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Insects are graceful and varied locomotors – flying, darting, and hovering with

apparent ease and sophistication. Accordingly, their abilities have long engen-

dered the curiosity of scientists and the envy of aerospace engineers. This the-

sis aims to shed light on some basic questions regarding the aerodynamics and

control of insects, primarily through the guise of studying the fruit fly Drosophila

melanogaster. Via these investigations, I attempt to elucidate some of the overar-

ching problems in biolocomotion regarding optimization of movements, control

of maneuvers, and the interaction between animals and their surrounding fluid.

Chapter 2 uses a quasi-steady model of intermediate Reynolds number aero-

dynamics to estimate the forces and torques experienced by an insect dur-

ing hovering flight and asks whether the observed kinematics are energy-

minimizing. Since insect flight is such a costly endeavor, it makes for an interest-

ing test case of the hypothesis that animals move in a manner which minimizes

metabolic cost.

The quantitative study of insect flight is currently a data-limited field, hence,

it is imperative to realize new methods for obtaining and digitizing flight se-

quences. Chapter 3 describes the Hull Reconstruction Motion Tracking (HRMT)

method, which takes three camera views of a freely flying fruit fly, and by us-

ing visual hull reconstruction and principal components analysis, automatically

tracks the insect body and wings both quickly and accurately.



Using the data generated from applying HRMT to experimentally recorded

movies, Chapter 4 analyzes the flight of ascending fruit flies. Having obtained

several flight sequences of flight in which the filmed insect is moving almost

straight upwards, we analyze the dynamics of how a steady-state ascending

velocity is achieved, and what control knobs a fly can use to adjust this state.

Additionally, we look at how fruit flies can quickly transition from one ascent

speed to another.

The optimization line of thought highlighted in Chapter 2 is extended in

Chapter 5, but is combined with some of the obtained experimental data from

our collaboration with Leif Ristroph and Itai Cohen. Here, we relate the con-

cept of optimization in locomotion to variations apparent within a population.

Through utilizing some of the methods from sloppy modeling, we explore the

idea of a fitness landscape for wing kinematics, and how that might effect the

spread of data observed in experiments.

Finally, chapters 6 and 7 investigate aspects of a model of falling plates at

intermediate Reynolds numbers which is used as an underpinning for much

of the work done here. Chapter 6 studies how the model transitions to chaos

through a period-doubling bifurcation, and Chapter 7 asks what type of flight

trajectories are possible if the system is driven by a rotational actuator.
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CHAPTER 1

OVERVIEW

When animals move, we pay attention. Whether gazing at a hawk soaring

through the air or a school of fish pulsing forward in a disorganized union or

a gazelle racing with reckless ferocity across an undulating plane (or, for that

matter, the lion pursuing it), animal locomotion garners not only our aesthetic

appreciation, but also our scientific curiosity. And not without merit – all of the

cases listed above are the result of complex interactions between the animals’

mechanics, senses, environment, physiology, and evolutionary history.

The field of biolocomotion aims to probe the nature of these interplays, ask-

ing questions which can provide general insights into organisms’ movement

and behavior. For instance, what role does energetics play in locomotion? Do

animals perform tasks in a manner which can be viewed as optimal in some

sense, or has evolution arrived at a solution which is more complicated? What

is the relationship between morphology and motion? What constraints do an

organism’s evolutionary ancestry place on its locomotion and what sorts of

adaptations do we observe? Also, how do animals make decisions about their

locomotion in often noisy, challenging environments? How do they use the

complicated, conflicting reports of sensory organs, prior experience, and inter-

individual interactions to induce a desired body motion? What types of neural

processing occur to allow for this all to happen?

Of course, these questions are plainly too broad to base a particular study or

to generate a testable hypothesis. Most animals move in some manner, so our

options limit us in a way. Often, the response of biological researchers to such

a dilemma is to appeal to Krogh’s principle [1], which states that ”For a large
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number of problems there will be some animal of choice on which it can be most

conveniently studied.” By looking into a particular, (relatively) convenient or-

ganism, it is possible to gain intuition and then abstract outward to understand

more general ideas. For this thesis, our ”animal of choice” will be flying insects,

and most often, the fruit fly Drosophila melanogaster. Through the lens of these

creatures’ flight kinematics and dynamics, many of the aforementioned ques-

tions are investigated via a combination of computation, analysis of simplied

models, and comparison to experimental data.

So why fruit flies? For starters, they are varied and effective locomotors,

able to hover, dodge and maneuver with an apparent effortlessness and ele-

gance. Accordingly, their flight has engendered much interest in the scientific

and engineering communities, attempting to both understand their aerial mech-

anisms [2–5] and to replicate their aerodynamic performance via engineering of

micro-air vehicles (MAVs) [6–9]. Additionally, a practical reason for studying

fruit flies in particular has been that they are obtained with relative ease, as they

are found and bred in many a genetics lab, and are manageable to maintain.

Also, since they are perhaps the most studied animal in scientific history [10,11],

intriguing possibilities exist for relating concepts and discoveries in genetics to

questions in biolocomotion.

Even given this insect as the primary subject of study, however, there of

course remain many different means through which one can investigate the

problems in which we are interested. On a most basic level, the studies in which

one can partake range from the realistic veracity of ”in the wild” biological sur-

veys [12–15] to the more controlled environment of observing animals in the

lab [16–25] to the the intuitive abstraction of physical modeling [26–33]. In phi-
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losophy, this thesis tends to lean more on the latter of these approaches (the

author, after all, is attempting to obtain a doctorate in physics), but aims not

to venture too far away from naturalistic verisimilitude by continuously com-

paring its modeling results to experimental data obtained from fruit flies in free

flight.

More specifically, the research content of this thesis opens in Chapter 2,

which asks if observed insect kinematics are energy-minimizing. This work

uses a quasi-steady model of intermediate Reynolds number aerodynamics to

estimate the forces and torques experienced by an insect during hovering flight.

Since insect flight is such a costly endeavor, it makes for an interesting test case

of the hypothesis that animals move in a manner which minimizes metabolic

cost.

Chapter 3 entails a description of the Hull Reconstruction Motion Tracking

(HRMT) method which I co-developed with Leif Ristroph and Attila Bergou.

This technique takes three camera views of a freely flying fruit fly, and by using

visual hull reconstruction [34] and principal components analysis [35], automat-

ically tracks the insect body and wings both quickly and accurately.

Using the data generated from applying HRMT to experimentally recorded

movies, Chapter 4 analyzes the flight of ascending fruit flies. Having obtained

several flight sequences of flight in which the filmed insect is moving almost

straight upwards, we analyze the dynamics of how a steady-state ascending

velocity is achieved, and what control knobs a fly can use to adjust this state.

Additionally, we look at how fruit flies can quickly transition from one ascent

speed to another.
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The optimization principle highlighted in Chapter 2 is extended in Chapter

5, but is combined with some of the obtained experimental data from our col-

laboration with Leif Ristroph and Itai Cohen. Here, we relate the concept of op-

timization in locomotion to variations apparent within a population. Through

utilizing some of the methods described in [36–39], we explore the idea of a

fitness landscape for wing kinematics, and how that might effect the spread of

data observed in experiments.

Chapters 6 and 7 investigate aspects of a model of falling plates at interme-

diate Reynolds numbers [40–42] which is used as an underpinning for much

of the work done here. Chapter 6 studies how the model transitions to chaos

through a period-doubling bifurcation, and Chapter 7 asks what type of flight

trajectories are possible if the system is driven by a rotational actuator.
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CHAPTER 2

ENERGY-MINIMIZING KINEMATICS IN HOVERING INSECT FLIGHT

2.1 Introduction1

Insect flight is a metabolically costly endeavor, requiring mass-specific oxygen

consumption rates which are about an order of magnitude higher than than

those measured in their terrestrially locomoting counterparts [43, 44]. Addi-

tionally, flying represents a 50-200 fold elevation from the basal metabolic rate

[45, 46]. Hovering flight is particularly costly, as there is no ambient wind to

aid in lift generation. Accordingly, a reasonable hypothesis is that insects move

their wings in a manner which minimizes the metabolic cost associated with

their motion. In this study, we test this hypothesis for the case of hovering flight

and examine its implications through modeling the fluid forces on an insect

wing and finding and analyzing the optimal kinematics of motion for a given

morphology. Specifically, we investigate the optimal kinematics for fruit fly

(Drosophila melanogaster), bumblebee (Bombus terrestris), and hawkmoth (Man-

duca sexta) morphologies. These insects range in mass by approximately three

orders of magnitude.

This idea of optimizing traits with respect to some cost function as means

of explaining animal behavior has generated much interest and controversy

amongst evolutionary biologists and biomechanists [47–60]. Much of the criti-

cism aimed at studying biomechanics problems in this manner states that given

the many functions of a living organism, it is unclear that a specific behavior can

1The work presented in this chapter originally appeared in Berman & Wang, J. Fluid Mech.,

582, 153-168 (2007).

5



be predicted by optimizing a single function. Moreover, even if such a function

can be defined, it is not clear that any new insight must necessarily emerge from

the study, as even a correctly predicted feature from optimization can be the re-

sult of an ignis fatuus emitted above the bog of evolution. However, for the case

of a hovering insect, the energetic demands associated with maintaining flight

make the power associated with generating a particular wing motion a natural

candidate for a cost function. This distinct relationship between form and func-

tion (wing kinematics and hovering ability) allows us to investigate whether

quantitative study can help to explain some common features in the observed

wing motions of a diverse set of insects.

In this study, we find and analyze the energy-minimizing kinematics for the

three insects mentioned above via a quasi-steady model of fluid forces. This

model is similar to the one used by [40–42] to study the dynamics of a free-

falling rigid plate. From this model, we calculate the average lift production

and power consumption over the course of a flapping cycle. Using a hybrid op-

timization algorithm that combines a genetic algorithm with a gradient-based

optimizer, we find the kinematics that minimize the power usage while still

producing enough lift to maintain hovering flight. Aspects of these kinemat-

ics are then compared to previously measured wing strokes. We also study

the sensitivity of the found optimal solutions to perturbations in various kine-

matic parameters to gain insight into why the optimal kinematics are at their

found values. Finally, we investigate why most insects use a single leading

edge throughout a flapping cycle, as opposed to alternating the leading edge

near the onset of each half-stroke.
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Figure 2.1: Angle definitions

2.2 Model of Insect Hovering

Here we describe our mathematical model for calculating the forces, torques,

and power consumption associated with insect flight, as well as the computa-

tional methods used to analyze it and determine the optimal kinematics.

2.2.1 Coordinate Definitions and Transformations

We assume that an insect’s wing is a rigid plate and is allowed to rotate along

each of its three Euler angles. That is, it can rotate azimuthally (φ), vertically

(θ), and can pitch about its radial axis (η). If z is the vertical direction, y is the

forward direction of the insect, and x is perpendicular to the forward direction

in the horizontal plane, then we have that
x

y

z

 =


r cos θ cos φ

r cos θ sin φ

r sin θ


.

(2.1)

This is visualized in Figure 2.1.
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As will be seen in Section 2.2.4, the equations for the aerodynamic forces

on a section of the wing become simplified if we view the system’s velocities

in terms of coordinates co-moving with the wing, x′ and y′ (Figure 2.1). This

transformation is achieved by writing the position of the wing slice in spherical

coordinates, and then rotating through the pitching angle, η . In matrix form,

this can be written as  x̂′

ŷ′

 = R1R2


x̂

ŷ

ẑ


,

(2.2)

where

R1 =

 cos η sin η

− sin η cos η

 (2.3)

and

R2 =

 − sin φ cos φ 0

sin θ cos φ sin θ sin φ − cos θ


.

(2.4)

Using this transformation and differentiating with respect to time, we have

vx′ = r(φ̇ cos θ cos η − θ̇ sin η) (2.5)

vy′ = r(−θ̇ cos η − φ̇ cos θ sin η) (2.6)

ax′ = r([φ̈ cos θ − θ̇(η̇ + φ̇ sin θ)] cos η − (θ̈ + η̇φ̇ cos θ) sin η) (2.7)

ay′ = r([θ̇(η̇ + φ̇ sin θ) − φ̈ cos θ] sin η − (θ̈ + η̇φ̇ cos θ) cos η), (2.8)

where vi and ai are the velocity and the acceleration of the wing in direction i,

and r is the distance along the radius from the wing’s base.
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2.2.2 Wing Geometry

For simplicity, the wing cross-section along the chord is assumed to be elliptical,

with semi-minor axis, b, which represents the wing thickness. The chord length,

c(r), of the wing is assumed to vary like a half-ellipse along the wing radius. This

is similar to the assumption made in [61]. Hence, the chord length as a function

of radius is given by

c(r) =
4c̄
π

√
1 −

r2

R2 , (2.9)

where c̄ is the mean chord length of a wing and R is the wing’s base-to-tip ra-

dius. We assume that b � c̄. Morphological values used in this study were taken

from [62] for the fruit fly, [63] for the bumblebee, and [64] for the hawkmoth.

2.2.3 Wing Kinematics

Drawing upon available kinematic data from prior empirical studies [3, 25, 62–

65], the flapping motion of hovering flight is parameterized specifically in order

to observe the effects of the rotation speed and relative phases of the wing’s

pitch and reversal, as well as the frequency and amplitude of the motion in the

three angular degrees of freedom described in Section 2.2.1.

The azimuthal coordinate, φ(t), is given by a smoothed triangular waveform,

φ(t) =
φm

sin−1 K
sin−1[K sin(2π f t)], (2.10)

where 0 < K < 1. In the limit where K → 0, φ(t) becomes sinusoidal, and in the

limit of K approaching 1, φ(t) is a triangular waveform (Figure 2.2). In effect, K

can be viewed as a measure of how rapidly the wing reverses direction. This

functional form was inspired by comparing the azimuthal kinematics between
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the experiments listed above, which often found a near-sinusoidal form, and

robotic wing experiments, which used a rounded triangular form [66].

The angle related to vertical displacement, θ(t), is described by a sinusoidal

oscillation,

θ(t) = θm cos(2πN f t + Φθ) + θ0, (2.11)

where N is either 1 or 2. N = 1 corresponds to one vertical oscillation per flap-

ping period, and N = 2 corresponds to a figure-8 motion.

Finally, the pitching coordinate, η(t), is described by a periodic hyperbolic

function,

η(t) =
ηm

tanh Cη

tanh[Cη sin(2π f t + Φη)] + η0. (2.12)

As Cη approaches 0, η(t) becomes sinusoidal, and as Cη → ∞, η(t) tends towards

a step function (Figure 2.2). Hence, the value of Cη is inversely related to the

duration of wing pitch reversal.

Between Equations 2.10-2.12, there are a total of 11 parameters which need

to be fixed to describe a wing stroke (Table 2.1). Additionally, we assume that

the motions of wings are symmetrical about the body. Despite the fact that this

parameterization only looks at a subspace of all possible periodic functions, a

wide range of kinematics are still available to the insect, as seen in Figure 2.3.
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Figure 2.2: Dependence of φ(t) and η(t) on K and Cη

Figure 2.3: A selection of possible wing kinematics. The lines represent a wing
chord cross-section, and the dots are placed on the same edge of the wing
throughout the stroke.
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Table 2.1: Table of independent model parameters and their constraints
Description Min Max

f Frequency 0 ∞

φm Azimuthal Amplitude 0 π/2
θm Vertical Amplitude 0 π/2
ηm Pitching Amplitude 0 π
θ0 Vertical Offset θm − π/2 π/2 − θm

η0 Pitching Offset ηm − π π − ηm

K Affects the Shape of φ(t) 0 1
Cη Affects the Duration of Wing Rotation 0 ∞

N Multiplier of θ(t) Period 1 2
Φθ Vertical Phase Offset −π π
Φη Pitching Phase Offset −π π

2.2.4 Aerodynamic Force Model

The forces acting upon a wing are found via the model formulated to study the

motion of a free-falling plate [40–42] combined with a blade-element assump-

tion that the total force on the wing is the sum of forces on many infinitesimal

segments was used. This is a quasi-2D force model, as the instantaneous aerody-

namic forces for each blade-element are in the plane perpendicular to the wing

radius. The use of this model, as opposed to the vastly more computationally

costly method of direct numerical simulation via computational fluid dynamics,

is that it allows us to perform optimization procedures and detailed sensitivity

analyses which require many evaluations of the cost function in question.

Specifically, the forces and torque on an infinitesimal slice of the wing are

given by

dFx′ = [(
c(r)
c̄R

Mwing + m22)vy′ η̇ − ρ f Γvy′ − m11ax′]dr − dFν
x′ (2.13)

dFy′ = [−(
c(r)
c̄R

Mwing + m11)vx′ η̇ + ρ f Γvx′ − m22ay′]dr − dFν
y′ (2.14)

dτaero
η = [(m11 − m22)vx′vy′ − Iaη̈]dr − dτν, (2.15)
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where ai is the acceleration component of the wing in coordinate i, Mwing is the

mass of a wing, c(r) and c̄ are the chord length and average chord length as

defined in Equation 2.9, R is the wing radius, Γ is the circulation around the

wing, dFν
x′ , dFν

y′ , and dτν represent the viscous forces and torque on the wing

segment, m11, m22, and Ia are added mass terms, and ρ f is the density of the

surrounding fluid (taken to be 1.29 kg
m3 ). In the two force equations, the first term

is due to the fact that the forces are being measured in a rotating coordinate

frame, the second term is the force produced via circulation, the third term is an

added mass force, and the final term is the viscous dissipation.

More specifically, the circulation, viscosity, and added mass term are given

by

Γ = −
1
2

CT c(r)|~v| sin 2α +
1
2

CRc2(r)η̇ (2.16)

~Fν =
1
2
ρ f c(r)[CD(0) cos2 α + CD(

π

2
) sin2 α]|~v|〈vx′ , vy′〉dr (2.17)

dτν =
1

16
πρ f c4(r)[µ1 f + µ2|η̇|]η̇dr (2.18)

m11 =
1
4
πρ f b2 m22 =

1
4
πρ f c2(r) Ia =

1
128

πρ f [c2(r) + b2]2. (2.19)

Here, α is the angle of attack, CT and CR are, respectively, the translational and

rotational lift coefficients of the wing, CD(α) is the wing’s drag coefficient as a

function of the angle of attack, µ1 and µ2 are dimensionless coefficients related to

the viscosity of the fluid, and f is the flapping frequency. Values for CT , CD(0),

and CD(π2 ) for fruit fly and hawkmoth wings were taken from model flapping

experiments [67, 68]. Bumblebee measurements were taken from wind tunnel

measurements in [69]. Finally, it is also possible to obtain analytic expressions

for the components of the aerodynamic torques in the φ̂ and θ̂ directions through

τaero
i =

∫ r=R

r=0
(~r × ~dF)i. (2.20)
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For the calculations presented here, the torques and forces are analytically cal-

culated at 1000 evenly spaced time steps over a single period and average forces

and torques are arrived at via numerical integration.

The total lift on the wing is calculated by transforming the force vectors back

into the lab frame, in which ẑ is the unit vector in the vertical direction. Fz is

defined as the magnitude of the ẑ component of the total force. In order to make

a convenient, non-dimensional measure of the vertical force on an insect, we

will subsequently quantify an insect’s lift by L, which is defined as

L ≡
2〈Fz From One Wing〉

mg
, (2.21)

where m is the total weight of the insect and g = 9.81 m
s2 . Hence, if L ≥ 1, the

insect is able to produce enough lift to fly.

2.2.5 Modeling Power Consumption

Given a particular morphology and set of kinematics, we also wish to determine

the amount of power necessary to produce the desired wing motion. We assume

that the energetic cost to the insect is given by the time-averaged positive me-

chanical power output. This includes both the power necessary to overcome

aerodynamic drag and the inertial power required to accelerate the wing’s iner-

tia. Additionally, we assume that the cost for negative power is negligible and

that the effect of elastic storage, which has been measured to be on the order of

10%, is minimal [43].

We model the power consumption by assuming that motions are powered

by rotational actuators located at the base of the wing. Using the Eulerian equa-
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tions for the rotational motion of a rigid body and given the assumptions made

above, we have that the power output from rotating in angle i (pi) is given by

pi(t) = Ωi[IiΩ̇i −Ω jΩk(I j − Ik) − τaero
i ], (2.22)

where [i, j, k] is a cyclic permutation of [φ, θ, η], Ii is the moment of inertia when

rotating in i, and Ωi is the angular velocity in the respective angular coordinate.

