponding equation for odd values
of n is straightforward. If we define

F(n):=Tau(-n+1) =1 (28)

the recursion for 7;, translates into the Fibonacci like re-
cursion

F(n) = F(n—1)+ F([n/2])
F1)=1 (29)
where [z] refers to the integer part of x. The resulting se-
quence is known as A033485 in [24]. The generating func-
tion g(z) = >, F(n) 2™ satisfies the functional equation

9(2) (1= 2) = 2+ (1 +2) g(2?), (30)
and is given by
1 (1—2)71t B
9(2) = 5 <—sz0<1 s 1) SN

F(n) can be evaluated numerically for values of n that
are larger than the values feasible for simulations of LDM
or for solving the rate equation. The bottleneck for cal-
culating F'(n) is memory, not CPU time, since n/2 values
must be stored to get F(n). With 3 GByte of memory, we
managed to calculate F(n) for n < 6 x 10%. We will derive
the asymptotics of F(n) in the next section.

Figure 8 shows F'(n) within the same scaling as the
simulations of LDM and the numerical solution of the rate
equation. Apparently the similarity Ansatz does not cap-
ture the full complexity of the LDM algorithm or the rate
equation. Yet it yields a very similar qualitative behavior.
And in the next section we will show that

In F(n) 1

li —_— = . 32
nl—{go ]n2 n 2In2 ( )

6 Continuum limit

To analyze the rate equations (21-23), it is convenient to
consider the continuum limit for n — oco. Asymptotically,
a continuum solution may differ from the discrete problem
in corrections of order 1/n. As we will see, such corrections
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are inaccessible, as the asymptotic expansion is a series in
terms of 1/1In(n).
We rewrite equation (21) in terms of discrete differences,

A=A = = (= X)X+ X)) P (33)

Setting
t=sn(0<s<1),
i=azn(0<z<1-3s), (34)
A =y(z,s),
we obtain for large n
1170 0 0
w ot e e =118 | Fonten) 5159
(35)
where we have set
P! — II(z,s) = exp {n/ d¢ In a(f,s)} (36)
0
with
alz, s) = y(z, ) 1. (37)

y(x, S) +y(l—s, S) =

The left-hand side of equation (35), as well as the numeri-
cal solution of the full rate equations (21-23) displayed in
Figure 6, again suggest a similarity Ansatz

y(z,s) =y(s —x). (38)
This Ansatz yields immediately for equation (35):
1
0=1I(x,8) |——~'(s—z)+~v(2s—1)]| . (39)
n

For almost all x > 0, the right-hand side vanishes by virtue
of II(x,s) — 0, as indicated by equation (36) for o < 1
and n — oo. Correspondingly, IT(x = 1 — s,s) = 0 at the
upper boundary, which justifies the similarity solution for
the continuum limit of equation (22). Yet, IT(x = 0,s) = 1
for all s, hence we are left with

1

- v'(s) =7(2s—1), (40)
which can be interpreted as the continuous version of (27).
From the initial conditions of the discrete problem in (23)
it is clear that y(z,0) = 1. For the similarity solution, this
implies that

v(s) =1, (-1 <s<0). (41)
Integrating (40), we formally obtain
W) =10+ n [ dre-n. @)
0

Thus, we can evaluate the integral for 0 < s < % to get

1
<s< - ).
<0—8_2>

v(s) =1+ ns, (43)
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We can continue this process for L < g< %, ie., 0 <

2
2s — 1 < &, exactly the domain of validity of (43), to
obtain

o(s) 27(0)+n/0§d§7(2€— 1)+n/;d€7(2€— D,

2
n 2 1 3
e _ — _< <_ .
1+ns+4(25 1) (2_5_4) (44)

The emergent pattern is best represented by defining

Yi(s) = v(s), (1- 21k <5 <1 - 2_7“) , (45)

for k =0,1,2,..., where equations (41-44) represent k =
0, 1 and 2. In general, we find that

S

wae) = (=2 n [ demee-1), (40)
1-2-F
which is solved by
wm(s) =Y —— (2 s -2 +1)’ . @7)
=0 j! 2(2)

For any n, we are interested in v(s — 1) ~ limy_,_1 A},
hence

. _ — nl
FY(]‘) = khm Tk (1 -2 k) = Z ) (J) ’ (48)
which concludes our solution of (40). The sum for (1)
still depends on n, hence we define

=3

J:0j|2

(49)