The first two terms of (2.22) represent the power output the wing must over-

come in order to move in a vacuum, whereas the final term (using the definition

of τaero from Equations 2.15 and 2.20) is the additional power that must be added

in order to overcome aerodynamic forces. This equation implies perfect elastic

storage because any time pi < 0, it counts as negative power, meaning that when

the wing decelerates, energy is put into the system to be used later when it ac-

celerates. In order to only take positive power into account, we define Pi(t), the

positive power consumption necessary to move the wing in angle i, by

Pi(t) = Ξ[pi(t)] (2.23)

where Ξ(x) is defined by

Ξ(x) = xΘ(x), (2.24)

where Θ(x) is the Heaviside step function. The total mass-normalized power to

perform the wing motion, P∗, is then given by

P∗ =
Pφ + Pθ + Pη

insect mass
(2.25)

2.2.6 Model Validation

To test the compatibility of our model with results obtained from 3-D Navier-

Stokes simulations, we look at the cases of a fruit fly, a bumblebee, and a hawk-

moth flying with a horizontal stroke plane (θm = θ0 = 0) and a sinusoidally
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Table 2.2: Morphological and kinematic parameters used for optimization and
validation

Insect M(mg) Mwing(mg) R(mm) c̄(mm) Iwing(g · cm2)
Fruitfly .72 8.6 × 10−4 2.02 .67 .80 × 10−8

Bumblebee 175 .46 13.2 4.02 .17 × 10−3

Hawkmoth 1648 47 51.9 18.26 .184
Insect f (Hz) φm CT CD(0) CD(π/2)
Fruitfly 254 75o 1.833 .21 3.35
Bumblebee 116 58o 1.341 0 2.93
Hawkmoth 26.3 60.5o 1.678 .07 3.06

varying azimuthal angle (corresponding to K → 0 in (2.10)). Here, we utilize

the same morphological and kinematic data used in Sun & Du (2003) in or-

der to compare results (Table 2.2). As mentioned in Section 2.2.4, CT , CD(0),

and CD(π/2) are obtained by fitting lift and drag coefficient data observed in

previous empirical studies [63, 67, 68] to the forms CL(α) = CT sin(2α) and

CD(α) = CD(0) cos2 α+CD(π/2) sin2 α from Equations 2.16-2.17. It should be noted

that these measurements are based off of experiments involving dynamically

scaled models of the wings. As in [41], CR is set to be equal to π for all three in-

sects. αm, the mid-stroke angle of attack, is chosen to be identical to the values of

44o, 28o, and 32o for the fruit fly, bumblebee, and hawkmoth, respectively, used

in [70] for the sake of comparison. Finally, the non-dimensional viscous torque

parameters, µ1 and µ2, are both set to be equal to .2, which was taken from [42]

for cases at similar Reynolds numbers. The values of µ1 and µ2 have small ef-

fects on the total power, largely resulting from the fact that the power required

to overcome translational drag dominates the power required to overcome vis-

cous torque. They were both tested in the range [0, 20], resulting in less than 1%

change in both lift production and power consumption. Additionally, since [70]

assumes that the contribution of rotational power is negligible, Pη is taken to be

0 for this section of the paper only.
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Table 2.3: Comparison between quasi-steady and CFD (P∗ in units of W
kg )

Insect Quantity Quasi-Steady CFD (Sun & Du)
L 1.003 1.0

Fruitfly P∗ 24 30
L .95 1.0

Bumblebee P∗ 53 56
L 1.15 1.0

Hawkmoth P∗ 44 46

As seen in Table 2.3, the quasi-steady model agrees with the CFD calcula-

tions within approximately 15%. For the fruit fly, L is predicted almost exactly,

but the specific power, P∗, is slightly underestimated. In the case of the hawk-

moth, though, the specific power agrees well with the CFD calculation and the

amount of lift predicted is off by about 15%. For the bumblebee, both the lift

and power agree well with the CFD results.

2.2.7 Optimization

Given the model of forces and biomechanics described in the previous sections,

we optimize the kinematic parameters listed in Table 2.1 in order to minimize

the mass-specific power output of an insect (P∗) with a fixed morphology. This

is a nonlinear optimization process with the constraint that L ≥ 1. The problem

also is constrained by the physical limitations on the parameters listed in Table

2.1 (i.e. 0 ≤ φm ≤ π/2). This constrained optimization was converted into a more

tractable problem by defining the fitness, F, corresponding to parameter set Υ

by

F = P∗ + rΘ(1 − L) + s
∑
j∈Υ

|ζ j|

Max j −Min j
(2.26)
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where Θ(x) is the Heaviside step function, ζ j is the distance that parameter j

is outside the range specified by Max j and Min j given in Table 2.1, and r, s are

positive, real parameters which specify the strength of the penalty for violating

the lift and physical constraints, respectively. For the optimizations to follow,

we use r = s = 2000.

The procedure used here is a hybrid of the clustering genetic algorithm (GA)

used in [71] for other fluid dynamics applications and a Powell algorithm [72]

for local optimization at the end. The GA is started with a population of 200 pa-

rameter sets which are then evolved to be grouped in a globally minimal basin.

The initial sets are randomly chosen from all possible sets within the range al-

lowed by the values in Table 2.1 in order to avoid biasing. After narrowing

the population sufficiently, the simplex algorithm was used to relax each of the

parameter sets found via the GA to the local optimum of the basin. All of the

results to follow are validated by multiple runs of the algorithm, each of which

matched to within the tolerance set for the simplex algorithm (relative toler-

ances of 10−10 for the fitness function and all parameters).

2.3 Optimization Results

2.3.1 Optimized Kinematics

Wing kinematics, force production, and power consumption resulting from

the three optimizations are shown in Figure 2.4. Data from the optimizations

are listed in Tables 2.4 and 2.5. For the fruit fly, the optimal wing motion is

largely flat but slightly U-shaped, qualitatively similar to the observed kinemat-
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ics [25, 62]. Additionally, the force production and power consumption are rel-

atively constant along the mid-stroke, dropping off precipitously during wing

rotation. For both the bumblebee and hawkmoth motions, however, we see a

figure-8 motion with a larger stroke deviation (∼ 10o) and less constant forces

and powers during the mid-stroke. The latter effect is especially pronounced

for the power consumption.

Additionally, the frequencies of the optimized kinematics are similar to the

observed values. For the fruit fly, the optimized frequency of 234 Hz is within

the measured range of 210-260 Hz seen in empirical studies [25,62]. For the two

larger insects, although the optimized frequencies are slower than the observed

values, there still exists a reasonable agreement between the optimization and

empirical data. Speifically, the optimized hawkmoth motion has a frequency of

19 Hz (observed range: 24-26 Hz [64]), and the optimized bumblebee frequency

is 122 Hz (observed range: 145-155 Hz [63]).

Finally, for all three insects, the optimal motions are such that they produce

nearly exactly enough lift to hover, and not more (to within mg×10−15). Since ad-

ditional lift production requires an increase in power consumption, the inequal-

ity constraint placed upon the optimization acts more like an equality constraint

(L ≡ 1 as opposed to L ≥ 1). More will be said about this later.
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Table 2.4: Optimal parameters
Fruitfly Bumblebee Hawkmoth

f (Hz) 234 122 19
φm 90.0o 90.0o 90.0o

θm 3.1o 12.3o 8.1o

ηm 72.7o 87.0o 85.3o

θ0 −.65o 1.83o 2.67o

η0 90.0o −90.0o −90.0o

K .704 .925 .796
Cη 2.375 1.223 .711
N 2 2 2
Φθ −70.6o −102.2o −109.2o

Φη −72.4o −91.8o −97.9o

Table 2.5: Optimization results
Fruitfly Bumblebee Hawkmoth

L − 1 2.9 × 10−15 2.5 × 10−16 6.4 × 10−16

〈Fz〉/〈Drag〉rms 1.80 1.94 1.58
〈PAero〉/〈PInertial〉 3.74 .53 1.25
P∗( W

kg ) 14.6 39.2 26.6

2.3.2 Kinematics with Constrained Stroke Amplitudes

A possible explanation for the optimized frequencies being consistently lower

than the observed values lies within the fact that for all three optimizations,

the stroke amplitude, φm is at the maximum allowed value of 90o. Intuitively,

this makes sense, as a larger stroke amplitude allows for a larger percentage of

the period to be spent in the mid-stroke, where most of the lift is generated.

Hence, this additional generation of lift per period allows for a slower flapping

frequency. Insects, however, are limited by additional constraints which do not

exist in our model. In particular, the cost for moving the wing is most likely

a non-constant function of the stroke position (i.e. the cost required to move a

wing from φ = −15o to φ = 15o is different than the cost to move from φ = 60o
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Figure 2.4: Kinematics, forces, and powers for optimized wing motions. Top –
The motion of the wing chord with dots representing the wing’s leading edge.
The arrows are the instantaneous forces on the wing. Middle – The vertical
forces (solid line) and the magnitude of horizontal (dashed line) forces on the
wing over one flapping period. Bottom – The total power output (thick solid
line) and its three components: Pφ (thin solid line), Pθ (dashed red), and Pη (al-
ternating).

to φ = 90o). Hence, it is of interest to observe the wing motions that result from

optimizing the kinematics while keeping φm fixed to the empirically observed

value (75o for the fruit fly, 58o for the bumblebee, and 60.5o for the hawkmoth).

Results from this optimization are shown in Figure 2.5. For all three insects,

the decrease in φm results in a higher flapping frequency, as expected. Specifi-

cally, the frequencies resulting from this optimization with a constrained stroke

amplitude were 268 Hz for the fruit fly, 164 Hz for the bumblebee, and 24 Hz
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for the hawkmoth. Each of these values are within or only slightly above the

empirically observed range of frequencies. Also, it should be noted that al-

though small changes exist between the other stroke parameters, the wing mo-

tions, forces, and powers resulting from optimizing with a constrained stroke

amplitude do not differ qualitatively from the non-constrained case. In particu-

lar, for the case of the hawkmoth (Figure 2.6), we see good agreement between

the optimized solution and the wing stroke empirically observed by [64]. The

primary disagreements between the optimized and the observed strokes occur

due to the lack of asymmetry in our kinematic equations. However, for all three

angles, there is quantitative agreement for the amplitudes, phases, as well as the

frequency, of the motion.

2.4 Sensitivity of Optimal Solutions

Given the optimized kinematics presented in Figure 2.4 and Table 2.4, we now

investigate the effects of perturbing various parameters on their lift and power

production. This is done to gain insight into why these particular parameters

are optimal, as well as to understand more fully the structure of the optimal

basin. Figure 2.7 shows the dependence of L and P∗ for each of 9 parameters

for the hawkmoth, assuming all the other parameters remain constant at their

optimized values. Only the hawkmoth analyses are shown here due to the qual-

itative similarity exhibited between the sensitivity analyses of all three of the

insects studied here.

What we see from these single-variable sensitivity analyses is that although

interplay exists between the parameters, the location of the optimal value can

be explained by only three categories of behavior. The first category contains
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Figure 2.5: Kinematics, forces, and powers for optimized wing motions with
constrained φm (layout is the same as in Figure 2.4).

Figure 2.6: Comparison between optimized (solid line) hawkmoth hovering
kinematics and observed data (dots) from Willmott & Ellington, J. Exp. Bio.,
1997.
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parameters where a conflict between lift production and power consumption

affects the optimal value. These three parameters (φm, θm, and ηm, Figure 2.7A-

C) are the amplitudes in the three angular degrees of freedom. For the first two

cases of φm and θm, an increased amplitude corresponds with more lift produc-

tion, but also results in strokes which require more power. Hence, given our

optimization’s constraint that L ≥ 1, the optimal values for these parameters

will be set by finding the minimal value where L = 1. This helps to explain

the result in Section 2.3.1 where the inequality constraint of our optimization

becomes an equality constraint. Any deviation from the manifold where L = 1

would result in either a violation of the lift constraint or an increase in power

consumption. Similarly, for ηm, we see that for large values of the amplitude

(corresponding to small mid-stroke angles of attack), both the lift and power

decrease monotonically. Hence, the optimal value of ηm is the largest value such

that the lift constraint is met.

The second category contains parameters where the optimized value is at or

near the global minimum with respect to P∗ (namely, η0, Cη, Φη, and K, Figure

2.7D-G). Variations away from the optimum in these parameters tend to cause

significant increases in power consumption. The exception to this is K, but the

optimal value is the global minimum in P∗ due to the relative flatness of the

dependence of L on the parameter. It also should be noted that all four of these

parameters are directly related to the speed and phase of wing rotation.

The final category of parameters are those where L is maximized irrespective

of power consumption (θ0 and Φθ, Figure 2.7H-I). For these parameters, both

related to θ(t), the relatively small effect these parameters have on P∗ gives more

importance to providing a maximal amount of lift.
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Figure 2.7: Single parameter sensitivity analyses for hawkmoth. The solid lines
represent show L as a function of the given parameter, and the dashed lines
represent the variation of P∗. The alternating vertical lines indicate the position
of the optimal solution for the parameter in question.

2.5 Rotational Power and Passive Wing Rotation

An interesting feature of the optimized kinematics is that the cost to pitch the

wing corresponds to only a small fraction of the total power consumption (1.4%

for the fruit fly, 4.5% for the bumblebee, and 5.6% for the hawkmoth). In particu-

lar, the optimal kinematics are such that the stroke maintains a constant leading

edge throughout a flapping period, as opposed to switching the leading edge
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during wing rotation (Figure 2.8). This observation matches empirically ob-

served results for nearly all insects. Previously, the use of a single leading edge

was assumed to occur for structural (as opposed to aerodynamic) reasons, as the

leading edge of the wing must be relatively thick compared to the trailing edge,

since the additional fluid forces which occur at the trailing edge lead to greater

stress on that portion of the wing [73]. Hence, a wing can be lighter if only one

of its edges needs to be made of the thicker material that a leading-edge side

requires. Our model, however, assumes a symmetry between the two edges of

the wing. Hence, the fact that the wing keeps the same leading edge through

the optimization implies that there is another reason for this rotation. What

appears to occur is a passive-dynamic relationship between the inertial forces

required to flip the wing over and the fluid forces acting on the wing during

rotation. This effect is seen in Figure 2.7D, where both maximum lift production

and the minimum power consumption occur at values where the stroke main-

tains a constant leading edge (η0 = ±π/2). Conversely, the lift is minimized and

the power maximized at η0 = 0, corresponding to an alternating leading edge.

The sensitivity analysis, however, is not a full explanation for the optimal

solution using a single leading edge, as the interplay between different parame-

ters may allow for more efficient strokes with alternating leading edges. To gain

a better understanding, we run the same optimization described in Section 2.2.7

but with the additional constraint that the leading edge must switch at some

point during the stroke. In other words, for every flapping period, there exist

times t1 and t2 such that ~v(t1) · ~c(t1) < 0 < ~v(t2) · ~c(t2) where ~v(t) is the velocity

vector at time t and ~c(t) points in the direction of the chord.

Performing this optimization (Figure 2.9), we observe that maintaining a

constant leading edge results from the interplay between inertial and aerody-
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Figure 2.8: Examples of wing kinematics with differing wing rotation strategies

namic powers. Specifically, the two powers largely cancel each other for the

case of a single leading edge, whereas they are additive in the case of the optimal

kinematics for alternating edges. The amount of power necessary for rotation

increases by factors of 190%, 88%, and 76% for fruit fly, bumblebee, and hawk-

moth, respectively, when an alternating leading edge is mandated. These dif-

ferences in efficiency can be explained by the timing of the aerodynamic forces

acting on the wing. For the case of using a single leading edge, the aerodynamic

torque facilitates the turning at the onset of rotation – the fluid is doing work

on the wing. Then, during the second half of the wing rotation, the aerody-

namic and inertial forces are again antithetical to each other, the relatively weak

aerodynamic force slightly aiding the wing rotation’s deceleration into the mid-

stroke. For the case of alternating leading edges, however, the wing must do

work on the fluid while the wing attempts to accelerate and does work on the

fluid while it decelerates. An energetic benefit exists on neither the onset nor the

resolution of rotation, resulting in the increased power consumption observed

in Figure 2.9.

2.6 Summary

In this chapter, we have found and analyzed the optimal wing kinematics for

the hovering flight of three insects of widely varying masses through the use

of a quasi-steady model of fluid forces on a thin plate and a hybrid optimizing
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Figure 2.9: Rotational power output for optimized wing motions. Displays the
rotational power necessary to pitch the wing for an optimized stroke with either
a single (top) or alternating (bottom) leading edge for the three insects (from left
to right: fruit fly, bumblebee, and hawkmoth). The thick solid line is the total ro-
tational power consumption (Pη), the thin solid line represents the aerodynamic
power, and the dashed line is the inertial power. The kinematics from the top
three plots are identical to those in Figure 2.4, whereas the kinematics in the
bottom plots were generated by running the optimization procedure with the
added caveat that the leading edge forced to switch at some point during the
stroke.

algorithm. These solutions minimize power consumption while still producing

enough lift to sustain hovering flight. We found that these kinematics capture

several qualitative aspects of observed flight and predict the observed flapping

frequencies well. These agreements become more striking if we fix a parameter

by constraining the stroke amplitude, φm, to its empirically observed value. We

also have performed sensitivity analyses of the optimal solutions. From these

analyses, we determined the import and effects of varying the kinematic pa-

rameters in our model. Finally, we observed that the optimal motions used a

single leading edge throughout the stroke, as opposed to alternating edges dur-

ing wing rotation. Previously thought to occur for purely structural reasons,
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we found that maintaining a constant leading edge is advantageous due to an

interplay between inertial and aerodynamic power.

There, of course, are further extensions of the investigations described in

this chapter that are intriguing. One of these potential lines of inquiry is to ex-

plore the effect of the fitness landscape surrounding the optimal solution. More

specifically, one can ask whether the types of observed variations of wing kine-

matics in a population can be predicted by finding the compliant directions in

the parameter space. We shall say more about this later in Chapter 5.

Underlying any analysis of the landscape however, is the parameterization

used to probe the system. In this chapter, we have utilized a parameterization

of our Euler angles that allows for a wide range of possible wing strokes, but

eliminates the problem of singular kinematics (i.e. the wing flipping infinitely

quickly) that results from calculus of variation methods, as well as the existence

of copious local optima that arises from parameterizing the wing strokes via

a Fourier series. Additionally, the parameters used here are all directly relat-

able to meaningful physical quantities. Despite these benefits, however, there is

something slightly unsatisfying about eliminating wide swaths of wing stroke

space with a quiet flick of the wrist. Hence, it would be interesting to perform

a more thorough analysis as to how the results of the analysis depends on the

parameterization used.

Also possible is to utilize statistical methods, such as those performed in [74]

on C. elegans, to derive a more natural parameterization of the space of available

wing motions. In the cited study, long time series of observed worm motions

were found to be accurately represented as a linear combination of a small num-

ber of ”eigenworms,” hence providing an experimentally-derived description

of the organism’s motion. While the direct application of this type of approach
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to flying insects is currently data-limited, it provides an intriguing option for

future endeavors.

Lastly, recent work [27, 75] has suggested that the wing pitch for hovering

flight is only passively controlled. In other words, given a particular transla-

tional wing motion (φ(t) and θ(t)) and some set of morphological parameters,

the wing rotation angle (η(t)) is given by some differential equation. Accord-

ingly, a possible study would be to perform a similar optimization as done in

this chapter, but to prescribe only the stroke plane and stroke plane deviation

angles, allowing the wing rotation to occur according to the aforementioned

model. In this way, a more natural restriction of the parameterization might be

achieved, as the passive nature of the wing flipping could cause the optimiza-

tion algorithm to avoid the singularities of infinite rotation.

30



CHAPTER 3

HRMT: AUTOMATICALLY TRACKING INSECT KINEMATICS

THROUGH VISUAL HULL RECONSTRUCTION

3.1 Introduction1

Insects are capable of performing amazing maneuvers in flight, from a grace-

ful ascent to a dramatic escape to making a 180o turn in a manner of a few

wing beats. Despite this ability, though, the differences observed between wing

strokes are remarkably subtle – a change of only a view degrees in the angle of

attack can be the difference between hovering and the aforementioned violent

turn [75,76]. As a result, in order to study these creatures’ flights experimentally,

one needs a method of recording the insects wing kinematics with impressive

accuracy and high enough throughput to allow for statistical analysis. In addi-

tion, many behavioral studies of animals which co-opt methods from statistical

physics are data-hungry, again requiring large amounts of kinematics to be pro-

vided [74].

Therein lies the rub, however, as accurate insect flight data is quite difficult

to obtain. Until quite recently, almost all methods of tracking insects (or any

other animal, for that matter) in free-flight involved a large amount of manual

input [25, 77–79]. This basic idea of this is seen in Figure 3.1, which displays

a schematic of the manual tracking process. Essentially, what occurs is that a

model fly (in this case, consisting of three ellipsoids for the head, thorax, and

abdomen and two, thin elliptical plates for wings) is superimposed upon a set of

silhouettes generated from camera views. This model is then tweaked, usually
1Much of the work discussed in this chapter was originally presented in Ristroph, Berman,

Bergou, Wang, & Cohen, Automated hull reconstruction motion tracking (HRMT) applied to

sideways maneuvers of free-flying insects, J. Exp. Bio., 212, 1324-1335 (2009).
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by a bleary-eyed (under)graduate student, through manipulating its degrees of

freedom until it is within the observed shadows. After significant training, an

expert user can track a frame in about 2-3 minutes. Given a camera frame rate

of 8,000 Hz and a flapping frequency of about 250 Hz (typical for a fruit fly), it

takes about two days (no sleeping, bathroom breaks, etc.) of human tracking

time to finish one 30 stroke flight sequence.

Figure 3.1: Typical example of a manual-based tracker. Raw Images (top left)
are thresholded and a model fly is placed on top (the superposition is on the
bottom left and a rendering of the model insect is on the right). A human user
then adjusts the model until it coincides with the shadows.

Accordingly, better solutions need to be found. Ideally, a fully automated

method is desired so that data can be obtained without intense human labor.

This, as one might imagine, is far easier said than done. Perhaps the most well-

developed solution to this problem is to place markers at various positions on

the insect and then use methods from photogrammetry to track the fly [80].

Unfortunately, placing markers on the insect is problematic, as it is difficult to

perform consistently. More fundamentally, though, the lighting conditions for

most experiments are such that silhouettes are obtained (and not reflected flight)
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– meaning that we might not be able to distinguish the marker anyway. For

larger insects, such as hawkmoths, this method holds promise, though.

Another technique which has been used to track blowflies has been to place

search coils on the insect and find the position and orientation of the fly body

through induced currents on external coils [81]. Alas, this is not satisfactory for

our requirements either, as it only tracks the body (and not the wings). Also, the

method appears to be somewhat intrusive, perhaps affecting flight behavior.

Applied recently for tracking zebrafish and fruit flies [82,83], is to use a state-

space Bayesian statistics method which takes as an input a detailed model of the

insect morphology and a training set of data which is tracked a priori. While

this method is relatively automated, additional difficulties are posed, however.

First, the aforementioned detailed model needs to be readjusted for each differ-

ent insect tracked, introducing a somewhat hefty overhead for each flight se-

quence. Secondly, the observed errors for insect wing kinematics in this method

are quite large (≈17o for the angle of attack). Since flight maneuvers can be

caused by variations of only a few degrees, this level of error is unacceptable.

So why is designing an automated tracking algorithm so difficult? One way

to see this is shown in Figure 3.2. Take, for example, a sphere being viewed

by three orthogonally placed cameras. The silhouettes this object generates are

three circles of equal radius. Applying the inverse operation, however, we get

that there are an infinite number of possible solids which are consistent with

the shadows. This non-uniqueness proves to be a fundamental difficulty with

developing any automated tracker. In order to track an object from its shadows,

external geometric information is required.

The method we describe in the following sections alleviates some of the in-

herent difficulties in tracking from image shadows by taking the maximal vol-
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Figure 3.2: Demonstration of the non-uniqueness of volume given silhouettes.
In this simple example, we can see that the shadows produced by a sphere (three
circles) could produce infinitely many possible solids, including a solid of vol-
ume zero (three intersecting disks) and the maximal volume solid, the inter-
section of three perpendicular cylinders (a Steinmetz Solid, to be precise). The
latter of these is referred to as the visual hull of the shadows.

ume which is consistent with the silhouettes (deemed the object’s visual hull)

and using the geometric knowledge we possess about a fruit fly. As a result,

we have deemed this algorithm HRMT (Hull Reconstruction Motion Tracking).

We will first describe the experimental apparatus which obtains these images,

followed by a run-through of the tracking algorithm, and will finish with some

sample results.
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3.2 Experimental Apparatus

The apparatus used to perform our investigations is seen (in schematic form)

in Figure 3.3. Here, three high-speed cameras (Vision Research Phantom v7.1

CMOS digital cameras), filming at 8,000 frames/s with 512 × 512 resolution are

placed along orthogonal axes, resulting in a cubical intersection which serves

as the filming volume. This volume is aligned via the use of precision rails

mounted on an optical table. The size of the filming volume varies between

about 2-20 cm3, depending on the experiment in question.

Located about the filming volume is a plexiglass flight arena in which insects

can be placed. This portion of the apparatus is designed to be modular so that

differing experiments can be done. For example, in Chapter 4, two amendments

are added to the flight chamber to engender forms of ascending behavior. Ad-

ditionally, since fruit flies (our target of choice) are only about 3mm in length,

we magnify by placing an optical bellows (Nikon PB-5) and a zoom lens (Nikon

Macro-Nikkor 28-105mm) on each of the three cameras.

As the short exposure times, high magnification, and large depth of field all

limit the amount of light in our filming volume, we need to have accordingly

bright light sources to satiate the harsh desires of photon counting statistics. Our

particular strategy for ameliorating this is to backlight the region with red LEDs,

focused via a lens. The LEDs are a viable solution as they provide a great deal

of light without creating vast amounts of heat, which could affect the observed

flight sequences. Red is the color of choice here, as fruit flies cannot see at such

wavelengths [84]. As a result of this method of lighting, however, the images

we capture are silhouettes, since the cameras only see blockages in the light, as
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opposed to reflected light. As previously alluded to, this fact somewhat limits

one’s options when attempting to track these creatures. Our solution to this

dilemma will be described in the sections to follow, however.

Finally, we describe the triggering mechanism used to initiate recording in

the cameras. In order to reduce effects from near-wall flight, such as raised

legs or interface-affected aerodynamics, the filming region comprises only a

small portion of the flight enclosure (less than 1%). Hence, to improve our data

throughput, a laser-triggering mechanism is used. To be more concrete, this

apparatus (shown in Figure 3.3b) consists of two red HeNe laser beams imping-

ing on photodiodes. The radii of these beams are expanded (via a Galilean ex-

pander) such that they cover the entire filming region. The diodes are connected

to a coincidence circuit which triggers the cameras when an insect blocks both

laser signals.

All told, this apparatus provides the raw material for our tracking algorithm,

which shall be described in the remainder of this chapter.

3.3 Registration

The initial step for our tracker is to take the three orthogonal camera views and

to find the minimal bounding box which encloses the fly in each of them. This

data will be used to both align the cameras and to reduce the computer time re-

quired to reconstruct the hull. In order to find the bounding box, we first need

to threshold the fly silhouette from the gray background. This is done by man-

ually setting a threshold value; however, we find that the same threshold value

applies for all of the sequences we have tracked (i.e. it is a tweaked parameter,

but only needs tweaking once). As seen in Figure 3.1, this results in a crisp im-
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Figure 3.3: Experimental set-up. Part a shows the camera (C) arrangement fo-
cusing on a flight chamber (FC) via optical bellows (B) and zoom lenses (Z).
The filming region is lighted via red LEDs (S) focused through lenses (L). Part
b of the figure displays the triggering mechanism, in which the laser light (L)
comes upon a beam splitter (BS), a series of mirrors (M) and beam expanders
(BE) before crossing in the filming region and impinging on two photodiodes
(PD). When the intensity measured at the diodes varies beyonf a threshold, the
cameras initiate filming (figure by Leif Ristroph).
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Figure 3.4: Typical images from the experimental apparatus. The three stills
shown are simultaneous frames from the (left to right) XY, XZ, and YZ camera
views.

age with little noise on the edges. Given the thresholded image, calculating the

bounding box is simply a matter of finding the maximum and minimum pixel

values in each direction. Hence, performing this analysis for all three camera

views, we have two measurements for every one of the extremal values (xmin,

xmax, ymin, etc.).

We then can use the bounding boxes to fix the small errors remaining that

might have occurred since the cameras and the laser triggers were more recently

aligned. In essence, we scale and translate the bounding boxes in order to cor-

rect for misalignments in camera shift or zoom. For example, to register the

pixels along the vertical direction, we shift and scale the images from one of the

horizontally pointed cameras such that its vertical coordinate is consistent with

the image from the second horizontally pointed camera. The image from the

first image is vertically shifted such that the top of its bounding box is aligned

with the top of the bounding box from the reference view. We then stretch or

contract the first image to match the zoom of the second. This procedure is fur-

ther iterated to make corrections in the x and y directions. Typically, we find that

the images need to be scaled by less than 1% and scaled by less than 5 pixels to

achieve registration. Finally, in order to achieve consistent registration for each
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movie, we find the average shift and scaling values for the whole sequence, and

apply the resulting values to all of the images. This provides the raw material

on which our hull reconstruction works.

3.4 Construction of the Visual Hull

From the three aligned silhouettes, we now construct a visual hull [85] via a

method similar to that used in [34]. The visual hull of a set of silhouettes is

formally defined as the maximal volume which is exactly consistent with all of

the silhouettes. Moreover, it can be shown [34] that the object which formed

the observed silhouettes must be completely inside the hull. This implies that

given our three orthogonal camera views, the visual hull must give us a volume

which entirely encloses the fly.

There still remains, however, the task of constructing the hull from the data.

We achieve this via the Sparse Pixel Occupancy Test (SPOT) algorithm [34]. Es-

sentially, the concept behind this technique is to group the voxels of the space

we are interested, {vi jk}, into N × N × N cubes of voxels, each of which will be

deemed wi jk. This coarse-graining is done for two reasons. First, it reduces the

effects of getting false positives around the border of the hull – namely, the in-

clusion of voxels which are likely the result of thresholding noise. Secondly,

it increases the speed of the reconstruction, as the number of voxels that need

to be evaluated is cut by a factor of 2N (since processing time turn out to not

limit us here, however, this is truly a secondary concern). Given {wi jk}, the set

of coarse-grained voxels within the bounding box found in Section 3.3, and two

parameters, Q and Qε , we find the visual hull, H, as described in the pseudocode

below:
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H = ∅

for all w ∈ {wi jk} do

c = 0

for i = 1, ..,Q do

Select vi jk ∈ w at random

if vi jk is consistent with all silhouettes then

c→ c + 1

end if

end for

if c ≥ Qε then

H → H ∪ w

end if

end for

For our tracker, we use N = 2, Q = 8, and Qε = 5. Or, in other words, we

break the space into 2 × 2 × 2 cubes, sample all of the eight voxels from each

one, and if the majority of the non-coarse-grained voxels are consistent with

the silhouettes, we add the cube to the hull. When this algorithm finishes, our

hull reconstruction returns the cartesian coordinates of the centers of each of

the coarse-grained voxels which are later used to find the body position and

orientation vectors, as described in the remaining sections in this chapter. A

visualization of the hull reconstruction process can be seen in Figure 3.5.

40



(a)

(b)

Figure 3.5: Visualization of the hull reconstruction process. Three cookie-cutter-
like slices are taken through the filming volume, resulting in the 3D volume
displayed in the lower plot (visualizations by Attila Bergou).
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3.5 Clustering of the Body and Wings

GIven the collection of voxels attained through the method described in Section

3.4, we now wish to determine which voxels belong to the body, and which

voxels belong to each of the two wings. The is achieved by grouping the voxels

into minimal Euclidian clusters via the k-means algorithm [86]. Basically, given

a set of N points, ~xi, and a fixed number, k, of centroids, ~µ j, k-means finds the

locations of each ~µ j and assigns each ~xi to a centroid such that

C =

k∑
j=1

∑
~xi∈S j

||~xi − ~µ j||
2 (3.1)

is minimized. Here, S j is the set of all points assigned to the centroid µ j. The

most primitive version of this algorithm starts with some initial partition of the

data, S 0
1,..,k, then calculates an initial set of centroids, ~µ0

1,...,k, for each partition. The

set is then repartitioned such that each data point is assigned to the nearest cen-

troid, and then the process continues iteratively until a convergence criterion is

met. Improvements have been made on this relatively simple algorithm since it

was proposed, as the version described above has a tendency of getting trapped

in local minima. In particular, we use the MATLAB built-in kmeans function to

perform clustering on our data.

To separate the wings from the body, we perform the k-means algorithm

with k = 4 on our data2. The resulting clusters correspond to the anterior and

posterior region of the body, as well as the left and right wings. The two largest

clusters, which inevitably correspond to the anterior and posterior regions, are

then merged to form the body (see Figure 3.6). The centroids of the body and the

two wings are given by the centroids of their corresponding clusters of voxels.

2We use k = 4 instead of the more obvious choice of k = 3, as the latter configuration will

often group large portions of the body with the wings.
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(a)

(b)

(c)

Figure 3.6: Example of the clustering process. The initial hull (part a) is clustered
into 4 parts using the k-means algorithm (part b). The two largest clusters are
then combined to form the body (part c), leaving two wings and a body.

3.6 Determining Body Orientations

The final portion of the algorithm involves finding the nine angular degrees of

freedom for the body (the other three are given by the object centroids found

during clustering). Much of this process relies on Principal Component Anal-

ysis [35] (PCA), which finds the principle basis vectors of a given data set by

finding the eigenvectors of the data covariance matrix. For our tracker, we use

43



MATLAB’s built-in princomp function. Since both the body and the wings

have one principle axis which is significantly longer than the others (the roll

axis in the case of the body, and the span axis for the wings), finding the prin-

ciple component with the most variation along it provides a robust method for

calculating two of the three rotation angles for each object (to be described mo-

mentarily). For the roll angle of the body and wings, however, the particular

geometry of our visual hull confounds PCA, so more creative measures must

be taken. For an overview of the angle and orientation definitions used in this

section, see Figure 3.7.

For the initial step, we apply PCA to the cloud of body voxels. Since the

body is much longer than it is thick, the first principle component eigenvector

gives us the body’s roll unit vector, Â. From this vector, we find the body’s yaw

and pitch angles (ψ and β, respectively) can be found via

ψ = tan−1
( Ây

Âx

)
sign

(
ÂxÂy

)
(3.2)

and

β = sin−1(Âz), (3.3)

where Âx, Ây, and Âz are the x, y, and z (lab frame) components of the roll axis.

From here, all that remains to characterize the body orientation is to find

the roll angle, ρ. The most obvious method for achieving this would be to look

at the rotation of the second and third principle component eigenvectors about

Â. This, however, proves problematic, as the body is essentially cylindrical.

Moreover, the effect of occlusions being added to the visual hull outweighs any

small rotational anisotropy which exists. Instead, we use k-means clustering

(see Section 3.5) with k = 3, which separates the body into, roughly, a head,

thorax, and abdomen. We will denote the centroids of these three regions as ~xh,

~xt, and ~xa, respectively. These three points define the plane of bilateral symmetry
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for the body whose normal vector, ~n, is given by

~n = (~xh − ~xt) × (~xa − ~xt). (3.4)

Since we need a unit vector which is orthogonal to Â to compute the roll angle,

we define L̂ via

L̂ =
~n − (~n · Â)Â
||~n − (~n · Â)Â||

. (3.5)

Given all of this, we now can calculate the roll angle, ρ from

ρ = tan−1
( ||L̂ × ψ̂||

L̂ · ψ̂

)
(3.6)

where

ψ̂ =< − sinψ, cosψ, 0 > . (3.7)

One obvious limitation of (3.6) is that it only allows for roll angles between ±90

degrees. However, we have yet to observe an insect in any of our videos which

rolls by more than this amount.

3.7 Determining Wing Orientations

For the first two Euler angles describing the wing orientations, the process is

similar to that seen in Section 3.6. Initially, we apply PCA to each set of wing

voxels. Since the wing span is significantly longer than the other two principle

axes, we can use the first principle component to define the span vector, Ŝ . From

there, we can find the yaw and pitch (φ and θ) values for the wings via

φ = tan−1
( Ŝ y

Ŝ x

)
sign

(
Ŝ xŜ y

)
(3.8)

and

θ = sin−1(Ŝ z), (3.9)
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Figure 3.7: Angle orientation definitions (figure by Leif Ristroph).

where Ŝ x, Ŝ y, and Ŝ z are the x, y, and z components of the span axis.

Again, though, the problem remains that we cannot use the results of PCA

to obtain the final rotational angles for the two wings. Initially, this is somewhat

surprising, as the wings, being almost like thin plates, do not have the same

problem of cylindrical symmetry exhibited by the body. The difficulty arises

due to the fact that the visual hull of the wing is often augmented due to the

body occluding the areas directly above and below the wing. Hence, the wing

obtains a finite thickness which is often on a similar length scale to the chord

length – thus muddying the results for the second and third components of the

PCA. What we do, instead, is to take advantage of the particular geometry of the

wings’ visual hulls. Namely that near the mid-chord, the hull for a given wing

will look like a parallelogram. We assume the chord vector, Ĉ to be the upwards-

pointing unit vector in the direction of the longest diagonal of the parallelogram.

More formally, if Vw is the set of all wing voxels for one of the insect wings, we
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look at only Vmid, defined as

Vmid ≡ {~xi|~xi ∈ Vw & |(~xi − ~xc) · Ŝ | < ε}, (3.10)

where ~xc is the wing centroid (found via Section 3.5), and ε is a tolerance length,

set to be 2 pixels for our tracking algorithm. Having found this set, we find the

voxels, ~xi, ~x j, which satisfy

sup
~xi,~x j∈Vmid

||
(
~xi − (~xi · Ŝ )Ŝ

)
−

(
~x j − (~x j · Ŝ )Ŝ

)
|| (3.11)

as well as

~xi · ẑ ≥ ~x j · ẑ, (3.12)

where ẑ is the vertically-pointing unit vector. Defining ~q ≡ ~xi − ~x j, the chord unit

vector, Ĉ, is then given by

Ĉ =
~q − (~q · Ŝ )Ŝ
||~q − (~q · Ŝ )Ŝ ||

. (3.13)

Finally, we can calculate the wing roll angle (η) from

η = tan−1
( Ĉ · θ̂
Ĉ · φ̂

)
sign

(
(Ĉ · φ̂)(Ĉ · θ̂)

)
, (3.14)

where

φ̂ =< − sin φ, cos φ, 0 > (3.15)

and

θ̂ =< − cos φ sin θ,− sin φ sin θ, cos θ > . (3.16)

Effectively, this defines η as the angle Ĉ makes between the φ̂ and the θ̂ axes.

3.8 Results

Figures 3.8 - 3.10 show the results of applying HRMT to a typical flight sequence

obtained from our apparatus. This film, where the fruit fly in question ascends
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at a relatively slow rate of 3 cm/s, contains a little more than 34 wing beats of

data. At a rate of about one frame per 2 seconds, it takes HRMT about 40 min-

utes to complete the entire sequence (on a 2.4 GHz Intel Core 2 Duo processor

running Mac OS 10.5). At this point, it is worth noting that although the re-

sults section here will focus on this representative sequence alone for the sake

of expositional clarity, HRMT is capable of providing accurate tracking of insect

kinematics for a wide array of fruit fly movements, as will be shown in Chapter

4.

The left and right wing angular kinematics for the aforementioned flight

sequence are shown in Figure 3.9. Part (a) displays values of φ, θ, and η for

the whole sequence, whereas part (b) zooms-in on one wing stroke. Error bars

are obtained via a model-shadow reconstruction method. Using this technique

(fully described in [23]), we find that the error bars are approximately 2o for φ

and 3o for θ and η. As seen in previous studies [25, 62], we find the fruit fly

is employing a roughly sinusoidal oscillation in the azimuthal plane (φ). Since

the curve for θ(t) is at twice the frequency as the azimuthal oscillations, we find

that the fruit fly is using a figure-8 wing stroke. Finally, we observe that the

wing rotation angle something akin to a smoothed square wave (i.e. Equation

2.12) with mid-strokes of roughly constant angle followed by a relatively rapid

rotation about the wing’s leading edge during stroke reversal.

Lastly, Figure 3.10 exhibits the translational (part (a)) and rotational (part

(b)) dynamics of the insect body. In this particular movie, the insect is ascend-

ing and traversing in the −x direction (relatively slowly) while making a slight

dodge in the y direction. In all of the plots (although more apparent in the an-

gular position curves), there exist oscillations that are superimposed upon the

actual trajectory. These are artifacts of the tracking process, resulting from the
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cyclical nature of occlusions caused by the wings on the body. For example,

when the wings are in front of the body, a beer-gut-like growth is added to the

front of the body, as the forward pitch of the body conspires with the wings

to cause a protrusion on the visual hull. A similar result occurs at the rear of

the insect when the wings are near their maximal posterior position. Since the

clustering algorithm clusters these points onto the body, this occlusional cycle

causes the observed oscillations in the body orientations. Fortunately, though,

these artificial oscillations do not pose a great difficulty, as they are relatively

small and the body velocity scale is about an order of magnitude beneath the

wing velocity scale. Hence, we can obtain sufficiently accurate body kinematics

by low-pass filtering the body measurements from HRMT.

That being said, however, we still can apply the model-shadow reconstruc-

tion previously to which we previously alluded to find error bars on the data

arising from each individual frame. The body translational coordinates (x, y,

and z) are known within 2 pixels (.05 to .1 mm, depending on the cameras’

zoom). The yaw (ψ) and pitch (β) are known within 5o. The roll (ρ), however, is

only known within about 10o. This is due to the cigar-like shape of the fruit fly

body mentioned in Section 3.6.

3.9 Conclusions

In this chapter, we have shown Hull Reconstruction Motion Tracking (HRMT)

to be a fast, robust, and accurate method for tracking fruit flies in free flight.

This is accomplished by taking images from three orthogonally placed cam-

eras, aligning and registering them, finding the resulting visual hull, and using

k-means clustering and principal components analysis to extract the positions
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Figure 3.8: Example trajectory obtained from our experimental set-up and data
tracker. Here, the black dots are the body positions, red dots are the positions of
the right wing centroid, and blue dots are the positions of the left wing centroid.
Each dot represents data from one frame, taken at 8,000 Hz. Error bars are
approximately the size of the dots.

and orientations of the body and each of the two wings. The capacity to do

this will be taken advantage in Chapter 4, as well as in [23], [75], and [76], to

tackle problems like the control of sideways flight, ascending flight and turning

maneuvers, the nature of wing rotation, and how insects respond to external

perturbations.

This, of course, does not mean to imply that future improvements to HRMT

are not possible or desirable. The most obvious area in which progress is pos-

sible in the tracking of the body’s roll angle. One quick-fix which results in a

less noisy estimation for this angle is to average the left and right wing values

of the vertical deviation, θ. This, however, is somewhat unsatisfactory, as one

is implicitly assuming that the two wings have identical mean θ values with

respect to the frame co-rotating with the body. One way of ameliorating this

concern is to find a way to use a marker-based technique to track the roll. Since

(as seen in Figure 3.4) we do have some weak intensity information, such as the
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Figure 3.9: Sample data sequence from HRMT. The data shown are three Euler
angles from each wing from a slowly-ascending (≈ 3 cm/s) fruit fly which is
captured for 34 wing beats. Part (a) shows data for the entire sequence and part
(b) is a zoom-in on a single wing beat.

relative transparency of the wings, this could be possible. Also, since the ob-

served values for the wing orientation angles depend on the body roll, a hybrid

Bayesian approach taking advantage of these conditional probabilities might be
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Figure 3.10: Sample body data sequence from HRMT.

of utility [82, 83].

Another aspect of HRMT which could be extended is the ability to track

wing deformations. Since our test species for the method is the fruit fly, which

has relatively stiff wings, our assumption of the wings as rigid bodies is fairly

good (camber deformations are usually no greater than 15%, which occurs dur-

ing wing rotation). For larger insect such as hawkmoths, though, this assump-

tion breaks down, hence neglecting important aspects of the insects’ flight dy-

namics [87, 88]. By utilizing a photogrammetric method similar to that used

in [80], however, these deformations might be understood.

These possible augmentations aside, HRMT provides an improved method

for tracking insects in free flight with high throughput and temporal-spatial

resolution which can be applied to aid the understanding of many unresolved

questions in insect flight.
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CHAPTER 4

THE DYNAMICS AND CONTROL OF FRUIT FLY ASCENDING FLIGHT

4.1 Introduction

Having described a method for capturing and tracking fruit flies in the previous

chapter, we now aim to utilize this data to explore a particular type of behavior

often observed – ascending flight. The climbing flight of a fruit fly is an inter-

esting case because it is not only commonly seen experimentally, but because it

is also in some senses a limiting case in which flight performance is pushed to

the limit as the animal must support more than its own body weight.

Several previous studies have looked at the problem of ascending flight

without actual ascent to investigate the maximal force production of flying an-

imals. Specifically, [89–91] observe the kinematics and force production of four

species of tethered fruit flies (Drosophila). Here, the fly was tethered amidst an

LED arena displaying visual stimuli. A pattern was played on the LED array, in-

voking increases and decreases in force production. A principle finding in these

studies found was that a combination of somewhat unbendable morphological

and metabolic constraints put a limit on the maximum force produced.