Now f(n) can be evaluated numerically for very large val-
ues of n. Figure 8 shows the result for n < 22000, Don’t try
this at home unless you have a computer algebra system.
Interestingly, In f(n)/In® n asymptotically approaches a
value that is extremely close to 1/21In2. In fact, an asymp-
totic analysis (see Appendix) reveals

nf(n)(n+1)] 1 1 (Inln2+1 3
InZn ~ 2In2 H( In2 +§)
1 (In2+4Inn2 In*In2
ln2n< 8 22 )
Inlnn 1 Inlnn  In®lnn 1
WE_ 1n2n 1n2n 2In2’
(50)

which is the dashed line in Figure 8. The dotted lines
are numerical least square fits of the Inlnn terms of this
scaling, i.e., fits of the form

In[Z(n)(n+1)] 1 1 (Inln2+1 3
7 = 22 H( 2 +§)
1 In2+4nn2 In*ln2
n%n < 8 ~ 2In2 )
Inlnn Inlnn In?Inn
mn " In%n “ In®n -
(51)
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with values for ¢; as shown shown in Table 2. Note that
the series (49) is a solution of (40) and the first terms of
the asymptotic expansion (50) have been derived indepen-
dently in the context of dynamical systems [25].

7 Conclusion

The numerical data supports the claim that the complete
statistics of LDM is dominated by a single scale ~ n=¢1""
not just the expectation as described in (2). The avail-
able data is not sufficient to pin down the precise asymp-
totic scaling, however. In fact a naive extrapolation of
the available data even contradicts the known asymptotic
bound (3). With its O (nInn) complexity, LDM is a very
efficient algorithm, but probing the asymptotics requires
Inn to be large. This discrepancy of scales eliminates sim-
ulations as a means to study the asymptotics of LDM and
calls for alternative approaches.

We have taken a step in the direction of a rigorous
asymptotic analysis by mapping the differencing algo-
rithm onto a rate equation. The structure seen in the evo-
lution of this rate equation (Fig. 6) suggests a similarity
Ansatz (26). With the help of this Ansatz we could reduce
the exact recursion in A-space to the Fibonacci model (29).
The asymptotics of this model can be calculated, and it
agrees with (2) and (3). The same Ansatz plugged into the
rate equation even allows us to calculate the first terms
of an asymptotic expansion (50). Although our Ansatz
does not yield a proof, the extracted asymptotic behavior
satisfies all previous constraints and provides a consistent
interpretation of the numerical results. Hence, our rate
equations pave the way for further systematic investiga-
tions.

We appreciate stimulating discussions George E. Hentschel
and Cris Moore. S.M. enjoyed the hospitality of the Cherry
L. Emerson Center for Scientific Computation at Emory Uni-
versity, where part of this work was done. Most simulations
were run on the Linux-Cluster TINA at Magdeburg University.
S.M. was sponsored by the European Community’s FP6 Infor-
mation Society Technologies programme, contract IST-001935,
EVERGROW.

Appendix A: Asymptotic analysis

To evaluate the series (49) we apply Laplace’s saddle-
point method for sums as described on p. 304 of refer-
ence [26]. For

nJ

~ 120)

) — 0%
a; = e

the saddle point is determined by D¢; = ¢; — ¢;—1 = 0,
ie., 0= Dln(a;) =In(a;/a;_1), or

aj n

1= (A1)

a1 j2iL
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Hence, we obtain a moving (n-dependent) saddle point at

(fg) 1
Inn 7

Inn In (11?]—721)

~— 1
In2 In2 Tt

i A2
Jo In2lnn (A.2)
including terms to the order needed to determine f(n) up
to the correct prefactor. We keep the 1/ In(n)-corrections,
since ¢; contains terms like joIn(n). In particular, it is

(i1
@zjlnn—lnj!—j(]T)lnl (A.3)

As the saddle point jj is large for large n, we can replace
j! by its Stirling-series [26]. Then, we expand around the
saddle point by substituting j = jo+m, keeping only terms
to 2nd order in n and those that are non-vanishing for
n — oco. We find

In’n 1 In2
Pio+n ~ Gy — 5 0(2M) — =0l + 1) +C(n),

with log-polynomial corrections

Cln) ~— oo [m(ill_g) _1_11172}
(A.4)
|z (ay) ™ ()|

We finally obtain for the asymptotic expansion of (50):

fo~ [ "y oxp (650 1a)

2% In?n
~ - . A.
mexp{2ln2+C(n)} (A.5)
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