The morphological side of this barrier is that flapping stroke amplitudes

can be no larger than 90o before the animal’s wings run into each other. Since

the stroke amplitude is positively correlated with force production in fruit flies

[89], this limitation provides the aforementioned morphological threshold. This

same feature was also found as a limiting factor in orchid bee and hummingbird

force production in variable density gasses [92, 93].

In addition to this morphological constraint, however, [89] and [90] also

found that there is a metabolic limit to force production. The fruit flies in their
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study would alter both flapping frequency and stroke amplitude to increase

force production, but even at sub-maximal observation of stroke amplitude, the

insect never went above a threshold of power usage. This finding was later

confirmed by [22], which found that even flies selectively bred for maximal

flight performance maxed-out at about 28 W (kg muscle)−1 of power output.

Additionally, by measuring the flies’ CO2 output during the experiment, an es-

timate of muscle efficiency was obtained. It was found that, oddly enough,

as flight forces increased, muscle efficiency (estimated mechanical power from

wing strokes divided by estimated power from CO2 output) increased as well.

What these studies do not address, however, is the coupling between an

insect’s body dynamics and its force production (tethering, after all, has a ten-

dency to have an adverse effect on movement). The motion of the body up-

wards affects not only the local wind velocity near the wing, but also causes a

change in the wing angle of attack and creates an effect where aerodynamic drag

on each wing acts in the vertical direction. The effect of this coupling has yet

to be investigated explicitly. Additionally, as the tethered insects are induced

to increase/decrease force production by maintaining a constant position with

respect to their visual field, it is unclear whether observed kinematic changes

would occur if the fly’s imperative is to actually move upwards, rather than to

remain constant with respect to its surroundings.

Also intriguing is how the ascent velocity is attained and controlled. [22]

noticed that the ascending fruit flies in their apparatus achieved a steady-state

velocity relatively rapidly (on the order of 20-30 wing beats). Is this a purely

dynamical phenomenon, or does the insect directly control this ascent? Also,

if an insect alters its ascent velocity from a previous steady-state, what kind of

control does it exhibit? In [94], a computational model of a fruit fly was imbued
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with a PID altitude controller which could modulate only its flapping frequency

to alter its state (increase f to increase vertical acceleration). This cannot be the

whole picture for an insect, however, as [89] found that the flapping frequency

actually decreases at near-maximal force production and the force production

appears to be determined via an increased stroke amplitude.

In this chapter, we present our initial investigations as to how fruit flies

(Drosophila melanogaster) attain and control their ascent speed. In particular, we

ask which degrees of freedom are actuated as the flies achieve varying steady-

state ascent speeds and model this process through a simplified model of inter-

mediate Reynolds number flapping flight. We find that ascent velocity is con-

trolled primarily by increasing the wing velocity scale while keeping a roughly

constant angle of attack. This is consistent with our model, as it predicts both

the form of this dependence and that velocity modulation is more energy effi-

cient than angle of attack modulation. In addition, we observe how fruit flies

transition from one ascent speed to another.

4.2 Description of the Model

We will first describe the set-up and the assumptions of the simple model

of ascending flight we use to analyze and gain intuition about the system at

hand. The basic idea behind our formalism is that we assume a fruit fly’s flight

forces are the same as those experienced by a translating airfoil at intermediate

Reynolds number (Re ≈ 100). This assumption ignores the effects of wing rota-

tion, stroke plane deviation, and changing velocities during the stroke, but aims

to serve as a first (or zeroth) order approximation for the dynamics with which

an insect must contend. These assumptions are plausible for the case of fruit

flies, as their body dynamics are much slower than their wing dynamics, so this
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model can be viewed akin to finding the average vertical force production over

the course of a wing beat. This coarse-graining allows for a more analytically

tractable model that can still provide quantitative predictions. In addition, we

do not need to fret about left-right wing asymmetries, as any difference in lift

production would cause the insect to roll.

To be more precise, we assume that an insect is free to move its body only in

the vertical direction (horizontal wing velocity modulation can only be achieved

through modulating the wing stroke itself) and has two control degrees of free-

dom to modulate. First, the insect, of mass m, can alter the velocity scale, U, of

its wings. In reality, this can be done by changing either the flapping frequency

or amplitude of the strokes. Also, we assume that the insect can control the an-

gle of the airfoil with respect to the horizontal, α. As a result of these control

parameters and the according fluid forces acting on the wing (to be described

momentarily), a vertical velocity, v, can be induced (although not directly actu-

ated). This changes the resulting velocity and angle of attack of the wing to be

U′ and α′, respectively. Hence, U′ =
√

U2 + v2, and α′ = α − tan−1( v
U ) ≡ β. A

schematic of this can be seen in Figure 4.1. The fluid force model on the wing is

assumed to be quasi-static, implying that there is no history-dependence when

calculating forces. Forms for the magnitude of lift, L, (force perpendicular to U′)

and drag, D, (force antiparallel to U′) are given by the standard forms:

L =
1
2
ρ f CLc̄RU′2 sin 2α′ (4.1)

and

D =
1
2
ρ f CDc̄RU′2 sin2 α′. (4.2)

Here, ρ f is the density of air, c̄ is the mean wing chord length, R is the wing

radius, and CL and CD are lift and drag coefficients, respectively. Additionally,

we assume there is a term due to aerodynamic drag on the body in the vertical
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direction, DBody (horizontal body drag is neglected, as the insect is assumed to

be ascending straight up). This term is given by

DBody =
1
2
ρ f C

Body
D c̄Rv|v|, (4.3)

where CBody
D is the body drag coefficient1. Putting these terms together, the equa-

tion of motion in the vertical direction is given by

mv̇ = L cos β − D sin β − mg − DBody. (4.4)

This can be simplified via trigonometric identities, and then non-dimensionalized

using length scale, c̄, and velocity scale,
√

c̄g. The resulting equation involv-

ing the non-dimensionalized velocities (in remarkably abusive notation, still re-

ferred to as U and v) is as follows:

v̇ =
U sinα − v cosα

2λ
√

U2 + v2

(
(2CLU2 + CDv2) cosα + (2CL −CD)Uv sinα

)
−1 −

CBody
D v|v|

2λ
, (4.5)

where λ ≡ m
ρ f c̄2R , is the non-dimensionalized mass. For typical fruit fly mor-

phologies, λ is about 350.

Lastly for this section, some of our analyses will necessitate calculation of

power output needed to drive the wing velocity. Since all of the applied force

provided here is horizontal in the wing frame (Û′ direction in the lab frame).

The power, P, can be calculated by

P = − ~U′ · ~Faero (4.6)

=
√

U2 + v2(D + DBody sin β) (4.7)

=
c̄Rρ f

2
(CD

√
U2 + v2(v cosα − U sinα)2 + CBody

D |v3|). (4.8)

1It should be noted that the effective surface area of the body is likely different from the

effective surface area of the wings, c̄R, this factor should be constant across insects, so we will

simply wrap it into CBody
D .
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Figure 4.1: Schematic of the ascending model

Non-dimensionalizing the previous equation with power scale, P̄, given by P̄ ≡

ρ f c̄5/2Rg3/2, we have that

P =
1
2

(CD

√
U2 + v2(v cosα − U sinα)2 + CBody

D |v3|), (4.9)

again, using the abusive notation where U, v, and P represent the non-

dimensional values of their corresponding quantities. From this point on, how-

ever, we shall only deal with the non-dimensional equations, hopefully limiting

confusion as much as possible.

4.3 Model Analysis

4.3.1 Location and Stability of Fixed Points

As is the first step of most dynamics studies, we shall begin our analysis by a)

looking for the system’s fixed points and their corresponding stabilities, and b)

simply simulating it for typical parameters vales. Figure 4.2 shows some typ-
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ical results from the latter of the two endeavors. Here, we observe that there

appears to be one stable fixed point to which all solutions flow, thereby imply-

ing the lack of any unstable fixed points. Figures 4.3-4.4 show the dependence

of the steady-state ascent velocity, v∗, on both U and α, implying that a stable

steady-state velocity exists over a wide swath of kinematic parameter range.

Additionally, the qualitative structure of the U and α dependence is quite struc-

turally robust to changes in the morphological parameters (CL, CD, CBody
D , and

λ). There is, however, only one region of parameter space where this alters,

which we will discuss shortly in Section 4.3.2, but it exists in the biologically

unobserved region where α becomes very large.

Given the intuition we’ve gained from simulation, we shall attempt to ana-

lytically determine the fixed points for our system. Ignoring the absolute value

sign in (4.5), thereby looking at only cases in which v ≥ 0 or v ≤ 0, depending

on the sign in front of the body drag term, setting v̇ = 0 results in in a 6th order

polynomial equation in v. This makes life a little difficult, seeing as how we

cannot guarantee an analytic solution to the equation. To alleviate this, we Tay-

lor expand (4.5) about v = 0+, resulting in the third-order expression displayed

below:

v̇ ≈
1

2λ
CLU2 sin 2α − 1 −

1
4λ

(CD + (4CL −CD) cos 2α)Uv

−
1

2λ
(CBody

D + (3CL − 2CD) cosα sinα)v2

−
1

8Uλ
(CD + (3CD − 4CL) cos 2α)v3 + O(v4). (4.10)

We shall only analyze the case where v ≥ 0 here, as that is the regime which our

experiment probes. We can then set this equation equal to zero and solve for

v, yielding an analytic approximation. Granted, the form of this solution is still

too unwieldy to display here, but with the aid of Mathematica [95], the solution

can be obtained. Similarly, we can also find the predicted equilibrium values
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Figure 4.2: Simulation results for ascending velocity, v, vs. time in wing strokes
(one wing stroke = 1/250 s) with CD = 3, CL = 2, CBody

D = 3, α = 60o, U = 21,
and λ = 350. Each line represents a simulation of (4.5) starting from a different
initial condition.

using only the linear and/or quadratic terms as well.

Figure 4.5 displays simulation results for the v∗ vs. U curves, and Figure 4.6

displays plots of these curves resulting from both the aforementioned approxi-

mations as well as direct numerical simulation of the (4.5). From these two fig-

ures, we see that although the linear approximation diverges quickly from the

simulation results as U increases, the quadratic and cubic curves approximate

the simulation curve quite well, especially in the range of steady-state velocities

observed in real insects (roughly U ∈ [15, 21]). This analytic curve will prove

useful later in fitting the model to experimental results.

4.3.2 Analysis of the Hovering Case

One situation in which the model can be solved exactly is for the hovering case,

where the lift produced is equal to the body weight. First, we will solve for the
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Figure 4.3: Plot of steady-state ascent velocity (v∗) vs. U and α from simulations
with CD = 3, CL = 2, CBody

D = 3, and λ = 350.

Figure 4.4: Contour plot of steady-state ascent velocity (v∗) vs. U and α from
simulations with CD = 3, CL = 2, CBody

D = 3, and λ = 350.
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Figure 4.5: Plot of steady-state ascent velocity (v∗) vs. U from simulations with
CD = 3, CL = 2, CBody

D = 3, λ = 350, and varying values of α.
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Figure 4.6: Simulation and approximation results for steady-state ascending ve-
locity (v∗) vs. horizontal velocity (U). Here, CD = 3, CL = 2, CBody

D = 3, α = 30o,
and λ = 350
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curve in the U−α plane which should result in v = 0. This manifold is interesting

because it will serve as a line of hovering fixed points, about which we will later

perturb. Setting v̇ = 0 in our equation for v̇ and solving for U, we get that

U∗(α) =

√
2λ

CL sin 2α
. (4.11)

Hence, U∗(α) is the velocity at which the wing must be driven in order to main-

tain hovering flight assuming a fixed α and no instabilities in the v direction.

Expanding our original differential equation linearly about v = 0, and sub-

stituting U∗(α) for U, we get that

v̇ ≈ −
1

2λ
(2CL cos 2α + CD sin2 α)U∗v. (4.12)

Since this differential equation is stable if the prefactor in front of the v term on

the right hand side is negative (and assuming that 0 ≤ α ≤ π/2), this implies that

the hovering solution is stable if

2CL cos 2α + CD sin2 α > 0. (4.13)

The first piece of information this equation gives us is that a stable hovering

state must exist for all α between 0 and π/4. For α > π/4, stability becomes a

competition between a lift component that destabilizes and a drag component

that stabilizes. Also, as the left hand side of the equation monotonically de-

creases on α ∈ [π/4, π/2], subbing α = π/2 yields that no instability can exist

if CD > 2CL. Furthermore, assuming that 4CL − CD > 0 (a safe assumption for

all realistic parameter values), as well as performing a few trig identities, (4.13)

reduces to

sin2 α <
2CL

4CL −CD
, (4.14)

or

α < sin−1
(√ 2CL

4CL −CD

)
≡ α∗. (4.15)
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This implies that for any value of α larger than α∗, no stable hovering solutions

are possible. As seen in Figure 4.7, for α > α∗, the steady-state ascending ve-

locity at v = 0 is unstable, resulting in either a stable ascending or descending

state, depending whether the initial ascent velocity is greater or less than zero.

It should be noted that this transition point is independent of the insect mass,

depending only on the lift and drag coefficients. As shown in Figure 4.8, (4.15)

predicts the simulation value of the transition point exactly. An example of tra-

jectory dynamics in the unstable regime is displayed in Figure 4.9.

Lastly, although this bifurcation is perhaps interesting from a mathematical

perspective, it doesn’t appear to be a large factor in ascending insect flight, as

observed angle of attack values are much lower than ≈ 60o−70o, which is where

this transition occurs for typical insect parameter values. In addition, in order

to achieve high ascent velocities through this effect alone, (4.11) shows that cor-

respondingly large values of U must be used, resulting in a large increase in

power input (Figure 4.10). α∗ could serve as an upper bound for angle of attack,

however, as values above this lead to an instability in the vertical velocity.

4.4 Experimental Methods

4.4.1 Experimental Apparatus

To compare the model described in the previous sections to observed wing and

body motions, we utilize the experimental set-up initially described in Chapter

3 [23]. This apparatus consists of three orthogonally placed Phantom V7.1 cam-

eras, each filming at 8,000 Hz with 512 × 512 pixels of resolution. This set-up

captures three silhouettes of a freely-flying fruit fly, which we then track using
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Figure 4.7: Bifurcation diagram of v∗ vs. α with U =
√

2λ
CL sin 2α (the hovering

velocity) for CL = 2 and CD = CBody
D = 3. Circles represent solutions starting

with v > 0 and the squares are solutions starting from v < 0. For this set of
parameters, α∗ ≈ 63.4o.
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Figure 4.8: Zoom-in of Figure 4.7 near α ≈ 63.435o = α∗.
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Figure 4.9: Sample trajectories of v vs. t for α > α∗.
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Figure 4.10: Plot of power (Equation 4.9) vs. α for the hovering case. Note
the exponential rise in the the power required to maintain hovering flight with
increasing α. The slight kink near 60o is the location of the bifurcation
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the Hull Reconstruction Motion Tracking (HRMT) method introduced in [23]

and Chapter 3. The final output from this tracking algorithm are the 18 trans-

lational and rotational degrees of freedom of an insect (three translational and

three rotational for each of the body, left wing, and right wing).

In addition to this facility, we utilize a custom-built apparatus which engen-

ders ascending flight capture (Figure 4.11). In this, several fruit flies are placed

at the bottom of a container which has a long, narrow opening, at the top of

which is the camera filming volume. The sides of the opening are lined with

chalk so that the flies are unable to simply walk up the edges. As the flies opt

to leave the container, they must fly upwards, and we capture their flight just

as they leave the opening. Empirically, we have found that the insects’ usually

fly straight upwards at a nearly-constant vertical velocity while within the film-

ing region. From this apparatus, we have obtained several filming sequences in

which the fly is moving vertically at speeds between 3 cm/s and 35 cm/s, an

example of which can be seen in Figure 4.12. To ensure that the sequences used

represent pure ascending movies, we make a cut that the left wing and right

wing velocity scales (defined in a moment) must be with ±10% of each other.

This eliminates movies in which the insect produces large amounts of torque or

lateral forces.

Additionally, we are interested in not only the steady-state ascent dynamics

of these insects, but also how this ascent is achieved and controlled. In hopes

of understanding these questions more fully, we capture fruit flies with decel-

erating vertical velocities using another custom apparatus (again, Figure 4.11).

Specifically, several flies are placed on the bottom of a cubic clear plastic enclo-

sure made of microscope slides, again, with chalk lining on the outer walls to

discourage the animals from simply walking up the sides. Instead of placing
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Figure 4.11: Schematics of the ascending flight apparatuses. For both figures,
the black/red line represents the path of a fruit fly, with the filming region rep-
resented by the red segment. The left figure places the filming region atop a
section of PVC tubing, through which the insects escape. This has a tendency
of engendering steady-state ascending flight. The rightmost schematic shows a
cube made out of microscope slides which is placed at the bottom of the filming
enclosure seen in Figure 3.3. Most of the flight sequences obtained from this fig-
ure are of accelerating flight, as it captures fruit flies as they transit from take-off
behavior to steady-state behavior.

the filming volume atop the enclosure here, though, the filming region is placed

a few centimeters above the bottom, hence, filming the animals while they are

changing velocities.

4.4.2 Deriving Comparison Metrics

Given the data collected above, we would like to be able to compare the ob-

served velocities and angle of attack to the model parameters U and α. This is

somewhat problematic, as in reality, U and α are (roughly) periodic functions

of time. Hence, in order to make a comparison, we need to determine effective

parameters Ue f f and αe f f , which will be the coarse-grained wing velocity and

angle of attack for a wing stroke.
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Figure 4.12: Three views of a typical steady-state ascending trajectory obtained
from our experimental set-up and data tracker. Here, the black dots are the body
positions, red dots are the positions of the right wing centroid, and blue dots are
the positions of the left wing centroid. Each dot represents data from one frame,
taken at 8,000 Hz. This particular insect is ascending with a velocity of about 24
cm/s.
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The basic principle we use for this is that for a hovering insect, from quasi-

steady theory, the average vertical force production, 〈Fz〉, is given by

〈Fz〉 = 〈
1
2
ρ f c̄RCLU(t)2 sin 2α(t)〉 =

1
2
ρ f c̄RCL〈U(t)2 sin 2α(t)〉 = mg, (4.16)

ignoring vertical force production from drag (i.e. an inclined stroke plane or

wing stroke deviation from the stroke plane). Therefore, it makes sense to define

our parameters such that

U2
e f f sin 2αe f f = 〈U(t)2 sin 2α(t)〉 (4.17)

in order for the relation

mg =
1
2
ρ f c̄RCL〈U(t)2 sin 2α(t)〉 ≡

1
2
ρ f c̄RCLU2

e f f sin 2αe f f (4.18)

to hold for the hovering case. Furthermore, as the lift is proportional to U2, we

will define Ue f f ≡
√
〈U2〉 = Urms. Hence, in order to satisfy (4.17), we need

αe f f ≡
1
2

sin−1 〈U(t)2 sin 2α(t)〉
U2

rms
. (4.19)

Given these definitions, though, we still need to be able to calculate U(t) and

α(t) in order to make comparisons. We shall define U(t) as the horizontal wing

velocity at 2
3R (the approximate location of the wing’s center of pressure), where

R is the wing radius. More specifically, since our tracker gives the azimuthal an-

gle, φ, as a function of time, and this angle is varies in a near-sinusoidal manner,

we can define Urms via

Urms ≡
2

3
√

2
Rφm2π f , (4.20)

where φm is the stroke amplitude and f is the stroke frequency (i.e. φ(t) =

φm sin(2π f t)). Finally, we non-dimensionalize all velocities using the velocity

scale
√

c̄g, as performed previously.
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Figure 4.13: Sample output from the Phaser algorithm for three Euler angles
vs. phase. Plots show right wing angular orientation data from a low-speed
ascending sequence vs phase modulo 2π.

α(t), which is a geometric quantity, not to be confused with aerodynamic

angle of attack, is defined as

α(t) =


η(t) if φ̇(t) ≥ 0

90o − η(t) if φ̇(t) < 0
, (4.21)

where η is the wing rotation angle as defined in Figure 3.7.

Finally, in order to split the data up into individual wing strokes, we use the

Phaser phase reconstruction algorithm developed in [96]. This method takes

a six-dimenensional data vector returned from the tracker (three Euler angles

for each wing) and maps the observed time series onto a circle with phases,

Φ ∈ [0, 2π). We define Φ = 0 to be the maximum anterior position of the wings,

and vivisect the data accordingly. From these values of U(t) and α(t), we can

then use (4.17) to find Ue f f and αe f f for the strokes by averaging between the

two wings. Additionally, as the body moves at a much slower speed than the

wings, we simply assume that the vertical velocity, ż is the total vertical distance

traveled over one cycle, divided by period.
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4.5 Steady-State Dynamics

Using the apparatus described in the previous section, we have six movies

where flies ascend at a relatively constant speed with little to no wing asym-

metries. These insects range in ascent speed between 3 and 35 cm/s. Applying

the conversion metrics derived in Section 4.4.2, we obtain the plots seen in Fig-

ures 4.14 and 4.15. Figure 4.14 shows the relationship between ascent velocity

and horizontal velocity scale, U. Here, we see the an almost linear relation,

reminiscent of the small angle of attack curves of v vs U with constant α seen in

Figure 4.5. Sure enough, Figure 4.15 shows that α varies little (effectively within

error bars) between significantly different ascent sequences. In fact, if we fit the

U vs v curve to the cubic model described in Section 4.3.1, we find that the fitted

α = 31.4o ± 2.2o, well within the range of empirically observed angles (Figure

4.16).

These figures imply that in effect, insects control predominately their veloc-

ity scale, and not their angle of attack, to obtain varying ascending velocities.

This still leaves open the question of the mechanisms behind this control. Fig-

ure 4.17 shows time-series plots of φ(t) with time normalized by the flapping

frequency for both a fast and a slow ascending sequence. Here, we see that the

more quickly ascending insect is using a significantly larger amplitude (≈ 15o).

Figure 4.18 displays values of v as a function of amplitude, showing that this

trend holds (albeit somewhat noisily) across all six analyzed sequences, agree-

ing with the findings of [89, 90].

The other part of how an insect could control its horizontal velocity, its flap-

ping frequency, alas, is a slightly less clear endeavor. In general, the observed

positive change in stroke amplitude with increasing v is somewhat countered

by a decrease in f (Figure 4.19). The relative increase in stroke amplitude, how-
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ever, is more than the relative decrease in frequency, resulting in a net increase

in U. The trend of decreasing f is more difficult to discern than the amplitude

increase, however, as f is a function of insect mass, which, due to our experi-

mental set-up, we are not able to measure for each specimen. Accordingly, we

have two outlier flight sequences which have a lower than expected flapping

frequency. For a single, tethered fruit fly, however, [89] also observed a decrease

in f as the produced vertical force increased in the regime near maximal force

production. This could imply that the ascent sequences we observe are near this

point at which flight power is limited.

The general story here, though, appears to be that to achieve different

steady-state ascent velocities, fruit flies increase their stroke amplitudes while

maintaining a roughly constant angle of attack. Qualitatively, this is in line with

the findings from [75], which found that the mean angle of attack over a whole

wing beat is not controlled by the insect. Additionally, the upper limit on ascent

velocities we observe (≈ 40cm/s) is near the point at which the stroke amplitude

is 90o, implying that this might be an actual upper limit for maximal ascent ve-

locity. A similar result has been observed for tethered fruit flies [89] as well as in

hummingbirds flying in variable density gases [92]. The observed decrease in

flapping frequency could be the result of the indirect driving mechanism of the

fruit fly thorax saturating at maximal output levels. Additional increases in am-

plitude might occur from utilizing steering muscles in addition to the thoracic

driving inputs, but these would not significantly affect the stroke frequency.

Finally, if we plot the power (calculated from (4.9) along the fitted v vs U

curve (and also using morphological parameters from this fit), another interest-

ing effect presents itself (Figure 4.20). Looking at the P vs v plot (Figure 4.20(b)),

we see the reappearance of the infamous J-curve [97,98] with a minimum power
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Figure 4.14: Plot of U vs v for several different ascending sequences. Each
data point represents a single wingbeat, and different colors imply different se-
quences.

output at a non-zero flight speed, although this time it is referring to ascending,

rather than forward flight. Here, P is minimized at a ascent speed of v ≈ 2,

which is well within our range of observed ascents (v ≈ 0→ 4).

The physical mechanism behind the appearance of this minimum in power

arises from the fact that there is an interplay between the power required to

overcome drag on the wings and the power required to overcome body drag.

As seen in Figure 4.21, the wing power monotonically after decreases after a

particular value of U. This is because the effective angle of attack, α′, decreases

as v increases, resulting in less drag. However, as the ascent velocity increases,

the power required to overcome body drag increases like v3. Summing these two

components together results in a curve with a minimum ascent speed (Figure

4.21).
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Figure 4.15: Plot of α vs v for several different ascending sequences (colors are
the same as in Figure 4.14. Note that almost all variation observed is within
measurement error bars.

Figure 4.16: Ascent velocity vs U fit to cubic model (Equation 4.10). The fit
parameters are CL = 3.0± .25, CD = 5.2±1.2, CBody

D = 5.2±1.2, and α = 31.4o±2.2o.
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Figure 4.17: Right wing φ(t) vs t for two steady-state sequences of slow (blue)
and fast (red) ascent velocities. The amplitude for the quickly ascending fly is
noticeably larger.

Figure 4.18: Ascent velocity vs stroke amplitude
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Figure 4.19: Ascent velocity vs flapping frequency.

4.6 Transition Dynamics

While the previous section discusses the differences in wing kinematics between

individual fruit flies ascending at varying speeds, here we investigate the accel-

eration dynamics of ascending flight using data obtained from the apparatus

previously described in Section 4.4.1. The most prevalent form of flight se-

quences resulting from this apparatus are akin to the voluntary-type take-off

observed in [99]. In these sequences, we observe that the the fly takes off rel-

atively quickly (but steadily), then eventually relaxes to a slower, steady-state

ascent velocity2.

2We also observe the escape-type response seen in [99] on occasion, but as the escape dy-

namics are more unsteady, they are not strictly ascending, but exhibiting more intricate motions.
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Figure 4.20: Plots of steady-state power vs U and v. Morphological parameters
(i.e. CL, CD) are from the fit in Figure 4.16
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Figure 4.21: Contributions to the aerodynamic power of the ascending model.
The solid line is the power required to overcome drag on the wings, the dashed
line is the power required to overcome drag on the body, and the dotted line is
the total power requirement.

An example sequence of this type of flight is seen in Figure 4.22, with plots of

v, U, and α vs time displayed in Figure 4.23. Here, the insect enters the filming

region with a vertical velocity of ≈ 34 cm/s then decelerates down to about 12

cm/s over the course of 24 wing beats. Over the course of the deceleration, we

see a sharp decrease, followed by a smaller increase in U, with small variations

on the order of 2o in α. Perhaps more suggestively, we plot the same U vs v

data and fit from Figure 4.16, but with the transition data superimposed. Here,

it appears that the insect transits from one point along the steady-state curve

(v ≈ 3), decreases U so low that it overshoots the desired equilibrium value, and

then gradually increases the horizontal velocity to the steady-state value of U

corresponding to the desired final value for v (≈ 1).

This plot suggests the existence of some sort of control scheme which allows

for quicker transitions between ascending states than simply changing U to its
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final value and allowing the system to relax. This can be seen in Figure 4.25,

which compares the observed transition data to the model dynamics under the

simplest possible controller with

U(t) =


U0 if t ≤ 0

U f if t > 0
(4.22)

and v(t) found from simulating Equation 4.5 (all morphological parameters are

those from the fit in Figure 4.16). The figure shows that the observed dynamics

are much faster than the model’s predicted relaxation, implying that the control

the insect provides results in speeding-up its transition.

Additionally interesting is that not only does the chosen control scheme re-

lax more quickly to the new steady-state ascent speed, but it also requires less

power, as seen in Figure 4.26. Using (4.9), we can calculate the power consumed

for both the observed stroke and the simple controller from (4.22). Performing

this analysis, we see that the captured transition sequence requires less power

than the quick-switching control mechanism. This difference is largely due to

the fact that U(t) is smaller for the data than for the model during the whole

transition, resulting in the seen decrease.

4.7 Discussion

In the previous two sections, we have seen that ascending velocity in fruit flies is

a steady-state endeavor which is controlled by tuning only one proverbial knob,

the horizontal wing velocity, U. In addition, we have also seen that when tran-

sitioning from one ascent velocity to another, the insect uses a control scheme

which allows for a more rapid relaxation to a new steady-state (and less power
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Figure 4.22: Sample transition sequence. As in Figure 4.12, the black dots are the
body center of mass positions, the red dots are the right wing centroid positions,
and the blue dots are the left wing center of mass positions. Each dot represents
data from a single image frame. This particular example starts its ascent with a
velocity of roughly 34 cm/s, eventually decelerating to about 12 cm/s

consumption) than simply instantaneously changing U (or, by extension, grad-

ually changing it monotonically). Unfortunately, though, it is currently impos-

sible to divine precisely the type of control used by the flies as we are working

with low statistics and only viewing a portion of the transition which does not

include the endpoints of the process.

Our results here, however, are potentially suggestive as to the types possi-

ble control schemes which the flies could invoke and their imperatives for us-

ing them, so we shall engage in a game of informed speculation which makes

predictions for future studies. Specifically, the overshoot in controlling U(t) is

intriguing, as it causes the insect to decelerate towards its final ascent velocity

more rapidly than the simple controller in the previous section. Also of inter-

est is that the reversal in the slope of U(t) happens fairly quickly, almost in a
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Figure 4.23: Plots of U, v, and α vs time for the sequence shown in Figure 4.22.

V-shaped pattern (Figure 4.27(a)).

One possibility for controlling U in this manner could be a to minimize (or

at least deduct from) the transition time between differing ascent velocities. As

it turns out, if we assume that motor inertia bounds the maximal rate of change

of U 3 (a ≤ dU
dt ≤ b), it can be shown (and is in this chapter’s appendix) through

optimal control theory [100] that the controller which minimizes the relaxation

3We do not need to worry about bounding U itself, as it is clearly bounded from below by 0

and should never be increased past its initial value, as the insect is decelerating. The derivative

bounds safely keep the solution away from U = 0, however.
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Figure 4.24: Deceleration sequence v vs U superimposed upon steady-state as-
cending data. The blue points on the left are the transition values, with v de-
creasing as a function of time. The red line is the model fit to the steady-state
data, and the black points are the average values from the six steady-state se-
quences.

period is a bang-bang controller in the derivative of U which has the form of

dU
dt

(t) =



0 if t < 0

a if 0 ≤ t < τ

b if τ ≤ t < T

0 if t ≥ T

, (4.23)

where T is the total time of the transition and τ is the cusp of the metaphorical

V where dU
dt abruptly changes. Integrating this equation with respect to t and
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Figure 4.25: Comparison of v vs t between data (dots) and a simple control
model (line).
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Figure 4.26: Calculated P vs t for data (dots) and the simple control model from
Figure 4.25 (line).
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enforcing continuity conditions, we find that

U(t) =



U0 if t < 0

U0 + at if 0 ≤ t < τ

U0 + aτ + b(t − τ) if τ ≤ t < T

U f if t ≥ T

, (4.24)

with

τ =
U0 − U f − bT

b − a
. (4.25)

Figure 4.27(a) displays a best fit of this model to the observed transition data

(U0 = 19.5, U f = 17.3, a = −.7, b = .6, and T = 13.0), which, when simulat-

ing (4.5) with this form of U(t), results in a much more (although not perfect)

approximation to the experimental v dynamics (Figure 4.27(b)).

All this is only suggestive of a control scheme/imperitive, however, as it is

based off of a single trajectory and makes an implicit assumption that an insect

has a look-up table of sorts which gives v as a function of U. It could be, though,

that instead of attempting to explicitly get from one ascent speed to another,

there could be some internal or external trigger which discretely switches from

one control type (dU
dt = a) to another (dU

dt = b) in a stereotyped manner. This

potentially eliminates the need for a look-up table to exist.

This model also has no reliance on sensory input, which means that there

are no corrections made for either motor errors or external perturbations. That

being said, though, it is plausible that the controller used by a fruit fly is actually

a PID-style controller (U̇(t) = KPe(t−τ0)+KDė(t−τ0)+KI

∫ t−τ0

0
e(t′)dt′, where e(t) is

an error function and τ0 is a delay time) which mimics the observed bang-bang

style method. There is a fair amount of evidence that insects are able to ascer-

tain the magnitude and velocity of their relative flow field via their Johnston’s
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Organs, which are located in their antennae [101–103], and visual cues could be

used, as dipteran species (although not explicitly Drosophila melanogaster) have

been shown to exhibit flicker fusion rates at about twice their wing beat fre-

quency [104, 105]. Hence, the use of sensory feedback is a distinct possibility

during these sequences.

Despite these speculations, even if insects are indeed using a PID-type con-

trol that is consistent with a time-minimizing approach, this suggests that re-

ducing the relaxation time might be an imperative in the flies’ flight dynamics.

Along with simply collecting additional statistics, this could be tested by pertur-

bation experiments in which a fly ascending in steady-state experiences a force

of some type that knocks it off this trajectory. Additionally, since the model here

predicts maximal and minimal values for changing U, it might be possible to use

this information to understand the maximal rate at which fruit flies can perform

other maneuvers which rely on altering the magnitude of force production.

4.8 Summary

In this chapter, we have developed a simple model of fruit fly ascending flight

and used it to gain further understanding of experimental data observing these

maneuvers. We have found that given constant wing kinematics, there exists

a steady-state ascent velocity, with the exception of the somewhat unphysical

case of flight at very high angle of attack. Fitting an expansion of this model

to the observed data, which was obtained via a custom-built filming arena, we

find good agreement with the hypothesis that flies predominately control their

wing velocity (and not their angle of attack) to alter their ascent speed. In the

observed sequences, stroke amplitude is increased and flapping frequency is
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Figure 4.27: Plots of U and v vs time for transition sequence data (points) and
the proposed controller (lines). The model for U(t) is attained via a best fit of
(4.24) to the data, and the model for v(t) is found by plugging the predicted U(t)
into (4.5) and performing a forward simulation.
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decreased in order to produce augmented vertical velocity.

We have also observed the transition of a fruit fly from a fast ascent to a

slower vertical velocity. Through a V-shaped modulation of U(t), the insect re-

laxes towards a steady-state far faster than possible with a simpler monotonic

control. It is hypothesized that this type of velocity alteration helps to actuate a

transition which is time-minimizing with respect to certain constraints. Further

investigation is necessary, however, to understand this more fully.
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APPENDIX:

Derivation of the Time-Minimizing Controller

As alluded to in Section 4.7, given the dynamics described in (4.5) and the con-

straint that dU
dt must be bounded, we would like to show that (4.23) is indeed

the time-minimizing form for the control of U(t). Our approach will be to use

methods from the calculus of variations to prove this.

Simplifying (4.5), we can write the dynamics for our system as

dv
dt

= fz(U, v) − 1, (4.26)

with the control constraint that

a ≤
dU
dt

(t) ≤ b. (4.27)

The quantity we wish to minimize, the transition time, T , can be written such

that

T =

∫ T

0
dt =

∫ γ

0

dz
v
, (4.28)

where z is the altitude of the insect and γ = z(T ). We can exchange z for t here

because we assume that the insect’s vertical velocity is always greater than zero.

Hence, t is a single-valued function of z.

Furthermore, if we trickily define g(z) ≡ 1
2v2, we have that

dg
dz

=
d
dz

(1
2

v2
)

= v
dv
dz

= v
dv
dt

dt
dz

=
dv
dt

= fz(U, g) − 1. (4.29)

Using this, we will then rewrite our equation for T so that

T =

∫ γ

0
(2g)−1/2dz. (4.30)

Similarly, we can rewrite (4.27) so that

a ≤
dU
dz

dz
dt
≤ b⇐⇒

a√
2g
≤

dU
dz
≤

b√
2g
. (4.31)
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Lastly, we need to find a way of welding (4.29)-(4.31) into a cohesive func-

tional. We shall perform this through the Lagrange multiplier method, but with

one more trick required. Namely that in our equations’ current state, the in-

equality constraint cannot be trivially written in a form which is equal to zero.

We alleviate this, however, by introducing a new control variable, r(z). If we

insert

r2 −
( 1√

2g

dU
dz
− a

)(
b −

1√
2g

dU
dz

)
(4.32)

as an equality constraint into our variational functional, this neatly takes care of

our dilemma, as r ∈ < if and only if our derivative is in the appropriate range.

Putting all of this together, we define

J =

∫ γ

0

{
(2g)−1/2 + σ1

[dg
dz
− fz(U, g) + 1

]
+ σ2

[
r2 −

( 1√
2g

dU
dz
− a

)(
b −

1√
2g

dU
dz

)]}
dz,

(4.33)

where σ1 and σ2 are Lagrange multipliers. Now, we can apply the Euler-

Lagrange equation,
∂J
∂qi
−

d
dt

(
∂J
∂q̇i

)
= 0, (4.34)

to all of the generalized coordinates, qi, of the system.

As it turns out, for our purposes we only need to look at two generalized

coordinates to find the desired functional form. With respect to r, we have that

∂J
∂r
−

d
dt

(
∂J
∂ṙi

)
= 2σ2r = 0. (4.35)

Hence, either σ2 or r must be equal to zero. Performing this with respect to U(z)

and solving for d2U
dz2 , we find that

d2U
dz2 =

−1
σ2

(
Stuff not involving

d2U
dz2

)
. (4.36)

Hence, if σ2 = 0, our acceleration in U is singular, which cannot happen for

more than a finite number of points along our trajectory. Therefore, in order for
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(4.35) to hold away from the singularities, r = 0. As a consequence then,

( 1√
2g

dU
dz
− a

)(
b −

1√
2g

dU
dz

)
= 0, (4.37)

which implies that either

1√
2g

dU
dz

= a or
1√
2g

dU
dz

= b. (4.38)

Substituting our definition of g back in and reworking this a little bit, we find

that
dU
dt

= a or
dU
dt

= b. (4.39)

Since our flight sequences are decelerating while ascending upwards, this im-

plies that the lower bound must occur first, followed by the upper bound. Ac-

cordingly,

dU
dt

=



0 if t < 0

a if 0 ≤ t < τ

b if τ ≤ t < T

0 if t ≥ T

, (4.40)

which mirrors the result of (4.23).
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CHAPTER 5

SLOPPY MODELING AND THE EFFECT OF THE FITNESS LANDSCAPE

5.1 Introduction

Given a particular morphology, what is the best way that an insect can fly?

This was the question asked in the Chapter 2, which defined ”best” as energy-

minimizing while still maintaining hovering flight, optimizing flight kinemat-

ics for fruit fly, bumblebee, and hawkmoth morphologies. Although the optima

were found and some rudimentary sensitivity analyses were performed in the

aforementioned chapter, we wish to expand our knowledge of the optimal basin

in which the solutions reside. This will be attempted through the analyses in this

chapter.

The first section here is a brief foray into the idea of modeling hovering in-

sect flight as a ”sloppy” system in a manner similar to that described in [36–39].

To put it another way, the basic question we ask is whether a hovering insect

has great freedom in some parameter space direction and little in others. This

will be stated in a more formal manner later, but the basic idea is that in many

eigendirections in a naturally parameterized system (i.e. the parameters have a

physically meaningful/measurable interpretation) will have an importance on

the cost function fitness that wildly varies [36, 38]. We find that our parameteri-

zation of insect flight displays this type of sloppy behavior.

After this, we study several of the local optima which are less efficient than

the global optima. Do they display the same sort of sloppiness? Are they just

little bumps along a compliant direction in parameter space, or are they legiti-

mately different strategies? If that latter, what are the energy barriers between

the different optima?
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Finally, we see if ideas from sloppy modeling can aid in predicting spread

within a population. Namely, we ask if the variations in kinematic data we ob-

serve in experimental data of fruit fly flight are predominantly along the com-

pliant directions of the energy landscape.

5.2 Model Summary

The model of insect flight used is nearly identical to that used in Chapter 2. The

insect wing is modeled as a rigid body supporting a point mass. Morphological

data is taken from prior experiments in the literature (Table 2.2). The wings can

rotate in three degrees of freedom, referred to as φ, θ, and η (Figure 2.1). φ is

the azimuthal angle, θ is the vertical deviation, and η is a measure of wing pitch

about the radial axis. The positions of these three axes are specified as a periodic

function of time. Fluid forces are determined from a quasi-steady model of

insect flight described in [40]. From the prescribed kinematics and fluid forces,

it was shown previously that it is possible to calculate the lift production, L, and

the power consumption, P, resulting from a particular hovering wing motion

via equations 2.13-2.15.

The specific parameterization used is as follows:

φ(t) =
φm

sin−1 K
sin−1[K sin(2π f t)] (5.1)

θ(t) = θm cos(4π f t + Φθ) + θ0 (5.2)

η(t) =
ηm

tanh Cη

tanh[Cη sin(2π f t + Φη)] + η0. (5.3)

This adds up to an 10 value paramaterization of a wing stroke. The energy-

minimizing values of these parameters for the three insects discussed here were

found in [106] via a clustering genetic algorithm which constrains the produc-

93



tion such that L is equal to M, the total mass of the insect. The analysis which oc-

curs in the sections to follow can be viewed as an expansion about these points.

5.3 Sloppy Modeling Analysis

5.3.1 Hessian Calculations

The basic principle behind the sloppy analysis discussed in [37] lies with finding

the Hessian of some cost function near an optimal solution. As the cost function

in our model is the power consumption, P, we have that

Hi j =
∂P

∂xi∂x j
. (5.4)

It should be noted that in most of the papers describing sloppy modeling, the

derivatives defining Hi j are with respect to the logarithms of the parameters,

as this allows for parameters of wildly varying scales to be compared. In our

parameterization, however, all parameters, with the exception of the flapping

frequency, are of the same order (and are unitless). Hence, we can just use the

partial derivatives with respect to the parameters themselves.

Two difficulties exist with this particular analysis, however. Fortunately, it is

possible to “kill two birds with one stone,” and eliminate them both using the

same trick. First is that the flapping frequency can vary in size by a couple or-

ders of magnitude from the other parameters. Also, and more importantly, this

is a constrained optimization problem (if unconstrained, the power-minimizing

solution is that the insect just refuses to flap its wings). Although it is possible to

deal with constrained problems via the idea of a bordered Hessian, we can take

advantage of a feature of our system to make the analysis easier. This feature is

that both L and P are monotonically increasing functions of f , the flapping fre-
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quency. Hence, if a wing stroke produces positive lift, this lift can be increased

to exactly match the insect weight, Mg. And since P monotonically increases

with f , we can say that the optimal frequency for a given set of kinematic pa-

rameters is precisely the frequency which satisfies L = Mg. Hence, we have

reduced our 10 dimensional parameter space model to a 9 parameter manifold.

This manifold is found by using a binary search in f such that the constraint

was met to within M × 10−10 for a given set of 9 parameters, ~p. This results in a

cost evaluation, C(~p). The Hessian is then numerically determined via

Hi j =
C(~p + hiêi + h jê j) −C(~p + hiêi) −C(~p + h jê j) + C(~p)

hih j
+ o(||~h||2), (5.5)

where ~h is the vector of step sizes, and êi is the unit vector in the parameter i

direction. For the analyses to follow, hi was set to be 10−5, but the results do not

change significantly for smaller values of hi.

Given the Hessian, we then determine the principle axes by finding the

eigenvectors and eigenvalues of H. The eigenvectors give the principle direc-

tions of variation, while the absolute values of the eigenvalues give the relative

strengths of the corresponding directions. This is shown pictorially in Figure

5.1. For the 2-D space shown in this figure, the eigendirections are shown as

arrows within the smallest ellipse. One can view crossing ellipses as a change

in model behavior. Hence, there is much more room for variation in the longer

elliptical axis than in the shorter axis. For higher dimensions this can be under-

stood as N-dimensional ellipses. In the sloppy models referenced in [36–39], the

spectrum of these eigenvalues ranges up to about 6 orders of magnitude.

In order to get a sense of which individual parameters (in the natural param-

eterization) are most constrained, we use a stiffness metric, sm, which is defined

as

sm =

∑9
i=1 |λi|v

(m)
i

2∑9
i=1 |λi|

, (5.6)
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Figure 5.1: Hessian behavior near optimum

where λi is the ith eigenvalue and v(m)
i is the mth component of the correspond-

ing eigenvector. Hence, a larger sm implies the parameter m is more constrained.

Note how in this definition, the
∑

m sm = 1.

5.3.2 Results

The results for the fruit fly Hessian are seen in Figures 5.2 and 5.3. The mini-

mum about which the Hessian is calculated is the same as in [106], found via

a clustering genetic algorithm. Figure 5.2 shows the composition of the eigen-

vectors of H and Figure 5.3 shows the corresponding eigenvalues. The order

of the parameters in Figure 5.2 is displayed in Table 5.1. As seen in Figure 5.3,

we see a relatively continuous (i.e. no large separation between important and

unimportant directions) spectrum of eigenvalues which spans about 3 orders

of magnitude. While this is smaller than the 6 orders seen in cellular biology
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systems, the system also involves an order of magnitude smaller number of pa-

rameters. As expected, the eigendirections, for the most part, do not align with

the parameter space bases, much like in the previously observed systems. Ad-

ditionally, looking at the stiffness of the parameters (Figure 5.4), we see that in

the local vicinity of the optimal solution, 4 parameters were significantly more

constraining than others. Namely, these are φm, K, θm, and Φθ. What this tells us

is that on the L = M manifold, the constraints accorded to parameters related to

azimuthal and stroke plane displacements (φ(t) and θ(t)) are large with respect

to the variables related to wing rotation (η(t)).

This last result is particularly interesting, as much attention has been focused

on understanding the process of wing rotation [27, 67, 75, 107], while there has

been considerably less interest in the other two degrees of freedom. Two ex-

planations exist for this. The first is that the wing rotation effects are due to

unsteady effects, such as interaction with a leading edges vortices [108], which

are not taken in account in the quasi-steady model used here. Secondly, the im-

portance of wing rotation in the landscape could be more global in nature, as

opposed to the local picture given here. Although exploring the former reason

is beyond the scope of this chapter, we will look at the latter in Section 5.4

These analyses were also performed for the bumblebee and hawkmoth sys-

tems (not shown), resulting in nearly identical eigenvectors/values.
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Table 5.1: Parameter order
1 φm

2 K
3 θm

4 Φθ

5 θ0

6 ηm

7 η0

8 Cη

9 Φη

Figure 5.2: Fruitfly eigenvectors
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Figure 5.3: Fruitfly eigenvalues
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Figure 5.4: Fruitfly stiffness values
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5.4 Analysis of Local Optima

5.4.1 Method for Generating Local Optima

Approximately 200 local optima of the system were found by running a mod-

ified version of the adaptive niching particle swarm optimization (ANPSO)

[109, 110] method. The basic idea is that the landscape is filled with many par-

ticles. These particles have velocities and move about the parameter space pay-

ing attention to the energy of their current location, the lowest energy solution

that the individual has found, and the lowest solution each of its neighbors has

found. Although particle swarm optimization was originally developed to find

the global minimum of a function [109], it can be made into a niching algorithm

with a clever set-up of how the particles interact with each other. Essentially,

if two particles remain close to each other for some fixed amount of time, they

start communicating with each other, with the definition of ”close” being adap-

tively altered as a function of the system state. When several of these particles

become grouped together permanently, this group is considered a niche, and

will converge unabated to a nearby local minimum.

For the study here, this algorithm was run 5 times, concentrating on the fruit

fly morphology, resulting in several hundred unique local optima. Of these,

we will focus only on the 52 optima found which have specific powers less

than the somewhat arbitrary cutoff of 35 W
kg (see Figure 5.5). This, by no means,

gives a complete listing of all of the space’s local optima, but should serve as an

adequate starting point for our investigations.
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Figure 5.5: Specific powers of studied optimal solutions

5.4.2 Results and Discussion

The most striking thing one notices about these optima is that looking in some

planes, only a discrete set of points or clusters of points exist, while in others,

a more continuous distribution is seen. For example, if one looks at the op-

tima in the φm vs. f plane (Figure 5.6), most of the optima lie on or near a curve

φm f = c, where c is a constant. This is what we would expect from classical

airfoil theory. Looking at the η0 vs. Φη plane however, we see a far more discrete

structure, with five discrete points around which the optima are located. Simi-

lar dichotomies are seen when looking at the other planes. One of the questions

which motivates this investigation is if the local optima lie along compliant di-

rections of phase space, or are the optima legitimately different solutions. What

these results seem to imply is that the answer is, well, yes. For cases such as

φm vs. f , we see a continuous variation along what appears to be a type of op-

timal basin. For many other planes, however, there are blatant discontinuities
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in phase space which suggest that different or mirror-symmetric strategies are

being used.

To understand the various strategies found via the optimizations better, the

optima are clustered via the k-means algorithm [111], aided by visual inspec-

tion, thereby grouping the 52 optima into 11 distinct classifications (Figure 5.8).

The analysis of Section 5.3 was then applied to the lowest-energy sample from

each classification, finding the Hessian eigenvectors and eigenvalues (Figure

5.9). As seen previously, each of these optima have a Hessian eigenspectrum

which spans somewhere between two and four orders of magnitude. Also,

observing the stiffnesses for the optima (as defined in (5.6)), we find that the

five most efficient strokes display the same essential unimportance of the rota-

tional degree of freedom (excepting a surprisingly large dependence on Cη for

the upper-left stroke of Figure 5.8). The less optimal strokes do show commen-

surate dependence on the η(t) parameters, but they by no means dominate.

So does this imply that rotational parameters are unimportant in this op-

timization scheme? No, just that they are unimportant locally. Although in-

finitesimal differences in these parameters have relatively small effects, there

are certain areas of parameter space which are just plain bad, resulting in hor-

rendously unacceptable efficiencies (i.e. Φη = 3π/4 or η0 = π/4). This is why the

parameter spaces in these η(t)-related variables display the discrete strokes seen

in Figure 5.7, whereas φ(t)- and θ(t)-related variables show more continuous dis-

tributions.

The question remains, however, if this result is physically or biological in-

teresting. A possible theory is that the relative compliance of the wing rotation

degrees of freedom could allow for increased manueverability, as small changes

in rotation angle could turn a body, but not highly penalize an insect in either
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Figure 5.6: Stroke amplitude vs. frequency for local optima

lift or energy. Another potential theory is that the decreased sensitivity could al-

low for a more robust passive mechanism for rotating the wing. Since the basin

of attraction must be relatively large in order to remain stable under small per-

turbations, the ”sloppiness” in the rotational degrees of freedom could facilitate

this.

The lack of sensitivity on the angular coordinates could also be a result of a

proposed drag ratcheting control mechanism [75,76]. This idea states that since

lift ∝ sin 2α, whereas drag ∝ sin2 α, and since insects use angles of attack near

45o, small variations in α have little effect in lift, while causing a relatively large

shift in drag. Hence, with slight angel of attack modulations, drag can be used

to steer flight.
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Figure 5.7: Rotation phase vs. rotation offset for local optima

Figure 5.8: Locally optimal strokes
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Figure 5.9: Locally optimal Hessian eigenvalue spectra (order corresponds to
Figure 5.8)

5.4.3 Energy Barriers and Grouped Optima

The final analysis performed on the local optima was to measure the straight-

line energy barrier between the 11 optima seen in Figure 5.8. The straight-line

energy barrier is defined as the highest energy point located on the straight line

in the landscape that starts at one minimum in parameter space and ends at

another. More formally, if minimum 1 is at point ~x and minimum 2 is at point ~y,

then the straight-line energy barrier, B, is defined by

B(~x, ~y) = min
0<r<1

F(~x + r(~y − ~x)) −max(F(~x), F(~y)), (5.7)

where F is the function which calculates the energy. Although this is only an

upper-bound on the calculation of the actual energy barrier, as a lower energy
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Figure 5.10: Locally optimal stiffnesses (order corresponds to Figure 5.8). The
first 2 bars are φ(t) parameters, the next 3 are related to θ(t), and the last 4 to η(t)

path may be found through traversing a more convoluted path, it can serve

as a first order approximation to begin investigations. A nudged elastic band

method (or one of its many variants) would most likely be useful for this type

of calculation [112, 113].

Essentially, two types of barriers were found, exemplified in Figure 5.11. The

barriers either tended to be small (under ≈ 100 W/kg) or large (several orders

of magnitude larger. This observation of a distinct cutoff leads to the idea that

perhaps given sufficient evolutionary ”temperature,” perhaps an organism can

jump between these basins of attraction which are only separated by a relatively

small barrier. This leads to the idea of a graph of basin connectivity. For such a

graph, each of the local optima are considered nodes. Lines are drawn between
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these nodes if the B between them is less than some cutoff – here, 100 W/kg.

Performing this analysis, we see the result in Figure 5.12. Note how most of the

optima can reach each other through some pathway. This community structure

on the graph also includes the global optima (the far right-center dot), implying

that many of the local optima could be within striking distance of the global op-

timum. Looking at Figure 5.13, we can see the reason why some optima are not

connected – they are distinct (or mirror-symmetric) strategies which are locally

optimal, but physically isolated away from the global optimum in parameter

space.

This brings us to perhaps the most apparent flaw with this type of analysis,

the fact that the parameterization of a wing stroke does not correspond to the

space of possible biological variations. For instance, there could be a single mu-

tation which takes a wing stroke to its mirror-symmetric stroke, meaning that

the actual barrier needed to be crossed is significantly smaller than the barrier

predicted in our Euclidean parameter space. This, perhaps, suggests the utility

of a more mechanical or experimentally-derived parameterization for wing mo-

tions [74] for not only the analyses of this section, but for the whole of the work

in this chapter.

5.5 Predicting Population Variation

When confronted with any biological data (or, really, any data), some spread

exists. Not all insects are doing precisely the same thing. Some of this spread

is due to experimental uncertainty, but there is also legitimate biological varia-

tion between strokes. Some insects are doing different things from other insects.

Since variation is an important factor which drives evolution, it would be of in-
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Figure 5.11: Two examples of straight-line energy barriers

Figure 5.12: Connectivity graph for local optima of the fruit fly model. Each dot
represents a local minimum, and a line between dots implies that the maximum
barrier height between them is no greater than 100 W/kg. If one assumes that
100 W/kg is the maximum barrier height which can be crossed, then most of the
minima can reach the global minimum (the dot at (1,0)) with a series of barrier
jumps.
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Figure 5.13: Connectivity graph for local optima of fruit fly model plotted in the
η0 vs. Φη plane

terest to probe the manners in which the wing strokes vary. Are all the observed

wing strokes of similar efficiency, or are some much worse than others? Can we

say something about the particular manner in which they vary using an opti-

mization/sloppy modeling paradigm, or are physical or historical constraints

more important?

These are questions we investigate in the remainder of this chapter using

the previously described sloppy-modeling framework. To be more specific, we

hypothesize that observed insect kinematics should have more spread in direc-

tions in which the the landscape is more compliant (small eigenvalues of H),

and less when the landscape is stiffer (larger eigenvalues), a cartoon of which is

displayed in Figure 5.14.
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Figure 5.14: A cartoon of data varying along a compliant direction in parameter
space

5.5.1 Cost Function and Parameterization

Here, we once again use the model from Chapter 2 for estimate force and power

production, but with a couple of changes. First, instead of the parameterization

from (5.1)-(5.3), we would like to use a more general form which allows for

reasonable comparisons to experimental data.

Specifically, we parameterize the wing strokes via a Fourier series with L

modes. Namely,

φ(t) = φ0 +

L∑
n=1

Aφ
n sin(n(ωt + ψφn)) (5.8)

and so on for calculating θ(t) and η(t). This parameterization is useful because

it encompasses a wide variety of strokes and is convenient when comparing

with experimentally obtained kinematics. One disadvantage, though, is that

number of parameters needed to describe the stroke is relatively large, requiring

6L + 4 parameters (2L + 1 per angle, plus one for the frequency). As it turns out,

however, the frequency winds up factoring out when calculating C, leaving us

with 6L + 3 parameters. Also disadvantageous is that the parameters do not

always have a straight-forward intuitive meaning.
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Given this parameterization, however, we still have the problem that our

landscape needs to only contain points which meet the constraint that 〈Fz〉 = mg.

As it turns out, though, it is possible to factor the frequency out of both the

vertical force production, Fz, and the power output, P [114]. Since Fz ∝ f 2 and

P ∝ f 3, we can then define a non-dimensional cost,

C = c̄
√
ρ f

P

F3/2
z

, (5.9)

where ρ f is the density of the fluid and c̄ is the average chord length of a wing

(the morphological factor in front of the fraction serves to eliminate the units).

Given a particular set of parameters, forces and powers for a particular

stroke are calculated using a quasi-steady model of aerodynamic forces cou-

pled with inertial forces, as in [106]. We also can compute these forces for 3D

free-flight of hovering fruit flies data obtained by Leif Ristroph in Itai Cohen’s

lab (the method for which is described in Chapter 3) and make comparisons

with the optimal solutions1. This is achieved by taking time series data (ap-

proximately 35 data points per period) and fitting them to a Fourier series via

the FFT algorithm. To simplify the analysis, we use only the first 5 terms of the

series to avoid over-fitting issues. Data was taken for three species of fruit flies,

Drosophila melanogaster (32 wing strokes), Drosophila virilis (28 wing strokes),

and Drosophila grimshawi (26 wing strokes) of varying size. Being more spe-

cific, melanogaster have a body mass of a approximately 1 mg, virilis are about

2 mg, and grimshawi weigh in at around 3.5 mg. But since all morphological

parameters can be scaled out of P
F3/2

z
from (5.9), we can overlay these species all

upon the same landscape in our model, despite their size differences.

Finally, it should be mentioned that for the parameterizations used in our

1For the purposes of this chapter, we define hovering as having an acceleration of less than

.1g.
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studies, we are not privy to a simple landscape. Mainly as a result of the var-

ious phase angles involved in the problem, the landscape is often littered with

protruding bumps and copious local optima, as exemplified in the example in

Figure 5.15. To simplify the problem slightly, we focus only on the landscape

near the kinematic data, analyzing the problem from the context of local, not

global, optimization. In fact, most of the analysis which follows makes a tacit

assumption that we are looking only in the local neighborhood of some local

minimum of the landscape. This is somewhat convenient anyway, as it allows

us to use the Hessian formalism from Section 5.3. Of course, this approach has

its limitations, so we shall discuss them later.

5.5.2 Results

Experimental Data

First, we present the results of analyzing the experimental data to see what sort

of variations are present in the data. Figure 5.16 shows a typical example of

the this. Here, the phases of the first two Fourier modes (ψθ1 and ψθ2) are plotted

against each other. We see that the variation in the data is much larger (about an

8-fold difference) along the ψθ1 axis than in the ψθ2 direction. In total, we see about

2 orders of magnitude difference between the largest and smallest variations

(Figure 5.17).

Just looking at the magnitude of the variations is slightly misleading, how-

ever. For example, if we allow some parameter p is redefined to be p∗ = 100p,

then we have changed the magnitude of variation by two orders of magnitude

without changing any information about the system. One way we can take care
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Figure 5.15: Cost landscape of ψθ2 vs. ψη1 for the fruit fly system. This plot takes
a wing stroke, fixes all parameters but the two aforementioned phase angles,
and varies only two parameters, generating this surface plot. The complexities
which arise from having a non-convex landscape with singularities such as this
example lead to focusing mainly on the local structure of the landscape, ignor-
ing some of the complicated global structure.

of this is by normalizing the deviations by the absolute value of the parameter’s

mean, but this does not help if a parameter has a mean value of zero.

Fortunately, we can take advantage of our system’s parameterization to aid

us. Namely, we have three types of parameters: offsets, Fourier amplitudes,

and phase angles. Ignoring the offsets, we know that Fourier amplitudes, by

definition are greater than zero2, and that phase angles must always be between

2Technically, the amplitudes could be zero, but experimentally, the amplitudes from the fit

are always finite, hence making the mean positive
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Figure 5.16: Measured phases for the first two Fourier modes of θ for fruit fly
kinematics. Note the nearly order of magnitude difference between the varia-
tion in one phase compared to the other.

Figure 5.17: Plot of measured standard deviations vs. parameters (in no partic-
ular order) for the three species of fruit flies. We see a total of about 2 orders of
magnitude between the smallest and largest variations.

−π and π, and, hence, can always be compared directly without normalization.

Therefore, one comparison we can make is to see if there is any correlation be-

tween variation in a Fourier Amplitude and variation in its corresponding phase

angle (Figure 5.18). Although the statistics are still small, we still see an identi-

fiable trend in the three species where as normalized variation in the amplitude

increases, so does variation in the associated phase angle. This implies that the

less constrained an amplitude is, the less constrained its phases are.
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Figure 5.18: Phase variation vs. normalized amplitude variation

Overlaying Data on the Landscape

Before we talk about more quantitative measures of how the experimental vari-

ation correlates with the landscape generated by calculating Equation 5.9, it is

helpful to have a more pictorial, qualitative understanding of how the two ideas

meld together. We can achieve this through 2D landscape plots. These plots,

similar to the schematic displayed in Figure 5.1, are two-dimensional contour

maps of the cost landscape, assuming that the remaining parameters are un-

changed. For the purposes of this write-up, we will take the non-varying pa-

rameters to be those of the local optimum within the basin of attraction popu-

lated by the experimental data and see in Figure 5.19 (found using a Conjugate-

Gradient method [115] initialized from one of the found strokes3).

The first of these plots, Figure 5.20 shows the landscape corresponding to the

raw data displayed in Figure 5.16 (ψθ1 vs. ψθ2). For this case, the landscape is ef-

3This same solution was found using several different strokes as initial conditions.
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fectively one-dimensional, as the optimal wing stroke’s first Fourier amplitude

in θ is very close to zero, while the 2nd mode is much larger (corresponding

to a figure-8 like motion). We see that all the observed data lies within 30% of

the optimal parameter set, with much more variation along the first phase than

on the second, as seen previously. Hence, for these two parameters, the differ-

ence in variation can be accounted for by the lack of stiffness in the first Fourier

phase as compared to the second. Figure 5.21 shows a similar result to this, ex-

cept now within a legitimately two-dimensional landscape. The data points are

all clustered near the local optimum, approximately varying as if filling up the

nearby ellipses.

We begin to see where our pretty picture starts to become slightly washed-

out as we look at Figure 5.22, though. Although we do see variation along the

more compliant direction, the data points are not clustered nicely about some

local optimum. This may be partially due to the fact that the cost variations are

not horribly large between the optima, so there is not a large amount of pressure

to keep very close to the optimum, but this is not the case for some of the cases

to follow. For example, Figures 5.23 and 5.24 show experimental data which is

offset from the local optimum, resulting in costs which are 2-4 times higher than

the local optimum.

So what information can we glean from these plots? First, that our world

prediction isn’t perfect, but then again, it would have been surprising if it was.

But what might be more interesting is studying why in particular the theory

breaks down. These failures might be the fault of the model (after all, we are

neglecting unsteady effects and have a somewhat simplistic model of mechan-

ical power consumption) or some form of systematic error in the data collec-

tion/fitting process. It is also possible, as noted in our analysis of the different
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Figure 5.19: Locally optimal wing stroke calculated from experimental data

local minima, that the parameterization we have chosen is not an appropriate

one to describe the wing motions.

But more intriguing is that these locations where our prediction is challenged

could be the result of the organisms not ”wanting” (as I do my best to anthropo-

morphize natural selection...) to optimize flight cost, or, not being able to do so.

For example, in Figure 5.24, we see that the data points are located ”southwest”

of the local optima in the space of first φ and η Fourier amplitudes. But what

is not on the plot is the fact that the wings, being solid objects and all, cannot

pass through each other. Therefore, the first Aφ
1 can never be greater than π/2

(assuming the two wings are performing the same stroke). Additionally, due to

the elastic nature of the wing muscles, it is more costly to move the wing when

it is near the head than when it is near its base on the thorax. Hence, this forces

the wing to have a slightly sub-optimal (at least in the sense of our model) am-

plitude in the φ direction. This is just one example of how the biology of the

system feeds back into the model and tells us what are some of the primary

constraints which have acted on these creatures’ flight evolution, and perhaps,

could give us a better sense of precisely the sort of problems they are up against.

Hessian Analysis

In light of the results from the previous section, it seems somewhat superfluous

to perform the Hessian analysis outlined earlier, seeing as how our data does
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Figure 5.20: First and second phase angles for θ

Figure 5.21: Amplitude and phase for the 2nd θ Fourier mode

Figure 5.22: First and second phase angles for η (contour lines: blue = .2, evenly
spaced by .05 up to red=3.)
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Figure 5.23: Second θ phase angle and the first η phase angle

Figure 5.24: First Fourier amplitudes for φ and η
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not lie precisely near the local optimum. However, we can still obtain some in-

formation about the local optimum itself, and if we assume that the eigendirec-

tions of the Hessian do not change as one moves away, we can see if variations

along these bases correlate with the corresponding eigenvalues. It’s not a per-

fect analysis, and ideally, we would like to have an analysis that works further

away from the optimum, but has the potential to serve as a useful one, even if

not a definitive one.

Calculating the Hessian using Equation 5.4, we see the eigenvalue spectrum

of the Hessian about the optimal stroke from Figure 5.19 (Figure 5.25). Note

that the eigenvalues range about 8 orders of magnitude continuously, with three

smaller eigenvalues appearing at the end. This implies that our parameteriza-

tion is ”sloppy” in the sense that we cannot separate (unless arbitrarily) unim-

portant modes from more important ones, as there is a continuous stretch of

eigenvalues over many orders of magnitude.

Given the eigenvectors and eigenvalues, we can then calculate the stiffnesses

as prescribed in Equation 5.6. From this, we see that for the φ and ηmodes, most

of the stiffness resides in the odd Fourier modes (both amplitude and phases).

Although the stiffness decreases as the mode increases for both cases, it is much

more striking for η. Additionally, the η offset also is important, as it helps set the

mid-stroke angle of attack. For θ, however, the even Fourier modes are stiffer

than the odd ones – which is consistent with the Figure-8 style stroke seen in

Figure 5.19.

We now attempt to compare these results to the experimental variation. We

can do this in two manners. First, if we recalculate the standard deviations in the

eigenbases (as opposed to in the original parameterization), then we can com-

pare these deviations directly to their corresponding eigenvalues. Makeing this

120



Figure 5.25: Eigenvalue spectrum of the Hessian near the locally optimal stroke

plot (Figure 5.27), we see that, although somewhat noisy4, larger eigenvalues

are significantly correlated with smaller normalized standard deviations. This

meshes with our expectation that larger eigenvalues should be more constrain-

ing than smaller ones. We also see this sort of result when plotting parameter

stiffness as a function of experimental variation in that parameter for the three

species (Figure 5.28), although the plot breaks down for smaller eigenvalues,

most likely due to insufficient statistics.

5.5.3 Discussion

Aside from obtaining additional data, there are several challenges needed to

more fully understand the relationship between the landscape and population

variations. First, we need to have a better characterization of the experimen-

tal error in comparison to the variation. If the error in measuring and fitting

the Fourier coefficients is of comparable size to the observed variation, then we
4In order to get sufficient statistics to compile this plot, data from the three species were

lumped together.
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Figure 5.26: Parameter stiffnesses near the local optimum for φ, θ, and η. In
each plot, the first bar is the offset value, followed by amplitude and phase for
each respective Fourier mode. Note that for φ and η, most of the importance lies
within the odd modes, whereas θ largely relies only on the even modes.

Figure 5.27: Eigenvalues vs standard deviations in the corresponding eigendi-
rections
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Figure 5.28: Parameter stiffness vs normalized standard deviation

cannot really say anything anyway. And even if the error is relatively small,

we would like to be able to put error bars on the coefficients in order to make

more rigorous claims. As we have obtained more data sets since performing

this study, thanks largely to the HRMT tracking method (Chapter 3), one solu-

tion might be to take as our data points the average stroke from a longer series

of wing beats. The error bars would then be related to the intra-individual vari-

ations and the variations we observe would be between different individuals in

a population.

Secondly, as the landscape figures show, our data is not at the local optimum

for many parameters. We would like to understand why this is the case, and

if there is any physical or biological reason for this. It could be that our model

is insufficient, leaving out effects or constraints. Or, perhaps, it could be that

insects aren’t really optimizing C like we have postulated, and maybe there is

some other landscape which better describes the data. We could investigate this
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by creating a metric that measures the distance of a stroke from a somehow

optimal stroke, and compare this distance for different definitions of optimality

(i.e. power per vertical force, or vertical force divided by drag, or smoothness of

force production, or maximal vertical force production, all of which have been

used in the literature), and see which definition can best explain the observed

wing strokes.

Finally, we would like some way to perform a Hessian-style analysis like that

used here, but at locations away from a local optimum. Near a local optimum,

we have the property that the gradient is zero, so all information immediately

near the basin (assuming appropriate smoothness, well-behavedness, etc.) is

given by the Hessian. As one moves further away, however, this approximation

starts to blur out, and the world becomes more complicated.

All this being said, though, the project remains an interesting one because it

makes an attempt (if a flailing one) to quantify variations within a population

and to attribute those variations to some identifiable metric. We make a predic-

tion about the measured diversity within a population, which should have no

bearing on the particular parameterization used to describe it. And as evolution

and natural selection thrive on diversity and variation, characterizing this type

of behavior, even if only for a solitary system, would be an important insight.

This is the promise of the line of research; we just need the machinery to catch

up with it.

5.6 Summary

In this chapter, the optimal and sub-optimal basins of the fruit fly model

of Chapter 2 have been analysed via the Hessian eigen-direction analysis of

[36–39]. The eigenvalues of the basins generally span 2-4 orders of magnitude
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continuously, implying that this model of only a few parameters is sloppy near

its optima. The stiffness of each of the parameters was quantified and it was

found that the flight efficiency was relatively insensitive to the degrees of free-

dom related to wing rotation. Also, we have found many of the local optima of

our model and analyzed the basin structure near them and, to a certain extent,

the energy barriers between them. Finally, we have explored how the topogra-

phy of the fitness landscape informs our understanding of variations within a

population. Although this last analysis has yet to yield definitive conclusions,

it points in intriguing directions for future study.

125



CHAPTER 6

THE TRANSITION TO CHAOS IN FALLING PLATES

6.1 Introduction

In the previous chapters of this thesis, insect flight has been analyzed through

the lens of quasi-steady modeling. In this context (as the term ”quasi-steady”

can mean many things), we refer to a model in which all flow is instantaneously

developed, implying that all fluid forces acting on a wing are only functions of

its morphology and current kinematics (positions, velocity, etc.), and not on any

flow history – at least explicitly. More specifically, the two-dimensional falling-

plate model introduced in [40] and elaborated upon in [41, 42] has been used

as a fluid force model for insect wings. This comparison is plausible, as the

plates share both morphological similarities (thin aspect ratio, relatively long

third dimension) and reside in the same Reynolds number regime (Re ≈ 100 −

1000).

As this model provides the undergirding for much of the work described in

this document, it is of use to have an understanding of the dynamics it predicts

(even if said dynamics are removed from wing musculature). For instance, ob-

served insect wing motions might be the result of the passive interactions with

the fluid. Additionally, one hypothesis is that animals might want to be near a

transition or a bifurcation in their system dynamics, as it would allow for po-

tentially greater control authority.

In this chapter, we apply some of the ideas of non-linear dynamics and map-

pings to this system. In particular, Lyapunov exponents and correlation dimen-

sions of the attractor for various parameter values have been calculated, and

the systems transition to chaos is analyzed via a Lorenz map prescribed for the
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system.

6.2 Model

The model of fluid forces is a modified version of Krichoff’s equations for the

flow around a 2-D airfoil. It is a quasi-steady model, in that it depends only

upon the kinematic variables of the plate at a given time, and it assumes con-

tributions from lift, drag, and added mass terms. For simplicity, the plate is

considered to have an elliptical cross-section. To eliminate cross-terms from the

statement of the problem, the kinematic variables are given in terms of a co-

moving, co-rotating coordinate system with respect to the plate (shown below

in Figure 6.1) which has basis vectors {x, y} and a rotational angle with respect to

a horizontal orientation, θ. The equations describing the motion of the system

are given by

(m + m11)v̇x′ = (m + m22)θ̇vy′ − ρ f Γvy′ − π(ρs − ρ f )abg sin θ − Fν
x′ (6.1)

(m + m22)v̇y′ = −(m + m11)θ̇vx′ + ρ f Γvx′ − π(ρs − ρ f )abg cos θ − Fν
y′ (6.2)

(I + Ia)θ̈ = (m11 − m22)vx′vy′ − τ
ν, (6.3)

where m is the mass of the plate, I is the plates moment of inertia, ρ f and ρs are

the densities of the fluid and the plate, respectively, a and b are the semi-major

and semi-minor axes of the disk cross-section, g is the gravitational acceleration

near the surface of the Earth, m11, m22, and Ia are added mass terms, Fν
x′ , Fν

y′ ,

and τν are viscous drag terms, and Γ is the circulation around the plate. From

the plates elliptical geometry, it is possible to extract m and I in terms of the

other parameters, as well as calculate the added mass terms. Here, we have that

m = πρsab and I = 1
4πρsab(a2 + b2). From using the analysis of [116], the added
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mass terms are found to be

m11 = πρ f b2 (6.4)

m22 = πρ f a2 (6.5)

and

Ia =
1
8
πρ f (a2 − b2)2. (6.6)

What remains is to specify the form of the circulation and of the viscous terms.

For the circulation, a Kutta-Joukowski style form is used, with modifications to

allow for stall effects at high angle of attack and for rotational lift.

Γ = 2CRa2θ̇ −CT a
√

v2
x′ + v2

y′ sin 2α = 2CRa2θ̇ − 2CT a
vx′vy′√
v2

x′ + v2
y′

, (6.7)

where CR is the rotational lift coefficient, CT is the translational lift coefficient,

and α is the angle of attack (the angle between the velocity vector and the semi-

major axis of the ellipse).

Finally, we need to specify the dissipative viscous terms. For the transla-

tional terms, a quadratic drag is used, yielding

~Fν = ρ f a(A − B cos 2α)
√

v2
x′ + v2

y′〈vx′ , vy′〉 (6.8)

= ρ f a
(
A − B

v2
x′ − v2

y′

v2
x′ + v2

y′

)√
v2

x′ + v2
y′〈vx′ , vy′〉, (6.9)

where A and B are drag coefficients. The viscous torque term is given by

πρ f a4
( 1
T̄
µ1 + µ2|θ̇|

)
θ̇ (6.10)

where µ1 and µ2 are drag coefficients and T̄ is the characteristic time scale of the

system. The specific time scale will be described when making the equations

non-dimensional.

Speaking of which, in the grand spirit of the analysis of ODEs, we now wish

to non-dimensionalize the equations. We will assume that the semi-major axis
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of the ellipse is our length scale, L, and that the velocity scale, U, is given by the

terminal velocity of the plate when interacting with a quadratic drag. The time

scale is just U
L . Hence, we have

L = a (6.11)

U =

√(ρs

ρ f
− 1

)
gb. (6.12)

Non-dimensionalizing 6.1 according to these scales yields

(I∗ + β2)v̇x′ = (I∗ + 1)θ̇vy′ − Γvy′ − sin θ − Fν
x′ (6.13)

(I∗ + 1v̇y′) = −(I∗ + β2)θ̇vx′ + Γvx′ − cos θ − Fν
y′ (6.14)

1
4

(
I∗(1 + β2) +

1
2

(1 − β2)
)
θ̈ = (β2 − 1)vx′vy′ − τ

ν (6.15)

where β is the aspect ratio, b
a , and I∗ is the dimensionless moment of inertia, ρsb

ρ f a .

In this form, we also have that

Γ =
2
π

CRθ̇ −CT
vx′vy′√
v2

x′ + v2
y′

 (6.16)

~Fν =
1
π

A − B
v2

x′ − v2
y′

v2
x′ + v2

y′

 √
v2

x′ + v2
y′〈vx′ , vy′〉 (6.17)

and

τν = (µ1 + µ2|θ̇|)θ̇. (6.18)

The remainder of this paper will explore the dynamics of the non-dimensional

system as I∗ is altered. As done in [42] the other parameters will be set such that

β = .05, A = 1.4, B = 1.0, CT = 1.2, CR = π, and µ1 = µ2 = .2.

6.3 Possible Motions

It is easiest to refer to this system in terms of the qualitative types of motion

which the plate can undergo. The complexity of the motion is heavily tied to
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Figure 6.1: Plate coordinate system

the extent of the interactions between the plate and the fluid. I∗ is the ratio of

the moment of inertia of the falling disk and the induced moment of inertia of

the fluid, so it is a good measure of these interactions. Hence, by dimensional

analysis alone, one would guess that interesting dynamics would occur near

I∗ = 1, as this is where the interplay between the two objects in the system is the

largest (even though only the plate’s motion is explicitly modeled here). This

turns out to be what happens. Also important is the fact that qualitative long-

term motion of the plate is independent to the initial conditions by which the

plate was dropped [41].

At low values of I∗ (less than about 1.22, similar to a large sheet of paper

falling in air), the plate exhibits fluttering motion, rocking back and forth pe-

riodically (Figure 6.2(a)). In the region 1.22 < I∗ < 1.42, the plate is able to

generate enough angular momentum to make full rotations, and so it tumbles

diagonally downward(Figure 6.2(b)). There is also a logarithmic divergence of

the period of oscillation near I∗ = 1.22 in the transition region between fluttering

and tumbling, the signature of a homoclinic bifurcation [41]. From the end of

the tumbling region upwards to approximately I∗ = 3, a chaotic regime exhibit-

ing characteristics of both fluttering and tumbling exists (Figure 6.2(c)). Both of
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(a) I∗ = 1.1
!

(b) I∗ = 1.3

!

(c) I∗ = 1.8
!

(d) I∗ = 3.0

Figure 6.2: Sample model trajectories

the previous two regimes discussed can be thought of business cards of various

widths falling in air. Whether or not this motion actually is chaotic will be dis-

cussed later. Finally, for I∗ > 3, the fluids impact on the plate becomes minimal,

resulting in small amplitude fluttering (Figure 6.2(d)).

This chapter will take particular interest in the transition into the regime of

more complicated trajectories beginning near I∗ = 1.42 and the transition back

to small-amplitude fluttering near I∗ = 2.84.

131



6.4 Lyapunov Exponents

The first analysis of these equations is to measure the largest Lyapunov expo-

nent for the system as a function of I∗. This is achieved via the method described

in [117, 118]. First, the linear variational equations for the four variables salient

to the systems dynamics (vx, vy, θ and θ̇) are calculated, giving an equation of the

form 

˙δvx′

˙δvy′

δ̇θ

˙δω


= A



δvx′

δvy′

δθ

δω


. (6.19)

Here, ω ≡ θ̇ (since having nested dots over a variable is aesthetically unpleasing

to a large degree) and A is a 4 × 4 matrix which depends on the morphological

parameters of the plate and the kinematic variables. Performing this calculation,

we can write the non-zero elements of A as follows:

A11 =
2CT v4

y′ + 2v4
x′(B − A) + 3v2

x′v
2
y′(B − A) − (A + B)v4

y′

πv3I∗

A12 =
2CT vx′vy′(v2

x′ + v2) − Av2 + B(v2 + 2v2
x′)vx′vy′ + v3(πI∗ + π − 2CR)ω

πv3I∗

A13 = −
cos θ

I∗

A14 =
(
1 +

1
I∗
−

2CR

πI∗
)
vy′

A21 =
−2CT vx′vy′(v2 + v2

y′) − (Av2 + B(v2 + 2v2
x′))vx′vy′ + v3(πI∗ + π − 2CR)ω

πv3(I∗ + 1)

A22 =
v4

x′(B − A) − 3v2
x′v

2
y′(A + B) − 2v4

y′(A + B) − 2CT v4
x′

πv3(I ∗ +1)

A23 =
sin θ

I∗ + 1

A24 =
1

I∗ + 1

(2CR

π
− I∗

)
vx′
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A34 = 1

A41 =
−8

2I∗ + 1
vy′

A42 =
−8

2I∗ + 1
vx′

A44 =
−8

2I∗ + 1
(µ1 + 2µ2|ω|)

where v ≡
√

v2
x′ + v2

y′ .

Given these equations, after running the system for some transient time to

get onto the attractor (usually 500-1000 time steps), a trajectory is chosen with

its initial condition being the final state of the transient calculation and

δ(0) =

√
δvx′(0)2 + δvy′(0)2 + δθ(0)2 + δθ̇(0)2 = 1 (6.20)

with the direction of the initial condition of the four variational variables being

chosen at random. The variational equations are then run for a time t. δ(t) is then

measured and recorded in the same manner as δ(0). The initial conditions for

the variational variables for the next time step, also of length t, are then given

by taking the values δvx′ , etc., and then normalizing them by δ(t) (the initial

conditions for the kinematic variables are simply given by their values at the

end of the previous time step. This process is then continued for an arbitrary

number of time steps, all of length t. The largest Lyapunov exponent, λ, is then

calculated by

λ =
1
N

N∑
i−1

1
t

log
δ(it)

δ(t(i − 1))
. (6.21)

This process was then repeated 10-20 times per I∗, each with a randomly chosen

different initial direction of δ. Then, λ was found for many different values of I∗

between .5 and 3.5, resulting in Figure 6.3 below.

As expected, the Lyapunov exponent is within error of zero in the regions

in which simple periodic behavior occurs (fluttering, tumbling, low-amplitude

fluttering), implying that at most, it takes a very long time for closely separated
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Figure 6.3: Largest Lyapunov exponent vs. I∗

initial conditions to diverge (if they do at all). The fact that λ becomes posi-

tive, though, during 1.6 < I∗ < 2.84 implies that the complicated trajectories

observed here actually are chaotic. The drops down to near zero during the

large λ region correspond to periodic windows (Figure 6.4), the nature of which

will be explained in more detail in following sections. Interesting as well is the

fact that there appears to be two separate peaks involved in the Lyapunov ex-

ponent rise. This suggests that two separate physical processes are occurring

to engender the chaotic regime. Looking at trajectories from regions in which

different processes appear to be occurring (Figure 6.5), there appears to be no

obvious qualitative difference between the two regions, other than the fact that

tumbling is more common in the first. Again, this will be discussed further in

detail later.
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Figure 6.4: An example of a periodic trajectory in the midst of the chaotic region
(I∗ = 1.9)

6.5 The Lorenz Map

The next piece of analysis was to transform the system in hopes of observing

phenomena that might better shed light on the systems dynamics. This was

achieved via the map developed by [119] in Lorenz’s famous paper attempting

to understand atmospheric dynamics. In this method, we can take advantage

of the fact that there is a bounded oscillation in the vertical velocity (vy) of the

plate after an initial transient period (Figure 6.6). In this case, the map is given

by taking the value of the four state variables (〈vx, vy, θ, θ̇〉) whenever vy is at a

maximum. Note that the velocity values are in the unprimed frame, as these

oscillations are not seen when looking at velocities in the primed frame. Al-

though and are recorded at each time step, this paper looks primarily at the 1-D
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(a) I∗ = 1.75

!

(b) I∗ = 2.5

Figure 6.5: Two chaotic trajectories
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iterations of vy and the 2-D map resulting from |vx| and vy (the absolute value is

necessary for the x-coordinate in order to make fluttering a period-1 solution,

the motivation for which will be shown momentarily).

First, we will look at the results from the 2-D map as a function of I∗ in

order to understand the structure of the attractor. Shown below are plots of at

the Lorenz map points for varying values of I∗ (Figure 6.7). A movie of these

attractors morphing with I∗ can be obtained via request from the author.

During the regions before I∗ = 1.42 in which simple fluttering and tumbling

exist, there is only one dot in the attractor, implying that a periodic solution ex-

ists (if vx is used instead of |vx| for the Lorenz map, the symmetry of the motion

causes two points to exist for fluttering, which we would like to characterize

as periodic). The number of points then becomes two near I∗ = 1.42, and then

four near I∗ = 1.5 (there is also a small segment in which a period-8 cycle oc-

curs near I∗ = 1.56). This type of growth appears to suggest that the system

follows a period doubling cascade into chaos. As it turns out, though, there

appears to be another process occurring as well that complicates the system’s

transition to chaos (see next section). As I∗ continues to increase past the region

of period doubling and into the chaotic region, an attractor with several tendrils

extending off of a line forms (as seen in the plots 2nd and 3rd from the end in

Figure 6.7). Near I∗ = 2.84, though, all of the points collapse down to the main

backbone line, and after this, the attractor spontaneously collapses down to a

single point, implying the onset of small-amplitude fluttering, as seen in Figure

6.2(d). So whats happening at this point? For values immediately smaller than

I∗ = 2.84, the trajectory of the plate is for the most part that of a small-amplitude

flutterer. However, the amplitude variations are not yet stable, causing the oc-

casional tumble to occur when the plate builds an excess of angular momentum
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(Figure 6.8). This motion corresponds to the thick line of points seen in Figure

6.7(g). Hence, the transition from a 1-D-like attractor to a point occurs when the

small-amplitude fluttering motion stabilizes. More will be said about this later.

The last piece of analysis done on the 2-D Lorenz map was to measure the

correlation dimension of the attractor as a function of I∗. This was done using

the method described in [120]. For points {~x}i in an attractor containing N points,

C(ε) is defined such that

C(ε,N) =
2

N(N − 1)

N∑
i=1

N∑
j=i+1

Θ
(
ε − ||~xi − ~x j||

)
, (6.22)

where Θ(x) is the Heaviside step function. The correlation dimension is then

defined as

d = lim
ε→0

lim
N→∞

∂

∂(log ε)
log C(ε,N). (6.23)

Naturally, we expect that this value should be zero for areas of periodic so-

lution which result in a Lorenz map of a point, and that 1 < d < 2 for the chaotic

region. Practically, this was calculated by finding the slope of a log-log plot of

C(ε,N) for constant N and various values of ε. The results can be seen below

in Figure 6.9. As expected, the average dimension was found to be zero in the

regions of periodic motion, and then increased to a value a little larger than one

in the chaotic region (d ≈ 1.19). It then drops off to d = 1 near the transition to

low-amplitude fluttering and proceeds to drop-off immediately to d = 0 after

I∗ = 2.84. This further confirms the collapse to a line and then a point at the

chaos to small-amplitude fluttering transition.
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Figure 6.6: Vertical velocity (vy′) vs. Time for I∗ = 2.2

6.6 The Transition to Chaos in the 1-D Lorenz Map

We now look at the 1-D Lorenz map alluded to in the previous section in which

each point is taken to be the value of vy at each of its local maxima (Figure 6.6).

The large-scale structure of which can be seen above in Figure 6.10. As seen

in the 2-D map, the system starts out as a single stationary point for low I∗

and then undergoes a series of period doublings before entering a more chaotic

regime after about I∗ = 1.6. This region then continues until about I∗ = 2.84, at

which point, the system enters the small-amplitude fluttering region.

Looking more closely at the period-doubling region (Figure 6.11), we can see

many of the same features observed in the logistic map, but also some aspects

that are strikingly different. In the first category, we see the same type of bold

lines cutting through the bifurcation diagram. Also, there are several periodic

windows within the chaotic regime. As seen in Figure 6.12, these windows

match perfectly with the drops in the Lyapunov exponent discussed previously.

In the region where 1.56 < I∗ < 1.59, there is a period-2 solution (Figure 6.13)

139



!

(a) I∗ = 1.2
!

(b) I∗ = 1.45

!

(c) I∗ = 1.52
!

(d) I∗ = 1.65

!

(e) I∗ = 1.8
!

(f) I∗ = 2.5

!

(g) I∗ = 2.84
!

(h) I∗ = 2.86

Figure 6.7: Attractor geometry for the Lorenz map vs. I∗ for 1.2 < I∗ < 2.86
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(a)
!

(b)

Figure 6.8: Trajectory of Falling Plate at I∗ = 2.8 (Far away and close up)

!

Figure 6.9: Correlation dimension of the attractor vs. I∗
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that spontaneously appears (the stay dots in the region are the result of the tran-

sient time not being long enough as it takes longer for the trajectory to reach the

attractor during the 2-cycle). It should be also noted, that λ is near zero in this re-

gion. Qualitatively, what happens here is that the trajectory goes from a period-4

oscillation that is a combination of fluttering and tumbling in to a more compli-

cated, quasi-periodic-looking trajectory as the spontaneous appearance of the

2-period nears. The period-2 region then is when the plate is able to build-up

enough angular momentum to tumble exactly once per half-cycle, but is unable

to completely turn over again after that, resulting in a period-2 descent. The end

of this region is caused by the ability of the plate to occasionally tumble a second

time, resulting in a complicated trajectory similar to that seen immediately prior

to the period-2 appearance. Despite valiant attempts, however, rigorous results

regarding the (in)stability of this period-2 trajectory have currently eluded the

author. A qualitative picture, however, can be seen in Figure 6.14 through the

evolution of different trajectories through the described region.

While on the subject of non-rigorous results, there is an as-of-yet unex-

plained coincidence that appears to suggest the first peak seen in Figure 6.3. The

emboldened lines seen in Figure 6.11 appear to all converge at approximately

I∗ = 1.775. As shown in Figure 6.15, this point almost exactly coincides with

the first peak of λ. The reason for this remains a question for future research, as

I have yet to find a compelling quantitative or qualitative explanation for this

coincidence.

Lastly, we look at the transition from chaos to low-amplitude fluttering near

I∗ = 2.84. Looking at the zoom-in of the bifurcation diagram in Figure 6.16, it

is possible to see what appears to be a condensing of points near the transition

immediately before the transition to a small-amplitude fluttering scenario. We
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can observe this more closely by looking at what happens to the shape of the

probability measure of vy as I∗ approaches the transition. The measure, µ, was

found by finding the Lorenz map values for the first 10,000 time steps (after an

initial transient). The positions of vy were then histogrammed and normalized

to provide the plots shown in Figure 6.17. As seen there, the measure collapses

down from a widely distributed measure at I∗ = 2.5 to a delta function at vy ≈

.69, implying the creation of a stable period-1 orbit at the transition.

!

Figure 6.10: Large-scale results of the 1-D Lorenz map
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Figure 6.11: Zoom-in on the period doubling region of the Lorenz map
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Figure 6.12: Location of periodic windows compared to drops in the Lyapunov
exponent
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Figure 6.13: Zoom-in on the period-2 region
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(a) I∗ = 1.564
!

(b) I∗ = 1.567

!

(c) I∗ = 1.58
!

(d) I∗ = 1.5965

Figure 6.14: Plate trajectories approaching, passing through, and leaving the
period-2 region
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Figure 6.15: Coincidence of the first λ peak and the convergence of bold lines
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Figure 6.16: The transition from chaos to low-amplitude fluttering
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(a) I∗ = 2.5
!

(b) I∗ = 2.75

!

(c) I∗ = 2.83
!

(d) I∗ = 2.84

!

(e) I∗ = 2.843
!

(f) I∗ = 2.86

Figure 6.17: Measure of vy near the transition to small-amplitude fluttering
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6.7 Conclusions

Here, the dynamics of a two-dimensional falling rigid plate have been studied

through measuring the Lyapunov exponents and looking at one and two dimen-

sional Lorenz maps of the system for varying values of the non-dimensional

moment of inertia, I*. The system was found to undergo a Feigenbaum-like

period doubling transition into chaos beginning near I∗ = 1.42 (although not

enough branches were available to measure the Feigenbaum constant itself due

to the numerical limitations of the ODE solver and the sudden appearance of a

stable 2-cycle in the midst of the period doubling region). This chaotic region

coincides with a large rise in the Lyapunov exponent of the system.

Further work in this area would benefit from more rigorous observations of

the results shown numerically and/or qualitatively here. In particular, a proof

of the existence and stability of a period-2 motion shown in Figure 6.13 and an

understanding of the measure collapse illustrated in Figure 6.17 would be inter-

esting problems. Any sort of explanation for the coincidence of the bold lines

converging and the first Lyapunov peak (Figure 6.15) would be interesting. Nu-

merically, it would also be of interest to look at measure variations systemati-

cally throughout the rest of the chaotic region besides its very end. Finally, [42]

also observed that the dynamics of the plate change in qualitative ways when

the viscous parameters, µ1 and µ2 are altered. Hence, it would be of value to

see how the structure of the attractor and the bifurcation diagram changes with

these variables.
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CHAPTER 7

OPTIMIZING THE FLIGHT OF A TUMBLING AIRFOIL

7.1 Introduction

Insects are some of the world’s most graceful, efficient, and varied locomotors

– flying, darting, and hovering with an ease that has aroused the curiosity of

physicists and the envy of aerospace and mechanical engineers. Despite this fact

(or, more likely, because of it), the physical mechanisms behind their abilities are

still poorly understood. This thesis focuses on unraveling some of these mech-

anisms. This includes attempting to understand the physical and evolutionary

reasons explaining why insects fly in the manner which has been observed. Of

particular interest is how rotation affects flight, as rotation of the airfoil with

respect to the fluid flow is the primary difference between flapping flight and

conventional airfoil theory. Rotation has also been shown to be important in

explaining the dynamics of falling plates and paper [40–42]. As such, this paper

will study the case of a two-dimensional flapper whose only means of actuation

is via rotation about its center of mass. By attempting to optimize the trajectory

of this object, it is possible to observe whether flight of some form is possible

with only rotation, and if so, the nature of these flying trajectories.

7.2 Methods

7.2.1 Model Description

The model of fluid forces on a thin plate used here is similar to the one intro-

duced in [40–42] to analyze the dynamics of a thin elliptical plate falling through

a fluid, and by [106] to study optimal kinematics in insect flight. As the wings
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θ

Figure 7.1: Model coordinates

we are interested in studying are of similar geometry and Reynolds number

(Re ∼ 100), the model should be applicable here as well. This is a quasi-steady

model, meaning that all forces are only functions of the current kinematic state

of the system (namely – position, velocity, and acceleration). Hence, there is no

history dependence in the fluid flow. Although this does not allow for unsteady

effects to explicitly enter into the equations of motion, the addition of a rota-

tional lift term (Eqn. 7.4) has been shown to capture many of these effects [41].

For this paper, though, the model is appended to include the effect of the plate

having to support an additional mass, M, located at the center of mass, along

with its own mass. Also, a rotational actuator is assumed to exist at the center

of mass. In fact, the parameter, M, can be viewed as the mass of this motor. The

equations of motion are non-dimensionalized with the length scale being a, the

semi-major axis of the ellipse, and with a velocity scale equal to the terminal

velocity of the plate if it was resisted by quadratic drag.
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In the co-rotating coordinate system shown in Figure 7.1, the non-

dimensional equations of motion for the plate are as follows:

I∗(1 + γ)v̇x′ = (I∗(1 + γ) + 1)θ̇vy′ − Γvy′ −
1
π

sin θ − Fν
x′ (7.1)

(I∗(1 + γ) + 1)v̇y′ = −I∗(1 + γ)θ̇vx′ + Γvx′ −
1
π

cos θ − Fν
y′ (7.2)

1
4

(I∗ +
1
2

)θ̈ = −vx′vy′ − τ
ν + τapplied (7.3)

Here, Γ is the circulation of the flow around the plate, given by

Γ =
−2
π

[
CT

vx′vy′√
v2

x′ + v2
y′

+ CRθ̇
]

(7.4)

where CT and CR are non-dimensional constants. It is the term involving CR

which allows the creation of the lift from rotation – modeling several unsteady

effects. For the studies here, CT = 1.2 and CR = π, as in [41]. ~Fν is the viscous

drag, which is modeled as

~Fν =
1
π

[
A − B

v2
x′ − v2

y′

v2
x′ + v2

y′

]√
v2

x′ + v2
y′

(
vx′

vy′

)
(7.5)

where A and B are non-dimensional constants set to 1.4 and 1, respectively. τν is

the viscous torque, set such that

τν = (µ1 + µ2|θ̇|)θ̇ (7.6)

where µ1 = µ2 = .2. I∗ is the non-dimensional moment of inertia (given by ρsb
ρ f a ,

where a and b are the semi-major and minor radii, respectively, of the ellipse,

and ρ f and ρs are the densities of the fluid and solid), and γ is the ratio between

the supported mass and the wing mass. More precisely,

γ =
M

πρsab
(7.7)

Although, one would ideally like to understand the properties of the flapper

as a function of I∗ and γ, time and computational limitations force this study
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Figure 7.2: Applied torques for various values of N

to look exclusively at the case of I∗ = γ = 1, which matches the morphological

parameters of some larger insects such as hawkmoths and dragonflies. Finally,

τapplied is the applied torque by the actuator. It is this torque which will be opti-

mized.

Also of interest is the mechanical power necessary to actuate a given motion.

This power, P, is defined by

1
T

∫ T

0
|θ̇(t)τapplied(t)|dt (7.8)

The absolute value is necessary because it is assumed that actuator cannot store

energy.

7.2.2 Representation

For the optimizations to follow, the applied torque is assumed to be a periodic,

piecewise-linear function with N evenly-spaced break points (see Figure 7.2).

This assumption is inspired by studies of bipedal locomotion by [50]. Hence,

any representation of the system requires at least N + 1 variables (one for each

break point, plus a period giving the time scale). Here, two different represen-

tations are used – although it turns out that one clearly outperforms the other.

For all simulations performed here, N = 20.
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The first representation (hereto referred to as Representation 1) takes two

absolute inputs: the torque at the beginning (and, accordingly, the end, due to

periodicity) of each period and the length of the period. Each subsequent vari-

able is a floating point number to be added to the previous value in order to

obtain the torque at the next break point, with linear interpolation in between.

The second representation (Representation 2) also specifies the torque at the be-

ginning/end of the period, as well as the period length, but the intermediate

variables are actually the absolute values of torque at the given point in the cy-

cle, irrespective of its predecessors. Again, linear interpolation is used between

the torque values at the break points. Pictorial examples of these representations

can be seen in Figure 7.3.

The possible advantage of Representation 1 is that it preserves the shape of

the waveform segment during crossover. Hence, once a good shape is found, it

is likely to be kept in the population. The problem with this, however, is that

shapes are less important that just having the values of the torques optimized,

or that simply having a good shape will not lead to a better fitness unless the

absolute values are optimal or near-optimal. This question of representation

will be further examined in section 7.3.

7.2.3 Fitness and Function Evaluations

There are several useful definitions of what makes a good actuation pattern, but

the most obvious ones are

1. The height the wing can rise to in a given amount of time (maximize)

2. The forward distance the wing can travel in a given amount of time (max-
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N-1 Torque Increments

Flapping
Period

Starting/Ending Point

+1 -.3 ... ... ...

N-1 Torque Values

Flapping
Period

Starting/Ending Point

2 1.7 ... ... ...1

1 2.7

2.7

Representation 1:

Representation 2:

Figure 7.3: Representations used for the genetic algorithm

imize)

3. The amount of power required to actuate a particular trajectory (mini-

mize)

To be precise, the fitness is defined as the time-averaged quantity in question

after integrating Equations 7.1-7.3 from t = 0 to t = 300. This integration is

implemented as a 4th-order Runga-Kutta numerical integration using the Gnu

Scientific Library in C++ with absolute and relative tolerances of 10−6 (function

evaluation time ≈ .25−2 seconds, depending on the given torques, on a 3.0 GHz

Intel Xenon processor). For all runs, the initial condition was set such that the

flapper was started from rest, lying horizontally (vx = vy = θ = θ̇ = 0). Naturally,

it is possible to optimize each of these traits individually (except for power, since

that would lead to the trivial solution), or multiple ones via a Pareto-style multi-

objective optimization. The methods for these optimizations are described in

the following two sections.
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7.2.4 Single-Objective Optimization

For the sake of understanding the system better for the more interesting multi-

objective optimizations, we initially ran simulations that optimized only one

objective, namely, the time-averaged vertical distance the flapper travels. For

these simulations, two-point crossover is used, with pc = .6. Mutation of values

is allowed with a probability, pm, of 10−3 per genome element. A value, X, is

mutated to X′ via

X′ = X + M · N(0, 1) (7.9)

where N(0, 1) is randomly drawn from a gaussian distribution with µ = 0 and

σ = 1, and M = .25.

Two different selection methods, rank-proportional with stochastic uniform

sampling (SUS) and binary tournament, were tested, as well as the two different

representations described in Section 7.2.2. For all runs, the population size, S ,

was set to 200. Values smaller than this tended to prematurely converge for all

selection and variability operators tested. No elitism was used as the relatively

large population size, combined with the low mutation rate mostly prevented

good solutions from exiting the population. The population was initialized by

randomly choosing N numbers ∈ [−50, 50] for torque values/increments, and a

number ∈ (0, 50] for the stroke period. Although torque values were allowed

to mutate out of this range, the period was restricted to be within the original

range (a negative period is physically meaningless, and allowing larger periods

dramatically increases the search time).
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7.2.5 Multi-Objective Optimization

A Pareto-style algorithm is used to optimize the combinations of lift and power,

as well as lift and forward flight1. The algorithm utilized is a variant of the

NGSA-II algorithm ( [121]), which is an elitist genetic algorithm that sorts not

only by Pareto front, but also by its dissimilarity to other solutions in the popu-

lation. More specifically, the algorithm ranks solutions first by their Pareto front

(defined in the usual manner as the number of fronts needed to be removed in

order for the solution to be non-dominated), but then by the normalized dis-

tance between the nearest neighbors on each side of the front in each dimension

of fitness space. This aims to prevent the front from crowding in one particular

area. The solutions with maximum fitness in each of the dimensions are always

ranked at the top of their respective fronts.

After initializing the population to a size of S solutions, selection and varia-

tion occur in the same manner as in Section 7.2.4 until the population size dou-

bles to a size of 2S . Binary tournament selection is used (which should give a

hint as to the findings from single-objective optimization). This doubled popu-

lation is then sorted via the algorithm described in the previous paragraph. The

top S individuals in this population survive to the next generation. Aditionally,

to limit the search space, a lower bound of zero is set on the amount of lift gen-

erated by the solution (if the flapper is falling, the solution is not particularly

interesting, no matter how little power is used). Various population sizes are

tested.
1An algorithm that optimizes all three was also implemented, but no satisfactory results

were achieved
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7.3 Results

7.3.1 Single-Objective Optimization

As stated in the previous section, the single-objective optimization for vertical

distance traveled per unit time is tested for both Representation 1 and Repre-

sentation 2, as well as for two different types of selection, binary tournament

and rank-proportional selection. The results (averaged over 5 trials each), can

be seen in Figure 7.4. The optimal solution found in these simulations is shown

in Figure 7.5. As Figure 7.4 displays, Representation 1 (where the genome com-

ponents are relative values of torque) wound-up beating Representation 2 (com-

ponents are the absolute values of torque). The apparent reason for this is that

Representation 2 appears to be solving a ”needle-in-the-haystack” style problem

in that large changes quickly occur, followed by long plateaus. Additionally, the

tournament selection outperformed the rank-based selection. Accordingly, for

the simulations in Section 7.3.2, Representation 1 was used with a binary tour-

nament selection (better solution taken with a probability of .75).

These optimization results were tested against the results from SNOPT, a

atate-of-the-art commercial implementation of Sequential Quadratic Program-

ming (SQP) optimization for which it is proven that all solutions it finds are

locally minima [122]. This comparison was achieved by starting the SNOPT

algorithm at a randomly selected initial condition in the same search space as

that used by the GA. The program runs until it converges to an absolute and

relative tolerance of 10−6 (the same as the ODE solver). Once this solution is

found, a new initial condition is given to SNOPT, and the process continues un-

til 200,000 total function evaluations are used. Comparing the results from this

to the GA results (Representation 1, Tournament Selection) are striking. Over 5
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runs of 200,000 evaluations, the GA converged to an average fitness of .561±.051.

After 5 runs of the SNOPT algorithm described above, the average fitness was

.141±.013. The best solutions obtained via the GA and SNOPT are seen in Figure

7.6 – with the GA clearly defeating the more conventional method. Although

the reasons I can give for this discrepancy are largely speculative, it appears that

for this particular problem, SNOPT gets easily hung-up on local minima. Hence,

a decent a priori knowledge of certain aspects of function space is required.

All is not perfect, however. As will be seen in the next section, the GA was

unable to find the best possible solutions, largely due to the population converg-

ing too quickly. This premature convergence is hinted at by the plots in Figure

7.4. Although some diversity-enhancement methods were attempted (i.e. oc-

casionally adding in a externally evolved small sub-population, pruning via a

distance metric, etc.), the best method was simply to use the multi-objective

optimization described in the section to follow.

7.3.2 Multi-Objective Optimization

The initial test done was to observe the effect of population size on the success

of the multi-objective optimization. In order to make a proper comparison, for

each case, the GA was run until either the population converged (no new ad-

ditions to the Pareto front in 20 generations) or 1 million function evaluations

were achieved2. Figure 7.7 shows the final Pareto fronts for optimizing both rise

and the inverse of the power consumed for these tests. What we see is that a

population size of 1000 is clearly the best amongst the chosen run sizes. Hence,

21 million function evaluations is the approximate number of function evaluations which

can be performed over the course of 2 days
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objective optimization (Rise = .690)
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Figure 7.6: Comparison between GA and SNOPT after running from t = 0 to
t = 125

it was this value that was used for the simulations to follow.

A reason for the large size necessary appears to be the existence of distinct

strategies in the population. In other words, there is not a smooth transition

between all nearest neighbors on the Pareto front, with discontinuous jumps

between the various flapping strategies (an effect that will be observed in more

detail later in this section). Therefore, the population is more likely to get hung-

up on a local minimum that is able to take over the population if the number

of individuals is small. Larger population sizes took significantly longer to con-

verge, making their study impractical for the paper here. Other methods to

alleviate this problem via diversity maintenance are possible, but the relatively

costly objective function did not allow for a large degree of testing.

Results for the S = 1000 run at various time-steps are seen in Figure 7.8. As

shown in the figure, the Pareto fronts gradually grow outward until finally con-

verging after ∼ 1000 generations. Once the front reaches its convergence point,

new points with similar strategies grow outwards until creating an ergodic-

appearing set of points displaying the limits of the particular strategy. This
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is the reason for the separated clusters of points which lie upon the final front.

This type of behavior (as well as the front itself), was seen in each of 5 runs

with S = 1000. Also, note that the best solution in terms of optimizing only rise

(top-left on the front), is significantly better than the fitness of the best solution

found via single-objective optimization (Figure 7.5), which only had a fitness

of .69, compared to the solution here, which has a rise value of .91 (Figure 7.9).

Three solutions along the front are shown in Figures 7.9 - 7.11.

Finally, the results from optimizing both forward and vertical distance trav-

eled are shown in Figure 7.12. The solutions were all of the same general type

(see Figure 7.13), allowing for an ergodic-looking Pareto front, especially when

compare to Figure 7.8. All solutions on the front display this sort of ”reverse-

tumbling” style behavior. In fact, five separate simulations all reached this iden-

tical front. While in itself, this would be a good result, as it means that the al-

gorithm in repeatable and consistent, comparison to Figure 7.8 shows that this

GA does not find the solution with optimal vertical displacement. Several at-

tempts to expand out the front to these more ”lift-like” solutions via diversity

maintenance (in particular: pruning via a distance metric and introduction of

a newly-evolved subpopulation at regular intervals) failed, all resulting in the

same final front seen in Figure 7.12.

7.4 Conclusions and Future Work

In this chapter, it has been shown that a wing can generate sufficient lift to dis-

place itself vertically via only rotational actuation. In addition, optimal (or min-

imally, very good) solutions have been found in terms of power consumption,

lift production, and thrust production. This was achieved via both a single-
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Figure 7.13: Example solution of rise-forward optimization

objective optimization for vertical displacement and a multi-objective, Pareto-

style, optimization which optimized two parameters at once. The results from

these optimizations outperformed the results from a commercially available

SQP optimization.

Future work could involve better understanding the diversity-mainenence

problem in the single-objective optimization and the rise/forward multi-

objective optimization. Also interesting from a more scientific (as opposed to

optimization) view-point, would be to study why this system exhibits cluster-

ing behavior in the power/rise optimization (Figure 7.8), as opposed to the more

ergodic front of the rise-forward optimization. It should be noted, though, that

the latter case could simply be ergodic because of poor diversity maintenance.

Additionally, the optimal solutions could be studied as a function of the param-

eters I∗ and γ. As mentioned earlier in the text, a GA which optimizes all three

possible fitnesses (rise, power, and forward flight) is also intriguing. Finally,
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more work could go into parallelizing the algorithm in order to speed-up the

process. For all the work here, each run was done on only a single processor.

Of course, there is much room for future improvements and hypotheses

here. In particular, control of the flapper could be studied. One numerical ex-

periment could be: given a random gust of wind, what is the optimal control to

right the flapper? Also, comparisons could be made between purely rotational

flappers and translational and rotational flappers (more similar to a real insect

or flapping animal). Does the rotational flapper flap more efficiently? How

does rotation affect control with respect to translation? These are questions

that should become feasible to answer with algorithmic and implementation

improvements.
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